1
|
Rana P, Singh C, Kaushik A, Saleem S, Kumar A. Recent advances in stimuli-responsive tailored nanogels for cancer therapy; from bench to personalized treatment. J Mater Chem B 2024; 12:382-412. [PMID: 38095136 DOI: 10.1039/d3tb02650g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
To improve the quality of health in a personalized manner, better control over pharmacologically relevant cargo formulation, organ-specific targeted delivery, and on-demand release of therapeutic agents is crucial. Significant work has been put into designing and developing revolutionary nanotherapeutics approaches for the effective monitoring and personalized treatment of disease. Nanogel (NG) has attracted significant interest because of its tremendous potential in cancer therapy and its environmental stimuli responsiveness. NG is considered a next-generation delivery technology due to its benefits like as size tunability, high loading, stimuli responsiveness, prolonged drug release via in situ gelling mechanisms, stability, and its potential to provide personalized therapy from the investigation of human genes and the genes in various types of cancers and its association with a selective anticancer drug. Stimuli-responsive NGs can be used as smart nanomedicines to detect and treat cancer and can be tuned as personalized medicine as well. This comprehensive review article's major objectives include the challenges of NGs' clinical translation for cancer treatment as well as its early preclinical successes and prospects.
Collapse
Affiliation(s)
- Prinsy Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala-133207, Haryana, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand-246174, India
| | - Ajeet Kaushik
- NanoBiotech Lab, Department of Environmental Engineering, Florida Polytechnic University (FPU), Lakeland, FL, 33805-8531, USA
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, P. O. Box 93499, Riyadh 11673, Saudi Arabia
| | - Arun Kumar
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya-824209, India.
| |
Collapse
|
2
|
Saboury A, Mohammadi R, Javanbakht S, Ghorbani M. Doxorubicin imprinted magnetic polymethacrylamide as a pH-sensitive anticancer nanocarrier. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Sadat Abolmaali S, Zarenejad S, Mohebi Y, Najafi H, Javanmardi S, Abedi M, Mohammad Tamaddon A. Biotin receptor-targeting nanogels loaded with methotrexate for enhanced antitumor efficacy in triple-negative breast cancer in vitro and in vivo models. Int J Pharm 2022; 624:122049. [PMID: 35878871 DOI: 10.1016/j.ijpharm.2022.122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
High-dose methotrexate (MTX) chemotherapeutic applications confront drug specificity and pharmacokinetic challenges, which can be overcome by utilizing targeted drug delivery systems. In the present study, biotin-PEG conjugated nanogels of carboxymethyl polyethyleneimine (Biotin-PEG-CMPEI) were developed for active targeted delivery of MTX in triple negative breast cancer (TNBC). TEM and DLS analyses revealed uniform, discrete, and spherical particles with a mean hydrodynamic diameter of about 100 nm and ζ-potential of + 15 mV (pH = 7.4). Biotin-PEG-CMPEI nanogels exhibited a zero-order MTX release kinetics at pH = 7.5 and a swelling-controlled release at pH = 5.5. In 4 T1 cells treated with the MTX-loaded Biotin-PEG-CMPEI, the IC50 was reduced by about 10 folds compared to the free drug, while the unloaded nanogels showed no significant toxicity. In the model mice, the group treated with the MTX-loaded Biotin-PEG-CMPEI had a lower tumor volume and mortality rate animal model when compared to free drug. Additionally, histopathological analyses showed that the group treated with the MTX-loaded nanogels had less lung metastasis and glomerular damage caused by MTX. Overall, the MTX-loaded Biotin-PEG-CMPEI targeted directly against overexpressed biotin receptors in TNBC have been shown to improve the MTX safety and therapeutic efficacy.
