1
|
Bakrania A, Mo Y, Zheng G, Bhat M. RNA nanomedicine in liver diseases. Hepatology 2024:01515467-990000000-00569. [PMID: 37725757 DOI: 10.1097/hep.0000000000000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
The remarkable impact of RNA nanomedicine during the COVID-19 pandemic has demonstrated the expansive therapeutic potential of this field in diverse disease contexts. In recent years, RNA nanomedicine targeting the liver has been paradigm-shifting in the management of metabolic diseases such as hyperoxaluria and amyloidosis. RNA nanomedicine has significant potential in the management of liver diseases, where optimal management would benefit from targeted delivery, doses titrated to liver metabolism, and personalized therapy based on the specific site of interest. In this review, we discuss in-depth the different types of RNA and nanocarriers used for liver targeting along with their specific applications in metabolic dysfunction-associated steatotic liver disease, liver fibrosis, and liver cancers. We further highlight the strategies for cell-specific delivery and future perspectives in this field of research with the emergence of small activating RNA, circular RNA, and RNA base editing approaches.
Collapse
Affiliation(s)
- Anita Bakrania
- Department of Medicine, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Medicine, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Department of Medicine, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Medicine, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Division of Gastroenterology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Singh N, Singh AK. A comprehensive review on structural and therapeutical insight of Cerebroside sulfotransferase (CST) - An important target for development of substrate reduction therapy against metachromatic leukodystrophy. Int J Biol Macromol 2024; 258:128780. [PMID: 38104688 DOI: 10.1016/j.ijbiomac.2023.128780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
This review is an effort towards the development of substrate reduction therapy using cerebroside sulfotransferase (CST) as a target protein for the development of inhibitors intended to treat pathophysiological condition resulting from the accumulation of sulfatide, a product from the catalytic action of CST. Accumulation of sulfatides leads to progressive impairment and destruction of the myelin structure, disruption of normal physiological transmission of electrical impulse between nerve cells, axonal loss in the central and peripheral nervous system and cumulatively gives a clinical manifestation of metachromatic leukodystrophy. Thus, there is a need to develop specific and potent CST inhibitors to positively control sulfatide accumulation. Structural similarity and computational studies revealed that LYS85, SER172 and HIS141 are key catalytic residues that determine the catalytic action of CST through the transfer of sulfuryl group from the donor PAPS to the acceptor galactosylceramide. Computational studies revealed catalytic site of CST consists two binding site pocket including PAPS binding pocket and substrate binding pocket. Specific substrate site residues in CST can be targeted to develop specific CST inhibitors. This review also explores the challenges of CST-directed substrate reduction therapy as well as the opportunities available in natural products for inhibitor development.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Anil Kumar Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Mahapatra SK, Parhi A, Shree P, Mohanty A. Safety and efficacy profile of intravitreal ranibizumab vs dexamethasone in treatment of naïve diabetic macular edema. Indian J Ophthalmol 2024; 72:S106-S110. [PMID: 38131551 PMCID: PMC10833162 DOI: 10.4103/ijo.ijo_767_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/23/2023] [Accepted: 08/05/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE To compare the safety and efficacy parameters of intravitreal ranibizumab vs intravitreal dexamethasone (IVD) in the treatment of patients with naïve diabetic macular edema (DME) in terms of best-corrected visual acuity (BCVA), central macular thickness (CMT), and possible complications like intraocular pressure (IOP) rise and cataract progression. METHODS A hospital-based prospective and comparative study of naïve DME patients was conducted between November 2020 and October 2021 with a minimum follow-up (F/U) period of 6 months. Thirty phakic patients received one dose of IVD implant (Group A) and the other 30 (Group B) received three consecutive monthly doses of ranibizumab. The main exclusion criteria were steroid responders and the presence of ocular inflammation. RESULTS The mean pre-injection CMT in Group A was 405µ and reduced to 297.07µ at 3 months and 278.35µ at 6 months. Mean increase in logMAR BCVA was 0.55. The mean pre-injection IOP was 16.28 and 17.64 mm of Hg at 6 months. In Group B, the mean pre-injection CMT was 401.07µ and reduced to 276.1µ at 3 months and 292.9µ at 6 months. Mean BCVA increased to 0.37. The mean pre-injection IOP was 17.28 mm Hg and 16.42 mm Hg at 6 months. There was no significant progression of cataract in both groups. CONCLUSION The mean decrease in CMT was comparable in both the groups at 6 months F/U with an improvement of BCVA with no significant IOP fluctuation or cataract progression. Hence, IVD appears to be noninferior to ranibizumab in the treatment of naïve DME.
