1
|
Liu F, Li M, Sun J, Fang Q. Bio-based Low- k Polymers at High Frequency Derived from Anethole: Synthesis and the Relationship between the Structures and the Properties. Biomacromolecules 2023; 24:4819-4830. [PMID: 37603588 DOI: 10.1021/acs.biomac.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Bio-based polymers have been widely investigated as sustainable low dielectric (low-k) materials in past decades. Nevertheless, a few of the polymers with excellent comprehensive properties have been achieved to satisfy the requirements of high-frequency communication application. In this paper, two fluorinated monomers (BCB-F and 2BCB-F) have been designed and successfully prepared from biomass anethole. The thermal-cross-linkable benzocyclobutene and polyfluorobenzene groups were introduced in order to obtain low-k polymers with good comprehensive properties. A control monomer C1 was prepared from the estragole, the isomer of anethole, to study intensively the effect of structures on properties. Among the thermally cured polymers, cured BCB-F with higher fluoride content shows a comparable dielectric constant (Dk) of 2.62 and lower dielectric loss (Df) of 1.31 × 10-3 at a frequency of 10 GHz, as well as better hydrophobic properties with a water uptake of 0.18%. Such good hydrophobic properties enable it to maintain the good dielectric properties even after being soaked in boiling water for 96 h. Cured 2BCB-F with bifunctional benzocyclobutene groups displays excellent heat resistance with a high glass transition temperature (Tg) of 408 °C and a low coefficient of thermal expansion (CTE) of 52 ppm/°C in the temperature range 30-300 °C. Cured 2BCB-F also shows good dielectric properties with a Dk of 2.61 and a Df of 2.60 × 10-3 at a frequency of 10 GHz. The good comprehensive properties reveal that the anethole-based polymers are suitable candidates as matrix or encapsulation resins for application in electronics and microelectric fields.
Collapse
Affiliation(s)
- Fengping Liu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Minghui Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Jing Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Qiang Fang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
2
|
Srinivasan H, Saravanan P, Madesh P, Krishnasamy B, Arumugam H, Muthukaruppan A. Synthesis and characterization of cardo-tetrafunctional hydrophobic polybenzoxazine composites for low-k application. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
3
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Wu F, Wang J, Wang J, Chen K, Yang S, Huo S, Wang H. A benzimidazolyl‐substituted cyclotriphosphazene and its application in benzoxazine: Curing behaviors, thermal properties, and fire safety. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Feifan Wu
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Jun Wang
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
- Institute of Advanced Material Manufacturing Equipment and Technology, Wuhan University of Technology Wuhan China
| | - Jingsheng Wang
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Kaiwen Chen
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Shuang Yang
- Institute of Advanced Material Manufacturing Equipment and Technology, Wuhan University of Technology Wuhan China
- School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan China
| | - Siqi Huo
- Laboratory of Polymer Materials and Engineering NingboTech University Ningbo China
| | - Hao Wang
- Center for Future Materials, University of Southern Queensland Springfield Central Australia
| |
Collapse
|
5
|
Chinnamuthu R, Madesh P, Arumugam H, Krishnasamy B, Govindraj L, Jaganathan M, Muthukaruppan A. Synthesis and characterization of new quinolinyl phenol based polybenzoxazine: thermal stability, hydrophobicity and corrosion resistant properties. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2022. [DOI: 10.1080/1023666x.2022.2143758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Roja Chinnamuthu
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Coimbatore, India
- Department of Chemistry, PSG College of Arts and Science, Coimbatore, India
| | - Priyanka Madesh
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Coimbatore, India
| | - Hariharan Arumugam
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Coimbatore, India
| | - Balaji Krishnasamy
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Coimbatore, India
| | - Latha Govindraj
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Coimbatore, India
| | - Mallika Jaganathan
- Department of Chemistry, PSG College of Arts and Science, Coimbatore, India
| | - Alagar Muthukaruppan
