1
|
Chen M, Chen L, Yuan D, Niu L, Hu J, Zhang X, Zhang X, Zhang Y, Zhang X, Ling P, Liu F, Zhang D. Preparation, function, and safety evaluation of a novel degradable dermal filler, the cross-linked poly-γ-glutamic acid hydrogel particles. J Biomed Mater Res B Appl Biomater 2023; 111:1407-1418. [PMID: 36930047 DOI: 10.1002/jbm.b.35245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Poly-γ-glutamic acid (PGA) is a naturally degradable hydrophilic linear microbial polymer with moisturizing, immunogenic, cross-linking, and hydrogel water absorption properties similar to hyaluronic acid, a biomaterial that is commonly used as a dermal filler. To explore the development feasibility of cross-linked PGA as a novel dermal filler, we studied the local skin response to PGA fillers and the effect of various cross-linking preparations on the average longevity of dermal injection. Injection site inflammation and the formation of collagen and elastin were also determined. PGA hydrogel particles prepared using 28% PGA and 10% 1,4-butanediol diglycidyl ether showed optimal filler properties, resistance to moist heat sterilization, and an average filling longevity of 94.7 ± 61.6 days in the dermis of rabbit ears. Local redness and swelling due to filler injection recovered within 14.2 ± 3.6 days. Local tissue necrosis or systemic allergic reactions were not observed, and local collagen formation was promoted. Preliminary results suggested that dermal injection of cross-linked PGA particles appeared safe and effective, suggesting that cross-linked PGA particles could be developed as a new hydrogel dermal filler.
Collapse
Affiliation(s)
- Mian Chen
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide drugs, National-Local Joint Engineering Laboratory of Polysaccharide drugs, Postdoctoral Scientific Research Workstation, Jinan, China
| | - Lei Chen
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide drugs, National-Local Joint Engineering Laboratory of Polysaccharide drugs, Postdoctoral Scientific Research Workstation, Jinan, China
| | - Dandan Yuan
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide drugs, National-Local Joint Engineering Laboratory of Polysaccharide drugs, Postdoctoral Scientific Research Workstation, Jinan, China
| | - Linlin Niu
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide drugs, National-Local Joint Engineering Laboratory of Polysaccharide drugs, Postdoctoral Scientific Research Workstation, Jinan, China
| | - Jianting Hu
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide drugs, National-Local Joint Engineering Laboratory of Polysaccharide drugs, Postdoctoral Scientific Research Workstation, Jinan, China
| | - Xiaoyuan Zhang
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide drugs, National-Local Joint Engineering Laboratory of Polysaccharide drugs, Postdoctoral Scientific Research Workstation, Jinan, China
| | - Xiuhua Zhang
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide drugs, National-Local Joint Engineering Laboratory of Polysaccharide drugs, Postdoctoral Scientific Research Workstation, Jinan, China
| | - Yanyan Zhang
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide drugs, National-Local Joint Engineering Laboratory of Polysaccharide drugs, Postdoctoral Scientific Research Workstation, Jinan, China
| | - Xiangjun Zhang
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide drugs, National-Local Joint Engineering Laboratory of Polysaccharide drugs, Postdoctoral Scientific Research Workstation, Jinan, China
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide drugs, National-Local Joint Engineering Laboratory of Polysaccharide drugs, Postdoctoral Scientific Research Workstation, Jinan, China.,School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Fei Liu
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide drugs, National-Local Joint Engineering Laboratory of Polysaccharide drugs, Postdoctoral Scientific Research Workstation, Jinan, China.,School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Daizhou Zhang
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide drugs, National-Local Joint Engineering Laboratory of Polysaccharide drugs, Postdoctoral Scientific Research Workstation, Jinan, China