Collapse
Affiliation(s)
- Santosh K Mahapatra
- Department of Vitreo-retina Surgery, JPM Rotary Club of Cuttack Eye Hosiptal and Research Institute, Cuttack, Odisha, India
| | - Anjalika Parhi
- DNB Resident in Ophthalmology, JPM Rotary Club of Cuttack Eye Hosiptal and Research Institute, Cuttack, Odisha, India
| | - Pallavi Shree
- DNB Resident in Ophthalmology, JPM Rotary Club of Cuttack Eye Hosiptal and Research Institute, Cuttack, Odisha, India
| | - Anuja Mohanty
- Department of Vitreo-retina Surgery, JPM Rotary Club of Cuttack Eye Hosiptal and Research Institute, Cuttack, Odisha, India
| |
Collapse
|
4
|
Harisa GI, Faris TM, Sherif AY, Alzhrani RF, Alanazi SA, Kohaf NA, Alanazi FK. Gene-editing technology, from macromolecule therapeutics to organ transplantation: Applications, limitations, and prospective uses. Int J Biol Macromol 2023; 253:127055. [PMID: 37758106 DOI: 10.1016/j.ijbiomac.2023.127055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Gene editing technologies (GETs) could induce gene knockdown or gene knockout for biomedical applications. The clinical success of gene silence by RNAi therapies pays attention to other GETs as therapeutic approaches. This review aims to highlight GETs, categories, mechanisms, challenges, current use, and prospective applications. The different academic search engines, electronic databases, and bibliographies of selected articles were used in the preparation of this review with a focus on the fundamental considerations. The present results revealed that, among GETs, CRISPR/Cas9 has higher editing efficiency and targeting specificity compared to other GETs to insert, delete, modify, or replace the gene at a specific location in the host genome. Therefore, CRISPR/Cas9 is talented in the production of molecular, tissue, cell, and organ therapies. Consequently, GETs could be used in the discovery of innovative therapeutics for genetic diseases, pandemics, cancer, hopeless diseases, and organ failure. Specifically, GETs have been used to produce gene-modified animals to spare human organ failure. Genetically modified pigs are used in clinical trials as a source of heart, liver, kidneys, and lungs for xenotransplantation (XT) in humans. Viral, non-viral, and hybrid vectors have been utilized for the delivery of GETs with some limitations. Therefore, extracellular vesicles (EVs) are proposed as intelligent and future cargoes for GETs delivery in clinical applications. This study concluded that GETs are promising for the production of molecular, cellular, and organ therapies. The use of GETs as XT is still in the early stage as well and they have ethical and biosafety issues.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Tarek M Faris
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Riyad F Alzhrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alanazi
- Pharmaceutical Care Services, King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Science Collage of Pharmacy, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Neveen A Kohaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Jerca FA, Muntean C, Remaut K, Jerca VV, Raemdonck K, Hoogenboom R. Cationic amino-acid functionalized polymethacrylamide vectors for siRNA transfection based on modification of poly(2-isopropenyl-2-oxazoline). J Control Release 2023; 364:687-699. [PMID: 37935258 DOI: 10.1016/j.jconrel.