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Coimbatore, India
| |
Collapse
|
6
|
Liu Y, Yuan L, Liang G, Gu A. Developing intrinsic halogen-free and phosphorus-free flame retardant biobased benzoxazine resins with superior thermal stability and high strength. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Sriharshitha S, Krishnadevi K, Prasanna D. Vitrimers trigger covalent bonded bio-silica fused composite materials for recycling, reshaping, and self-healing applications. RSC Adv 2022; 12:26934-26944. [PMID: 36275168 PMCID: PMC9490535 DOI: 10.1039/d2ra03794g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, a recycling, reshaping, and self-healing strategy was followed for polybenzoxazine through S-S bond cleavage reformation in vitrimers, and the supramolecular interactions are described. The E-ap benzoxazine monomer was synthesized through the Mannich condensation reaction using a renewable eugenol, 3-amino-1-propanol and paraformaldehyde. Furthermore, the E-3ap monomer was reinforced with various weight percentages (5, 10, and 15 wt%) of the thiol-ene group. Various weight percentages of functionalized bio-silica (BS) were also copolymerized with E-3ap (10%-SH) to increase the thermal stability. The structure of the monomers was confirmed by NMR and FT-IR analysis and the thermal properties of the cured materials were analyzed by DSC and TGA. Tensile test was used to study the mechanical property of the poly(E-3ap-co-SH)/BS material. The film was characterized by SEM and optical microscopy to investigate the self-healing properties of the poly(E-3ap-co-thiol-ene)/BS. Moreover, photos and video clips show the self-healing ability of a test specimen. The vitrimer-based renewable polybenzoxazine material exhibits a good recycling, reshaping, and self-healing abilities, and thus is a prime candidate for several industrial and engineering applications.
Collapse
Affiliation(s)
- Salendra Sriharshitha
- Polymer Composites Lab, Division of Chemistry, Department of Sciences & Humanities, Vignan's Foundation for Science, Technology and Research (Deemed to Be University) Guntur Andhra Pradesh India
| | - Krishnamoorthy Krishnadevi
- Polymer Composites Lab, Division of Chemistry, Department of Sciences & Humanities, Vignan's Foundation for Science, Technology and Research (Deemed to Be University) Guntur Andhra Pradesh India
- Department of Chemistry, Vignan Degree & PG College Guntur Andhra Pradesh India
| | - Dakshinamoorthy Prasanna
- Department of Chemistry, Vignan's Nirula Institute of Technology and Science for Women Guntur Andhra Pradesh India
| |
Collapse
|
8
|
Sriharshitha S, Krishnadevi K, Devaraju S, Prasanna D. Intrinsic approach of eco-friendly poly (benzoxazine-co-maleicanhydride) materials for self-healing applications. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
|
10
|
Xiao Y, Liu S, Hu Y, Zhang S, Li Z, Li L, Feng J. Excellent antioxidizing, thermally insulating and flame resistance silica‐polybenzoxazine aerogels for aircraft ablative materials. J Appl Polym Sci 2022. [DOI: 10.1002/app.52499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yunyun Xiao
- Polymer Aerogels Research Center Jiangxi University of Science and Technology Ganzhou China
| | - Saihui Liu
- Polymer Aerogels Research Center Jiangxi University of Science and Technology Ganzhou China
| | - Yangbiao Hu
- Polymer Aerogels Research Center Jiangxi University of Science and Technology Ganzhou China
| | - Sizhao Zhang
- Polymer Aerogels Research Center Jiangxi University of Science and Technology Ganzhou China
| | - Zhenquan Li
- Polymer Aerogels Research Center Jiangxi University of Science and Technology Ganzhou China
| | - Liangjun Li
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Technology, National University of Defense Technology Changsha 410073 China
| | - Jian Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Technology, National University of Defense Technology Changsha 410073 China
| |
Collapse
|
11
|
Machado I, Shaer C, Hurdle K, Calado V, Ishida H. Towards the Development of Green Flame Retardancy by Polybenzoxazines. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Subramani D, Krishnamoorthy K, Eeda N, Salendra S, Achimuthu AK. Development of highly flexible sustainable bio-silica reinforced cardanol based poly (benzoxazine-co-epoxy) hybrid composites. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1981764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Devaraju Subramani
- Polymer Composites Lab, Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research (VFSTR), Vadlamudi, Andhra Pradesh, India
| | - Krishnadevi Krishnamoorthy
- Polymer Composites Lab, Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research (VFSTR), Vadlamudi, Andhra Pradesh, India