| |
Collapse
|
2
|
Rossi L, Kerekes K, Kovács-Kocsi J, Körhegyi Z, Bodnár M, Fazekas E, Prépost E, Pignatelli C, Caneva E, Nicotra F, Russo L. Multivalent γ-PGA-Exendin-4 conjugates to target pancreatic β-cells. Chembiochem 2022; 23:e202200196. [PMID: 35762648 PMCID: PMC9542156 DOI: 10.1002/cbic.202200196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Targeting of glucagon‐like peptide 1 receptor (GLP‐1R), expressed on the surface of pancreatic β‐cells, is of great interest for the development of advanced therapies for diabetes and diagnostics for insulinoma. We report the conjugation of exendin‐4 (Ex‐4), an approved drug to treat type 2 diabetes, to poly‐γ‐glutamic acid (γ‐PGA) to obtain more stable and effective GLP‐1R ligands. Exendin‐4 modified at Lysine‐27 with PEG4‐maleimide was conjugated to γ‐PGA functionalized with furan, in different molar ratios, exploiting a chemoselective Diels‐Alder cycloaddition. The γ‐PGA presenting the highest number of conjugated Ex‐4 molecules (average 120 per polymeric chain) showed a double affinity towards GLP‐1R with respect to exendin per se, paving the way to improved therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Lorenzo Rossi
- University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Biotechnology and Biosciences, ITALY
| | | | | | | | | | | | | | - Cataldo Pignatelli
- University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Biotechnology and Biosciences, ITALY
| | - Enrico Caneva
- Unitech Cospect: Comprehensive Substances Characterization via advances SPECTroscopy, -, ITALY
| | - Francesco Nicotra
- University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Biotechnology and Biosciences, ITALY
| | - Laura Russo
- Universita degli Studi di Milano-Bicocca, Biotechnology and Biosciences, Piazza della Scienza 2, 20126, Milan, ITALY
| |
Collapse
|
3
|
Teng NC, Pandey A, Hsu WH, Huang CS, Lee WF, Lee TH, Yang TCK, Yang TS, Yang JC. Rehardening and the Protective Effect of Gamma-Polyglutamic Acid/Nano-Hydroxyapatite Paste on Surface-Etched Enamel. Polymers (Basel) 2021; 13:4268. [PMID: 34883772 PMCID: PMC8659594 DOI: 10.3390/polym13234268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
Many revolutionary approaches are on the way pertaining to the high occurrence of tooth decay, which is an enduring challenge in the field of preventive dentistry. However, an ideal dental care material has yet to be fully developed. With this aim, this research reports a dramatic enhancement in the rehardening potential of surface-etched enamels through a plausible synergistic effect of the novel combination of γ-polyglutamic acid (γ-PGA) and nano-hydroxyapatite (nano-HAp) paste, within the limitations of the study. The percentage of recovery of the surface microhardness (SMHR%) and the surface parameters for 9 wt% γ-PGA/nano-HAp paste on acid-etched enamel were investigated with a Vickers microhardness tester and an atomic force microscope, respectively. This in vitro study demonstrates that γ-PGA/nano-HAp treatment could increase the SMHR% of etched enamel to 39.59 ± 6.69% in 30 min. To test the hypothesis of the rehardening mechanism and the preventive effect of the γ-PGA/nano-HAp paste, the surface parameters of mean peak spacing (Rsm) and mean arithmetic surface roughness (Ra) were both measured and compared to the specimens subjected to demineralization and/or remineralization. After the treatment of γ-PGA/nano-HAp on the etched surface, the reduction in Rsm from 999 ± 120 nm to 700 ± 80 nm suggests the possible mechanism of void-filling within a short treatment time of 10 min. Furthermore, ΔRa-I, the roughness change due to etching before remineralization, was 23.15 ± 3.23 nm, while ΔRa-II, the roughness change after remineralization, was 11.99 ± 3.90 nm. This statistically significant reduction in roughness change (p < 0.05) implies a protective effect against the demineralization process. The as-developed novel γ-PGA/nano-HAp paste possesses a high efficacy towards tooth microhardness rehardening, and a protective effect against acid etching.