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Poly(2-isopropenyl-2-oxazoline) (PiPOx) is a functional polymer showing great potential for the development of smart biomaterials. The straightforward synthesis and post-polymerization functionalization of PiPOx offers many opportunities for tailoring the properties of the polymer towards biomaterials. In this study we report for the first time PiPOx-based cationic charged polymethacrylamides with amino acid side chains that can complex siRNA and promote transfection in vitro. Therefore, PiPOx was fully modified via ring opening addition reactions with the carboxylic acid groups of a series of N-Boc-L-amino acids and their reaction kinetics were investigated. Based on the determined kinetic constants, another series of PiPOx-based copolymers with balanced hydrophilic/hydrophobic content of N-Boc-L-amino acids were obtained via one-pot modification reaction with two different N-Boc-L-amino acids. The N-Boc protected homopolymers and related copolymers were deprotected to obtain (co)polymers with the targeted side chain cationic charged units. The (co)polymers' structures were fully investigated via FT-IR and 1H NMR spectroscopy, size exclusion chromatography (SEC), and TGA-DSC-MS analysis. The polarimetry measurements revealed that the homopolymers retain their chiroptical properties after post-modification, and a sign inversion is noticed from (L) N-Boc-protected analogues to (D) for the TFA cationic charged homopolymers. Generally, cationically charged homopolymers with hydrophilic amino acids on the side chain showed efficient complexation of siRNA, but poor transfection while cationic copolymers having both tryptophan and valine or proline side chains revealed moderate siRNA binding, high transfection efficiency (> 90% of the cells) and potent gene silencing with IC50 values down to 5.5 nM. Particularly, these cationic copolymers showed higher gene silencing potency as compared to the commercial JetPRIME® reference, without reducing cell viability in the concentration range used for transfection, making this a very interesting system for in vitro siRNA transfection.
Collapse
Affiliation(s)
- Florica Adriana Jerca
- Smart Organic Materials Group, "Costin D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Spl. Independentei CP 35-108, 060023 Bucharest, Romania; Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium.
| | - Cristina Muntean
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Valentin Victor Jerca
- Smart Organic Materials Group, "Costin D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Spl. Independentei CP 35-108, 060023 Bucharest, Romania; Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium.
| |
Collapse
|
6
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
7
|
Li X, An S, Wang C, Jiang Q, Gao D, Wang L. Protein-polysaccharides based nanoparticles for loading with Malus baccata polyphenols and their digestibility in vitro. Int J Biol Macromol 2023; 228:783-793. [PMID: 36581037 DOI: 10.1016/j.ijbiomac.2022.12.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The poor solubility, instability and low absorption rate obstruct the bioavailability of polyphenols isolated from Malus baccata (MBP) during gastrointestinal digestion. In order to solve the limitable problems, the food-grade nanoparticles were fabricated by mucin (MC) and Hohenbuehelia serotina polysaccharides (HSP) for delivery of MBP (MBP-NPs). The physicochemical properties and morphology of MBP-NPs prepared by different condition were respectively characterized. During gastrointestinal digestion in vitro, the release characteristic and variation in phenolic composition of MBP-NPs were evaluated. The results showed that MBP-NPs formed by hydrogen bonding and hydrophobic interaction possessed the regularly spherical shapes and smooth surfaces and semi-crystalline properties. Moreover, MBP-NPs presented the excellent physicochemical stability. During simulated gastrointestinal digestion in vitro, MBP-NPs exhibited the sustained release characteristics of phenolic compounds, which were confirmed by SDS-PAGE measurement. Compared with that of unencapsulated MBP, the significant variation was occurred in the phenolic composition of MBP-NPs, indicating that MBP-NPs could prevent the degradation and transformation of phenolic compounds. This study provides a novel strategy to improve the bioavailability of polyphenols.