Collapse
Affiliation(s)
- Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Sepideh Zarenejad
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Younes Mohebi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Haniyeh Najafi
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Sanaz Javanmardi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mehdi Abedi
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| |
Collapse
|
4
|
Shiran MR, Mahmoudian E, Ajami A, Hosseini SM, Khojasteh A, Rashidi M, Maroufi NF. Effect of Auraptene on angiogenesis in Xenograft model of breast cancer. Horm Mol Biol Clin Investig 2021; 43:7-14. [PMID: 34851565 DOI: 10.1515/hmbci-2021-0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Angiogenesis is the most important challenge in breast cancer treatment. Recently, scientists become interesting in rare natural products and intensive researches was performed to identify their pharmacological profile. Auraptene shows helpful effects such as cancer chemo-preventive, anti-inflammatory, anti-oxidant, immuno-modulatory. In this regard, we investigated the anti-angiogenesis effect of Auraptene in in-vitro and in-vivo model of breast cancer. METHODS In this study, 4T, MDA-MB-231 and HUVEC cell lines were used. The proliferation study was done by MTT assay. For tube formation assay, 250 matrigel, 1 × 104 HUVEC treated with Auraptene, 20 ng/mL EGF, 20 ng/mL bFGF and 20 ng/mL VEGF were used. Gene expression of important gene related to angiogenesis in animal model of breast cancer was investigated by Real-time PCR. Protein expression of VCAM-1 and TNFR-1 gene related to angiogenesis in animal model of breast cancer was investigated by western-blot. RESULTS Auraptene treatment led to reduction in cell viability of MDA-MB-231 in a concentration-dependent manner. Also, we observed change in the number of tubes or branches formed by cells incubated with 40 and 80 μM Auraptene. Auraptene effect the gene expression of important gene related to angiogenesis (VEGF, VEGFR2, COX2, IFNɣ). Moreover, the western blot data exhibited that Auraptene effect the protein expression of VCAM-1 and TNFR-1. CONCLUSIONS Overall, this study shows that Auraptene significantly suppressed angiogenesis via down-regulation of VEGF, VEGFR2, VCAM-1, TNFR-1, COX-2 and up-regulation of IFNγ.
Collapse
Affiliation(s)
- Mohammad Reza Shiran
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Mahmoudian
- Cellular & Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Abolghasem Ajami
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mostafa Hosseini
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ayjamal Khojasteh
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Internal Medicine, School of Medicine, Sari Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Amani D, Shakiba E, Motaghi E, Alipanah H, Jalalpourroodsari M, Rashidi M. Psoralidin exerts anti-tumor, anti-angiogenic, and immunostimulatory activities in 4T1 tumor-bearing balb/c mice. Horm Mol Biol Clin Investig 2021; 43:71-79. [PMID: 34496167 DOI: 10.1515/hmbci-2021-0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Psoralidin as a compound of the Psoralea corylifolia seeds exhibited several anti-cancer potentials in various cancers. MATERIALS AND METHODS In this study, 4T1 tumor-bearing Balb/c mice were treated by intraperitoneal administration of Psoralidin, and Paraffin, as a control group to investigate anti-tumor, anti-angiogenic, and immunostimulatory activities in breast cancer. Body weight and tumor volume measurement were performed. Hematoxylin and Eosin (H&E) staining as well as immunohistochemistry for Ki-67, CD31 and VEGF markers were conducted. In addition, ELISA assay was performed for evaluating the serum level of IFN-γ and IL-4. Moreover, real time assay was performed to evaluate the expression of angiogenesis and immunostimulatory related genes. RESULTS There were no significant changes in the body weight of all animal groups. The anti-cancer effects of Psoralidin were significantly observed after 24 days of the last treatment, confirmed by smaller tumor volume and also H&E staining. The expression level of Ki-67, CD31 and VEGF were significantly decreased in tumor tissues of the Psoralidin-treated group in comparison with Paraffin-treated group. Moreover, there was a significant reduction in the serum level of IL-4 in tumor-bearing mice after Psoralidin treatment while the serum level of IFN-γ was significantly augmented in all groups. Moreover, the reduction in expression of VEGF-a and IL-1β was observed. Interestingly Psoralidin treatment led to expression increase of FOXp3. CONCLUSIONS Psoralidin shows the anti-cancer potential in an animal model of breast cancer; however, further studies are recommended to elucidate its mechanisms of action.
Collapse
Affiliation(s)
- Davar Amani
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Shakiba
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Motaghi
- Department of Physiology and Pharmacology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hiva Alipanah
- Department of Physiology and Pharmacology, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | | | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Pourmohammad P, Alipanah-Moghadam R, Nemati A, Malekzadeh V, Mahmoodzadeh Y. Comparison of the effects of zinc oxide and zinc oxide nanoparticles on the expression of hepcidin gene in rat liver. Horm Mol Biol Clin Investig 2020; 42:43-48. [PMID: 33544508 DOI: 10.1515/hmbci-2020-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/26/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Nanoparticles have special properties, such as increased intestinal absorption, permeability, and so on. Zinc oxide (ZnO) nanoparticles have medical applications such as using in drug production. Studies of ZnO nanoparticles have shown the role of these particles in reducing or increasing the genes expression. Given the important role of hepcidin in the development of anemia and iron overload diseases, this study investigated the effect of ZnO nanoparticles on the hepatic expression of the hepcidin gene to help find a way to treat these diseases. METHODS In this experimental study, 24 male Westar rats were divided into three groups: control, ZnO treating group and ZnO nanoparticle treating group. Both ZnO and ZnO nanoparticles were injected with 50 mg/kg body weight for 14 days. At the end, serums were collected and iron, ferritin and IL-6 levels were measured. Expression of the hepcidin gene was done by Real Time PCR. RESULTS ZnO and the ZnO nanoparticle significantly increased the expression of the hepcidin gene relative to the control group. The increase in expression of the hepcidin gene in ZnO nanoparticles was more significant than in the ZnO. CONCLUSION ZnO nanoparticles led to significant increase in expression of the hepcidin gene.
