1
|
Li T, Yang J, Chen Q, Zhang H, Wang P, Hu W, Liu B. Construction of Highly Conductive Cross-Linked Polybenzimidazole-Based Networks for High-Temperature Proton Exchange Membrane Fuel Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1932. [PMID: 36903047 PMCID: PMC10003937 DOI: 10.3390/ma16051932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) are of great interest to researchers in industry and academia because of their wide range of applications. This review lists some creative cross-linked polybenzimidazole-based membranes that have been prepared in recent years. Based on the investigation into their chemical structure, the properties of cross-linked polybenzimidazole-based membranes and the prospect of their future applications are discussed. The focus is on the construction of cross-linked structure of various types of polybenzimidazole-based membranes and their effect on proton conductivity. This review expresses the outlook and good expectation of the future direction of cross-linked polybenzimidazole membranes.
Collapse
Affiliation(s)
- Tianyang Li
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiayu Yang
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qingxin Chen
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hui Zhang
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Peng Wang
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wei Hu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Baijun Liu
- Key Laboratory of High Performance Plastics of the Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
2
|
Liu Q, Xiong C, Shi H, Liu L, Wang X, Fu X, Zhang R, Hu S, Bao X, Li X, Zhao F, Xu C. Halloysite ionogels enabling poly(2,5-benzimidazole)-based proton-exchange membranes for wide-temperature-range applications. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste)water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
|
5
|
PBI nanofiber mat-reinforced anion exchange membranes with covalently linked interfaces for use in water electrolysers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Coppola RE, Molinari FN, D'Accorso NB, Abuin GC. Polyvinyl alcohol nanofibers reinforced with polybenzimidazole: Facile preparation and properties of an anion exchange membrane. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Roxana E. Coppola
- Departamento de Almacenamiento de Energía Instituto Nacional de Tecnología Industrial (INTI) Buenos Aires Argentina
| | - Fabricio N. Molinari
- Departamento de Almacenamiento de Energía Instituto Nacional de Tecnología Industrial (INTI) Buenos Aires Argentina
| | - Norma B. D'Accorso
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica Universidad de Buenos Aires Buenos Aires Argentina
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) CONICET‐ Universidad de Buenos Aires Buenos Aires Argentina
| | - Graciela C. Abuin
- Departamento de Almacenamiento de Energía Instituto Nacional de Tecnología Industrial (INTI) Buenos Aires Argentina
| |
Collapse
|
7
|
A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells. ENERGIES 2021. [DOI: 10.3390/en14175440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review summarizes the current status, operating principles, and recent advances in high-temperature polymer electrolyte membranes (HT-PEMs), with a particular focus on the recent developments, technical challenges, and commercial prospects of the HT-PEM fuel cells. A detailed review of the most recent research activities has been covered by this work, with a major focus on the state-of-the-art concepts describing the proton conductivity and degradation mechanisms of HT-PEMs. In addition, the fuel cell performance and the lifetime of HT-PEM fuel cells as a function of operating conditions have been discussed. In addition, the review highlights the important outcomes found in the recent literature about the HT-PEM fuel cell. The main objectives of this review paper are as follows: (1) the latest development of the HT-PEMs, primarily based on polybenzimidazole membranes and (2) the latest development of the fuel cell performance and the lifetime of the HT-PEMs.
Collapse
|
8
|
PEDOT:PSS-Coated Polybenzimidazole Electroconductive Nanofibers for Biomedical Applications. Polymers (Basel) 2021; 13:polym13162786. [PMID: 34451324 PMCID: PMC8401200 DOI: 10.3390/polym13162786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Bioelectricity drives several processes in the human body. The development of new materials that can deliver electrical stimuli is gaining increasing attention in the field of tissue engineering. In this work, novel, highly electrically conductive nanofibers made of poly [2,2′-m-(phenylene)-5,5′-bibenzimidazole] (PBI) have been manufactured by electrospinning and then coated with cross-linked poly (3,4-ethylenedioxythiophene) doped with poly (styrene sulfonic acid) (PEDOT:PSS) by spin coating or dip coating. These scaffolds have been characterized by scanning electron microscopy (SEM) imaging and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. The electrical conductivity was measured by the four-probe method at values of 28.3 S·m−1 for spin coated fibers and 147 S·m−1 for dip coated samples, which correspond, respectively, to an increase of about 105 and 106 times in relation to the electrical conductivity of PBI fibers. Human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) cultured on the produced scaffolds for one week showed high viability, typical morphology and proliferative capacity, as demonstrated by calcein fluorescence staining, 4′,6-diamidino-2-phenylindole (DAPI)/Phalloidin staining and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] assay. Therefore, all fiber samples demonstrated biocompatibility. Overall, our findings highlight the great potential of PEDOT:PSS-coated PBI electrospun scaffolds for a wide variety of biomedical applications, including their use as reliable in vitro models to study pathologies and the development of strategies for the regeneration of electroactive tissues or in the design of new electrodes for in vivo electrical stimulation protocols.