Collapse
Affiliation(s)
- Xiaoyu Li
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, PR China
| | - Siying An
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Cheng Wang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Qianyu Jiang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Dawei Gao
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
8
|
Recent advances in targeted gene silencing and cancer therapy by nanoparticle-based delivery systems. Biomed Pharmacother 2023; 157:114065. [PMID: 36481408 DOI: 10.1016/j.biopha.2022.114065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nanomedicine has emerged as a promising platform for disease treatment and much progress has been achieved in the clinical translation for cancer treatment. Several types of nanomedicines have been approved for therapeutic application. However, many nanoparticles still suffer from challenges in the translation from bench to bedside. Currently, nanoparticle-based delivery systems have been developed to explore their functions in targeted gene silencing and cancer therapy. This review describes the research progress of different nano-carriers in targeted gene editing, and the recent progress in co-delivery of anticancer drugs and small ribonucleic acid. We also summarize the strategies for improving the specificity of carrier systems. Finally, we discuss the functions of targeted nano-carriers in overcoming chemotherapeutic drug resistance in cancer therapy. As research continues to advance, a better understanding of the safety including long-term toxicity, immunogenicity, and body metabolism may impel nanoparticle translation.
Collapse
|
9
|
Jacob MM, Santhosh A, Rajeev A, Joy R, John PM, John F, George J. Current Status of Natural Products/siRNA Co‐Delivery for Cancer Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202203476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Megha Mariya Jacob
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Amritha Santhosh
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Anjaly Rajeev
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Reshma Joy
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Pooja Mary John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| |
Collapse
|
10
|
Sheng J, Pi Y, Zhao S, Wang B, Chen M, Chang K. Novel DNA nanoflower biosensing technologies towards next-generation molecular diagnostics. Trends Biotechnol 2022; 41:653-668. [PMID: 36117022 DOI: 10.1016/j.tibtech.2022.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
DNA nanoflowers (DNFs) are topological flower-like nanostructures based on ultralong-strand DNA and inorganic metal-ion frameworks. Because of their programmability, biocompatibility, and controllable assembly size for specific responses to molecular recognition stimuli, DNFs are powerful biosensing tools for detecting biomolecules. Here, we review the current state of DNF-based biosensing strategies for in vivo and in vitro detection, with a view of how the field has evolved towards molecular diagnostics. We also provide a detailed classification of DNF-based biosensing strategies and propose their future utility. Particularly as transduction elements, DNFs can accelerate biosensing engineering by signal amplification. Finally, we discuss the key challenges and further prospects of DNF-based biosensing technologies in developing applications of a broader scope.
Collapse
Affiliation(s)
- Jing Sheng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| | - Yan Pi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China; College of Pharmacy and Laboratory Medicine, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China.
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China.
| |
Collapse
|
11
|
Mg2+ Ions Regulating 3WJ-PRNA to Construct Controllable RNA Nanoparticle Drug Delivery Platforms. Pharmaceutics 2022; 14:pharmaceutics14071413. [PMID: 35890308 PMCID: PMC9320661 DOI: 10.3390/pharmaceutics14071413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
RNA nanotechnology has shown great progress over the past decade. Diverse controllable and multifunctional RNA nanoparticles have been developed for various applications in many areas. For example, RNA nanoparticles can participate in the construction of drug delivery nanoplatforms. Recently, a three-way junction packaging RNA (3WJ-pRNA) has been exploited for its characteristics of self-assembly and ultrahigh stability in many aspects. 3WJ-pRNA is the 3WJ part of bacteriophage φ29 pRNA and joins different components of φ29 as a linker element. In this work, we used all-atom MD simulation to study the thermal stability of 3WJ-pRNA and the underlying mechanisms. While 3WJ-pRNA can remain in its original structure without Mg2+ ions at room temperature, only Mg-bound 3WJ-pRNA still maintains its initial three-way junction structure at a higher temperature (T = 400 K). The Mg-free 3WJ-pRNA undergoes dramatic deformation under high temperature condition. The contribution of Mg ions can be largely attributed to the protective effect of two Mg clamps on the hydrogen bond and base stacking interactions in helices. Taken together, our results reveal the extraordinary thermal stability of 3WJ-pRNA, which can be regulated by Mg2+ ions. Comprehensive depictions of thermal stability of pRNA and the regulation mechanism are helpful for the further development of controllable RNA nanoparticle drug delivery platforms.