Collapse
Affiliation(s)
- Pirouz Pourmohammad
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Islamic Republic of Iran
| | - Reza Alipanah-Moghadam
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Islamic Republic of Iran
| | - Ali Nemati
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Islamic Republic of Iran
| | - Vadoud Malekzadeh
- Department of Anatomical Sciences, Research Laboratory for Embryology and Stem Cells, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Islamic Republic of Iran
| | - Yavar Mahmoodzadeh
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Islamic Republic of Iran.,Department of Anatomical Sciences, Research Laboratory for Embryology and Stem Cells, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Islamic Republic of Iran
| |
Collapse
|
7
|
Maghsoudi M, Abbasian M, Farhadi K, Mahmoodzadeh F, Ghorbani M, Hoseinzadeh M. Mesoporous Si‐MCM‐41/Polymer as a pH‐Responsive Drug Delivery System for Cancer Therapy. ChemistrySelect 2020. [DOI: 10.1002/slct.202002071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mina Maghsoudi
- Department of Chemistry Payame Noor University P.O. BOX: 19395–3697 Tehran Iran
| | - Mojtaba Abbasian
- Department of Chemistry Payame Noor University P.O. BOX: 19395–3697 Tehran Iran
| | - Khalil Farhadi
- Department of Analytical Chemistry Urmia University Urmia Iran
| | | | - Marjan Ghorbani
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mehdi Hoseinzadeh
- Marand Faculty of Technical and Engineering University of Tabriz Tabriz Iran
| |
Collapse
|
8
|
Javanbakht S, Saboury A, Shaabani A, Mohammadi R, Ghorbani M. Doxorubicin Imprinted Photoluminescent Polymer as a pH-Responsive Nanocarrier. ACS APPLIED BIO MATERIALS 2020; 3:4168-4178. [DOI: 10.1021/acsabm.0c00254] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O.
Box 19396-4716, Tehran 55555, Iran
| | - Ayda Saboury
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O.
Box 19396-4716, Tehran 55555, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666, Iran
| |
Collapse
|
9
|
Ghorbani M, Zarei M, Mahmoodzadeh F, Roshangar L, Nikzad B. Improvement of delivery and anticancer activity of doxorubicin by sildenafil citrate encapsulated with a new redox and pH-responsive nanogel. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1765362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Zarei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Nikzad
- Department of Psychology, Faculty of Psychology, Tabriz University, Tabriz, Iran
| |
Collapse
|
10
|
Fathi Maroufi N, Taefehshokr S, Rashidi MR, Taefehshokr N, Khoshakhlagh M, Isazadeh A, Mokarizadeh N, Baradaran B, Nouri M. Vascular mimicry: changing the therapeutic paradigms in cancer. Mol Biol Rep 2020; 47:4749-4765. [PMID: 32424524 DOI: 10.1007/s11033-020-05515-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Cancer is a major problem in the health system, and despite many efforts to effectively treat it, none has yet been fully successful. Angiogenesis and metastasis are considered as major challenges in the treatment of various cancers. Researchers have struggled to succeed with anti-angiogenesis drugs for the effective treatment of cancer, although new challenges have emerged in the treatment with the emergence of resistance to anti-angiogenesis and anti-metastatic drugs. Numerous studies have shown that different cancers can resist anti-angiogenesis drugs in a new process called vascular mimicry (VM). The studies have revealed that cells resistant to anti-angiogenesis cancer therapies are more capable of forming VMs in the in vivo and in vitro environment, although there is a link between the presence of VM and poor clinical outcomes. Given the importance of the VM in the challenges facing cancer treatment, researchers are trying to identify factors that prevent the formation of these structures. In this review article, it is attempted to provide a comprehensive overview of the molecules and main signaling pathways involved in VM phenomena, as well as the agents currently being identified as anti-VM and the role of VM in response to treatment and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nazila Fathi Maroufi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Mahdieh Khoshakhlagh
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narmin Mokarizadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Glutathione and pH-responsive chitosan-based nanogel as an efficient nanoplatform for controlled delivery of doxorubicin. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|