| | - Naveena Eeda
- Polymer Composites Lab, Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research (VFSTR), Vadlamudi, Andhra Pradesh, India
| | - Sriharshitha Salendra
- Polymer Composites Lab, Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research (VFSTR), Vadlamudi, Andhra Pradesh, India
| | | |
Collapse
|
13
|
Sriharshitha S, Krishnadevi K, Devaraju S, Srinivasadesikan V, Lee SL. Eco-Friendly Sustainable Poly(benzoxazine- co-urethane) with Room-Temperature-Assisted Self-Healing Based on Supramolecular Interactions. ACS OMEGA 2020; 5:33178-33185. [PMID: 33403279 PMCID: PMC7774256 DOI: 10.1021/acsomega.0c04840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This work is an attempt to develop bio-based eco-friendly poly(benzoxazine-co-urethane) [poly(U-co-CDL-aee)] materials using cardanol-based benzoxazines (CDL) and hexamethylene diisocyanate (HMDI) to check their self-healing ability and thermal properties. CDL monomers were synthesized using cardanol, amino ethoxyethanol (aee) or 3-aminopropanol (3-ap), and paraformaldehyde through the Mannich reaction. Later, CDL-aee or CDL-3-ap monomers were copolymerized with a urethane precursor (HMDI), followed by ring-opening polymerization through thermal curing. The thermal properties of poly(U-co-CDL) were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The self-healing behavior of the bio-based poly(U-co-CDL) was checked by applying a mild external pressure. The results revealed that the developed poly(U-co-CDL) showed repeatable self-healing ability due to supramolecular hydrogen-bonding interactions. Further, the self-healing ability of poly(U-co-CDL) was studied using density functional theory (DFT). From the above results, the developed material with superior self-healing ability can be used in the form of self-healing coatings and composites for various applications with extended shelf-life and reliability.
Collapse
Affiliation(s)
- Salendra Sriharshitha
- Polymer
Composites Lab, Division of Chemistry, Department of Sciences &
Humanities, Vignan’s Foundation for
Science, Technology and Research (Deemed to be University), Vadlamudi, 522 213 Guntur, India
| | - Krishnamoorthy Krishnadevi
- Polymer
Composites Lab, Division of Chemistry, Department of Sciences &
Humanities, Vignan’s Foundation for
Science, Technology and Research (Deemed to be University), Vadlamudi, 522 213 Guntur, India
| | - Subramani Devaraju
- Polymer
Composites Lab, Division of Chemistry, Department of Sciences &
Humanities, Vignan’s Foundation for
Science, Technology and Research (Deemed to be University), Vadlamudi, 522 213 Guntur, India
| | - Venkatesan Srinivasadesikan
- Division
of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research (Deemed
to be University), Vadlamudi, 522 213 Guntur, India
| | - Shyi-Long Lee
- Department
of Chemistry and Biochemistry, National
Chung Cheng University, Chia-yi 621, Taiwan
| |
Collapse
|
14
|
Lancien A, Wojcieszak R, Cuvelier E, Duban M, Dhulster P, Paul S, Dumeignil F, Froidevaux R, Heuson E. Hybrid Conversion of
5
‐Hydroxymethylfurfural to
5
‐Aminomethyl‐
2
‐furancarboxylic acid: Toward New Bio‐sourced Polymers. ChemCatChem 2020. [DOI: 10.1002/cctc.202001446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Antoine Lancien
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS – Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Eric Cuvelier
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS – Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Matthieu Duban
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| | - Pascal Dhulster
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| | - Sébastien Paul
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS – Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Franck Dumeignil
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS – Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Renato Froidevaux
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| | - Egon Heuson
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, Joint Research Unit BioEcoAgro ICV – Institut Charles Viollette F-59000 Lille France
| |
Collapse
|
15
|
Zhu Y, Su J, Lin R, Li P. Improving the Thermal Stability of Polybenzoxazines Through Incorporation of Eugenol-Based Benzoxazine. Macromol Res 2019. [DOI: 10.1007/s13233-020-8055-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Lyu Y, Ishida H. Natural-sourced benzoxazine resins, homopolymers, blends and composites: A review of their synthesis, manufacturing and applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101168] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|