Collapse
|
12
|
Hosseinkhani H. Meet the Editorial Board Member. Curr Drug Deliv 2022. [DOI: 10.2174/156720181906220303102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Cytocompatibility and Antibacterial Properties of Coaxial Electrospun Nanofibers Containing Ciprofloxacin and Indomethacin Drugs. Polymers (Basel) 2022; 14:polym14132565. [PMID: 35808610 PMCID: PMC9269477 DOI: 10.3390/polym14132565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
A coaxial nanofibrous scaffold of poly (ε-caprolactone) and gelatin/cellulose acetate encapsulating anti-inflammatory and antibacterial drugs was co-electrospun for skin tissue regeneration. Indomethacin and ciprofloxacin as model drugs were added to the core and the shell solutions, respectively. The effect of the drugs’ presence and crosslinking on the scaffold properties was investigated. TEM images confirmed the core−shell structure of the scaffold. The fiber diameter and the pore size of the scaffold increased after crosslinking. The tensile properties of the scaffold improved after crosslinking. The crosslinked scaffold illustrated a higher rate of swelling, and a lower rate of degradation and drug release compared to the uncrosslinked one. Fitting the release data into the Peppas equation showed that Fickian diffusion was the dominant mechanism of drug release from the scaffolds. The results of biocompatibility evaluations showed no cytotoxicity and suitable adhesion and cell growth on the prepared core−shell structure. The antibacterial activity of the scaffolds was studied against one of the most common pathogens in skin wounds, where the existence of ciprofloxacin could prevent the growth of the Staphylococcus aureus bacteria around the scaffold. The obtained results suggested a new coaxial nanofibrous scaffold as a promising candidate for simultaneous tissue regeneration and controlled drug release.
Collapse
|
14
|
Rajeev A, Siby A, Koottungal MJ, George J, John F. Knocking Down Barriers: Advances in siRNA Delivery. ChemistrySelect 2021. [DOI: 10.1002/slct.202103288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anjaly Rajeev
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Aiswarya Siby
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Merin James Koottungal
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| |
Collapse
|
15
|
Kim J, Kim JY, Kim H, Kim E, Park S, Ryu KH, Lee EG. Increasing Transfection Efficiency of Lipoplexes by Modulating Complexation Solution for Transient Gene Expression. Int J Mol Sci 2021; 22:ijms222212344. [PMID: 34830226 PMCID: PMC8619889 DOI: 10.3390/ijms222212344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022] Open
Abstract
Transient gene expression is a suitable tool for the production of biopharmaceutical candidates in the early stage of development and provides a simple and rapid alternative to the generation of stable cell line. In this study, an efficient transient gene expression methodology using DC-Chol/DOPE cationic liposomes and pDNA in Chinese hamster ovary suspension cells was established through screening of diverse lipoplex formation conditions. We modulated properties of both the liposome formation and pDNA solution, together called complexation solutions. Protein expression and cellular cytotoxicity were evaluated following transfection over the cell cultivation period to select the optimal complexation solution. Changes in hydrodynamic size, polydispersity index, and ζ potential of the liposomes and lipoplexes were analyzed depending on the various pH ranges of the complexation solutions using dynamic light scattering. The transfer of lipoplexes to the cytosol and their conformation were traced using fluorescence analysis until the early period of transfection. As a result, up to 1785 mg/L and 191 mg/L of human Fc protein and immunoglobulin G (bevacizumab), respectively, were successfully produced using acidic liposome formation and alkaline pDNA solutions. We expect that this lipoplex formation in acidic and alkaline complexation solutions could be an effective methodology for a promising gene delivery strategy.
Collapse
Affiliation(s)
- Jaemun Kim
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; (J.K.); (J.Y.K.)