Collapse
Affiliation(s)
- Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Aditi Pandey
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (A.P.); (T.-H.L.)
| | - Wei-Hsin Hsu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan; (W.-H.H.); (T.C.-K.Y.)
| | - Ching-Shuan Huang
- Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Tzu-Hsin Lee
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (A.P.); (T.-H.L.)
| | - Thomas Chung-Kuang Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan; (W.-H.H.); (T.C.-K.Y.)
| | - Tzu-Sen Yang
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 11031, Taiwan;
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (A.P.); (T.-H.L.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 11052, Taiwan
- Research Center of Digital Oral Science and Technology, Taipei Medical University, Taipei 11052, Taiwan
| |
Collapse
|
4
|
An integrated strategy for recovery and purification of poly-γ-glutamic acid from fermentation broth and its techno-economic analysis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Affiliation(s)
- Mehtap Sahiner
- Department of Fashion Design, Faculty of Canakkale School of Applied Science Canakkale Onsekiz Mart University Terzioglu Campus Canakkale Turkey
| |
Collapse
|
6
|
Blanco FG, Hernández N, Rivero-Buceta V, Maestro B, Sanz JM, Mato A, Hernández-Arriaga AM, Prieto MA. From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications. NANOMATERIALS 2021; 11:nano11061492. [PMID: 34200068 PMCID: PMC8228158 DOI: 10.3390/nano11061492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Francisco G. Blanco
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Natalia Hernández
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Virginia Rivero-Buceta
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Beatriz Maestro
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Jesús M. Sanz
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Aránzazu Mato
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Ana M. Hernández-Arriaga
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
7
|
Gyarmati B, Mammadova A, Barczikai D, Stankovits G, Misra A, Alavijeh MS, Varga Z, László K, Szilágyi A. Side group ratio as a novel means to tune the hydrolytic degradation of thiolated and disulfide cross-linked polyaspartamides. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Cedrati V, Pacini A, Nitti A, Martínez de Ilarduya A, Muñoz-Guerra S, Sanyal A, Pasini D. “Clickable” bacterial poly(γ-glutamic acid). Polym Chem 2020. [DOI: 10.1039/d0py00843e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The controlled functionalization of bacterial γ-PGA is realized through sonication, solubilization using quaternary ammonium salts and click chemistry.
Collapse
Affiliation(s)
- Valeria Cedrati
- Department of Chemistry and INSTM Research Unit
- University of Pavia
- 27100 Pavia
- Italy
| | - Aurora Pacini
- Department of Chemistry and INSTM Research Unit
- University of Pavia
- 27100 Pavia
- Italy
| | - Andrea Nitti
- Department of Chemistry and INSTM Research Unit
- University of Pavia
- 27100 Pavia
- Italy
| | | | - Sebastián Muñoz-Guerra
- Departament d'Enginyeria Química
- Universitat Politècnica de Catalunya
- ETSEIB
- 08028 Barcelona
- Spain
| | - Amitav Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit
- University of Pavia
- 27100 Pavia
- Italy
| |
Collapse
|
9
|
Jiang K, Tang B, Wang Q, Xu Z, Sun L, Ma J, Li S, Xu H, Lei P. The bio-processing of soybean dregs by solid state fermentation using a poly γ-glutamic acid producing strain and its effect as feed additive. BIORESOURCE TECHNOLOGY 2019; 291:121841. [PMID: 31349173 DOI: 10.1016/j.biortech.2019.121841] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Soybean dregs are restricted as feed additives because they contain anti-nutrient factors. Herein, soybean dreg was bio-transformed by solid-state fermentation (SSF) using a poly γ-glutamic acid (γ-PGA) producing stain Bacillus amyloliquefaciens NX-2S. The maximum γ-PGA production of 65.79 g/kg was reached in a 5 L fermentation system while the conditions are 70% initial moisture of soybean dregs with addition of molasses meal, 12% inoculum size, 30 °C fermentation temperature, initial pH of 8, and 60 h fermentation time. Meanwhile, continuous batch fermentation was proved feasible. After SSF, the anti-nutritional factors such as trypsin inhibitor, phytic acid and tannin were reduced by 98.7%, 97.8%, and 63.2%, respectively. Compared with unfermented soybean dregs, adding fermented soybean dregs to feed increased the average weight gain of rats by 15.6% and reduced the ratio of feed to meat by 11.3%. Therefore, this study provided a feasible strategy for processing soybean dregs as feed additive.
Collapse
Affiliation(s)
- Kang Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Bao Tang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Junjie Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|