Collapse
|
9
|
Polybenzimidazole-Based Polymer Electrolyte Membranes for High-Temperature Fuel Cells: Current Status and Prospects. ENERGIES 2020. [DOI: 10.3390/en14010135] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) expect a promising future in addressing the major problems associated with production and consumption of renewable energies and meeting the future societal and environmental needs. Design and fabrication of new proton exchange membranes (PEMs) with high proton conductivity and durability is crucial to overcome the drawbacks of the present PEMs. Acid-doped polybenzimidazoles (PBIs) carry high proton conductivity and long-term thermal, chemical, and structural stabilities are recognized as the suited polymeric materials for next-generation PEMs of high-temperature fuel cells in place of Nafion® membranes. This paper aims to review the recent developments in acid-doped PBI-based PEMs for use in PEMFCs. The structures and proton conductivity of a variety of acid-doped PBI-based PEMs are discussed. More recent development in PBI-based electrospun nanofiber PEMs is also considered. The electrochemical performance of PBI-based PEMs in PEMFCs and new trends in the optimization of acid-doped PBIs are explored.
Collapse
|
10
|
Escorihuela J, Olvera-Mancilla J, Alexandrova L, del Castillo LF, Compañ V. Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers (Basel) 2020; 12:E1861. [PMID: 32825111 PMCID: PMC7564738 DOI: 10.3390/polym12091861] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous attention for their roles as PEMs in fuel cells. Recent advances in composite membranes based on polybenzimidazole (PBI) for high temperature PEM fuel cell applications are summarized and highlighted in this review. In addition, the challenges, future trends, and prospects of composite membranes based on PBI for solid electrolytes are also discussed.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Jessica Olvera-Mancilla
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - Larissa Alexandrova
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - L. Felipe del Castillo
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera. s/n, 46022 Valencia, Spain
| |
Collapse
|
11
|
Zholobko O, Wu X, Zhou Z, Aulich T, Thakare J, Hurley J. A comparative experimental study of the hygroscopic and mechanical behaviors of electrospun nanofiber membranes and solution‐cast films of polybenzimidazole. J Appl Polym Sci 2020. [DOI: 10.1002/app.49639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Oksana Zholobko
- Department of Mechanical EngineeringNorth Dakota State University Fargo North Dakota USA
| | - Xiang‐Fa Wu
- Department of Mechanical EngineeringNorth Dakota State University Fargo North Dakota USA
| | - Zhengping Zhou
- Department of Mechanical EngineeringNorth Dakota State University Fargo North Dakota USA
| | - Ted Aulich
- Energy and Environmental Research Center, University of North Dakota Grand Forks North Dakota USA
| | - Jivan Thakare
- Energy and Environmental Research Center, University of North Dakota Grand Forks North Dakota USA
| | - John Hurley
- Energy and Environmental Research Center, University of North Dakota Grand Forks North Dakota USA
| |
Collapse
|
12
|
Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117354] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Ferreira FA, Esteves T, Carrasco MP, Bandarra J, Afonso CAM, Ferreira FC. Polybenzimidazole for Active Pharmaceutical Ingredient Purification: The Mometasone Furoate Case Study. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Marta P. Carrasco
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, Research Institute for Medicine (iMED, ULisboa), 1649-003 Lisboa, Portugal
| | - João Bandarra
- Hovione FarmaCiencia SA, R&D, Sete Casas, 2674-506 Loures, Portugal
| | - Carlos A. M. Afonso
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, Research Institute for Medicine (iMED, ULisboa), 1649-003 Lisboa, Portugal
| | | |
Collapse
|