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanji-ro Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea; (H.K.); (E.K.); (S.P.); (K.-H.R.)
| | - Ji Yul Kim
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; (J.K.); (J.Y.K.)
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanji-ro Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea; (H.K.); (E.K.); (S.P.); (K.-H.R.)
| | - Hyeonkyeong Kim
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanji-ro Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea; (H.K.); (E.K.); (S.P.); (K.-H.R.)
| | - Eunsil Kim
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanji-ro Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea; (H.K.); (E.K.); (S.P.); (K.-H.R.)
| | - Soonyong Park
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanji-ro Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea; (H.K.); (E.K.); (S.P.); (K.-H.R.)
| | - Kyoung-Hwa Ryu
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanji-ro Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea; (H.K.); (E.K.); (S.P.); (K.-H.R.)
| | - Eun Gyo Lee
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; (J.K.); (J.Y.K.)
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanji-ro Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea; (H.K.); (E.K.); (S.P.); (K.-H.R.)
- Correspondence: ; Tel.: +82-43-240-6633
| |
Collapse
|
16
|
Zhang X, Lin ZI, Yang J, Liu GL, Hu Z, Huang H, Li X, Liu Q, Ma M, Xu Z, Xu G, Yong KT, Tsai WC, Tsai TH, Ko BT, Chen CK, Yang C. Carbon Dioxide-Derived Biodegradable and Cationic Polycarbonates as a New siRNA Carrier for Gene Therapy in Pancreatic Cancer. NANOMATERIALS 2021; 11:nano11092312. [PMID: 34578632 PMCID: PMC8472555 DOI: 10.3390/nano11092312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is an aggressive malignancy associated with poor prognosis and a high tendency in developing infiltration and metastasis. K-ras mutation is a major genetic disorder in pancreatic cancer patient. RNAi-based therapies can be employed for combating pancreatic cancer by silencing K-ras gene expression. However, the clinical application of RNAi technology is appreciably limited by the lack of a proper siRNA delivery system. To tackle this hurdle, cationic poly (cyclohexene carbonate) s (CPCHCs) using widely sourced CO2 as the monomer are subtly synthesized via ring-opening copolymerization (ROCOP) and thiol-ene functionalization. The developed CPCHCs could effectively encapsulate therapeutic siRNA to form CPCHC/siRNA nanoplexes (NPs). Serving as a siRNA carrier, CPCHC possesses biodegradability, negligible cytotoxicity, and high transfection efficiency. In vitro study shows that CPCHCs are capable of effectively protecting siRNA from being degraded by RNase and promoting a sustained endosomal escape of siRNA. After treatment with CPCHC/siRNA NPs, the K-ras gene expression in both pancreatic cancer cell line (PANC-1 and MiaPaCa-2) are significantly down-regulated. Subsequently, the cell growth and migration are considerably inhibited, and the treated cells are induced into cell apoptotic program. These results demonstrate the promising potential of CPCHC-mediated siRNA therapies in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan;
| | - Jingyu Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan;
| | - Zulu Hu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Haoqiang Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Xiang Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Mingze Ma
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wei-Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (W.-C.T.); (T.-H.T.)
| | - Tzu-Hsien Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (W.-C.T.); (T.-H.T.)
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan;
- Correspondence: (B.-T.K.); (C.-K.C.); (C.Y.); Tel.: +886-4-2284-0411 (ext. 715) (B.-T.K.); +886-7-525-2000 (ext. 4060) (C.-K.C.); +86-0755-2693-2683 (C.Y.)
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan;
- Correspondence: (B.-T.K.); (C.-K.C.); (C.Y.); Tel.: +886-4-2284-0411 (ext. 715) (B.-T.K.); +886-7-525-2000 (ext. 4060) (C.-K.C.); +86-0755-2693-2683 (C.Y.)
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.Z.); (J.Y.); (Z.H.); (H.H.); (X.L.); (Q.L.); (M.M.); (Z.X.); (G.X.)
