1
|
Yang Q, Chen H, Lv J, Huang P, Han D, Deng W, Sun K, Kumar M, Chung S, Cho K, Hu D, Dong H, Shao L, Zhao F, Xiao Z, Kan Z, Lu S. Balancing the Efficiency and Synthetic Accessibility of Organic Solar Cells with Isomeric Acceptor Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207678. [PMID: 37171812 PMCID: PMC10369256 DOI: 10.1002/advs.202207678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Indexed: 05/13/2023]
Abstract
With the continuous development of organic semiconductor materials and on-going improvement of device technology, the power conversion efficiencies (PCEs) of organic solar cells (OSCs) have surpassed the threshold of 19%. Now, the low production cost of organic photovoltaic materials and devices have become an imperative demand for its practical application and future commercialization. Herein, the feasibility of simplified synthesis for cost-effective small-molecule acceptors via end-cap isomeric engineering is demonstrated, and two constitutional isomers, BTP-m-4Cl and BTP-o-4Cl, are synthesized and compared in parallel. These two non-fullerene acceptors (NFAs) have very similar optoelectronic properties but nonuniform morphological and crystallographic characteristics. Consequently, the OSCs composed of PM6:BTP-m-4Cl realize PCE of 17.2%, higher than that of the OSCs with PM6:BTP-o-4Cl (≈16%). When ternary OSCs are fabricated with PM6:BTP-m-4Cl:BTP-o-4Cl, the averaged PCE value reaches 17.95%, presenting outstanding photovoltaic performance. Most excitingly, the figure of merit (FOM) values of PM6:BTP-m-4Cl, PM6:BTP-o-4Cl, and PM6:BTP-m-4Cl:BTP-o-4Cl based devices are 0.190, 0.178, and 0.202 respectively. The FOM values of these systems are all among the top ones of the current high-efficiency OSC systems, revealing high cost-effectiveness of the two NFAs. This work provides a general but accessible strategy to minimize the efficiency-cost gap and promises the economic prospects of OSCs.
Collapse
Affiliation(s)
- Qianguang Yang
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haiyan Chen
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing University, Chongqing, 400044, P. R. China
| | - Jie Lv
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, 518055, P. R. China
| | - Peihao Huang
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Deman Han
- Department of Material Science and Technology, Taizhou University, Taizhou, 318000, P. R. China
| | - Wanyuan Deng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou, Beijing, 510641, P. R. China
| | - Kuan Sun
- Chongqing University, Chongqing, 400044, P. R. China
| | - Manish Kumar
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, North Korea
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Dingqin Hu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Haiyan Dong
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Li Shao
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing University, Chongqing, 400044, P. R. China
| | - Fuqing Zhao
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipeng Kan
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Shirong Lu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing University, Chongqing, 400044, P. R. China
- Department of Material Science and Technology, Taizhou University, Taizhou, 318000, P. R. China
| |
Collapse
|
2
|
36% Enhanced Efficiency of Ternary Organic Solar Cells by Doping a NT-Based Polymer as an Electron-Cascade Donor. Polymers (Basel) 2018; 10:polym10070703. [PMID: 30960628 PMCID: PMC6403668 DOI: 10.3390/polym10070703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022] Open
Abstract
In recent years, ternary organic photovoltaic cells (OPVs) have been dedicated to improving power conversion efficiency (PCE) by broadening optical absorption spectra. Ternary OPVs with different poly[thieno[3,2-b]thiophene-2,5-diyl-alt-4,9-bis(4-(2-decyltetradecyl)thien-2-yl)naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole-5,5'-diyl] (PTT-DTNT-DT) doping concentrations were designed and the effect of PTT-DTNT-DT as a complementary electron donor on the performance of OPVs was investigated. The optimized PCE of OPVs was increased from 3.42% to 4.66% by doping 20 wt % PTT-DTNT-DT. The remarkable improvement in the performance of the ternary device is mainly attributed to the sharp increase in the short-circuit current density and fill-factor. The major reasons have been systematically studied from atomic force microscopy, electrochemical impedance spectroscopy, surface energy, space charge limited current and photocurrent behavior. It has been found that the separation of excitons and the transportation of charge are enhanced while light absorption is increased, and the charge recombination also decreases due to the optimization of the cascade energy level and the morphology of the ternary active layer. The results show that it is feasible to improve the performance of ternary OPVs by their complementary absorption.
Collapse
|