- Correspondence: (B.-T.K.); (C.-K.C.); (C.Y.); Tel.: +886-4-2284-0411 (ext. 715) (B.-T.K.); +886-7-525-2000 (ext. 4060) (C.-K.C.); +86-0755-2693-2683 (C.Y.)
| |
Collapse
|
17
|
Gondim DR, Cecilia JA, Rodrigues TNB, Vilarrasa-García E, Rodríguez-Castellón E, Azevedo DCS, Silva IJ. Protein Adsorption onto Modified Porous Silica by Single and Binary Human Serum Protein Solutions. Int J Mol Sci 2021; 22:9164. [PMID: 34502072 PMCID: PMC8430731 DOI: 10.3390/ijms22179164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022] Open
Abstract
Typical porous silica (SBA-15) has been modified with pore expander agent (1,3,5-trimethylbenzene) and fluoride-species to diminish the length of the channels to obtain materials with different textural properties, varying the Si/Zr molar ratio between 20 and 5. These porous materials were characterized by X-ray Diffraction (XRD), N2 adsorption/desorption isotherms at -196 °C and X-ray Photoelectron Spectroscopy (XPS), obtaining adsorbent with a surface area between 420-337 m2 g-1 and an average pore diameter with a maximum between 20-25 nm. These materials were studied in the adsorption of human blood serum proteins (human serum albumin-HSA and immunoglobulin G-IgG). Generally, the incorporation of small proportions was favorable for proteins adsorption. The adsorption data revealed that the maximum adsorption capacity was reached close to the pI. The batch purification experiments in binary human serum solutions showed that Si sample has considerable adsorption for IgG while HSA adsorption is relatively low, so it is possible its separation.
Collapse
Affiliation(s)
- Diego R. Gondim
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| | - Juan A. Cecilia
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Malaga, Spain;
| | - Thaina N. B. Rodrigues
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| | - Enrique Vilarrasa-García
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| | - Enrique Rodríguez-Castellón
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Malaga, Spain;
| | - Diana C. S. Azevedo
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| | - Ivanildo J. Silva
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| |
Collapse
|
18
|
Naskar A, Lee S, Ko D, Kim S, Kim KS. Bovine Serum Albumin-Immobilized Black Phosphorus-Based γ-Fe 2O 3 Nanocomposites: A Promising Biocompatible Nanoplatform. Biomedicines 2021; 9:858. [PMID: 34440062 PMCID: PMC8389694 DOI: 10.3390/biomedicines9080858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
The interactions between proteins and nanoparticles need to be fully characterized as the immobilization of proteins onto various nanoplatforms in the physiological system often results in the change of surface of the protein molecules to avoid any detrimental issues related to their biomedical applications. Hence, in this article, the successful low-temperature synthesis of a BP-based γ-Fe2O3 (IB) nanocomposite and its interactive behavior with bovine serum albumin (BSA)-a molecule with chemical similarity and high sequence identity to human serum albumin-are described. To confirm the formation of γ-Fe2O3 and the IB nanocomposite, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy analyses of the materials were performed. Additionally, the physical interaction between BSA and the IB nanocomposite was confirmed via UV-Vis and photoluminescence spectral analyses. Finally, the biocompatibility of the BSA-immobilized IB nanocomposite was verified using an in vitro cytotoxicity assay with HCT-15 colon cancer cells. Our findings demonstrate that this newly developed nanocomposite has potential utility as a biocompatible nanoplatform for various biomedical applications.
Collapse
Affiliation(s)
- Atanu Naskar
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (A.N.); (S.L.)
| | - Sohee Lee
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (A.N.); (S.L.)
| | - Dongjoon Ko
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (D.K.); (S.K.)
| | - Semi Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (D.K.); (S.K.)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (A.N.); (S.L.)
| |
Collapse
|
19
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
20
|
Gülsu A, Yüksektepe E. Preparation of Spherical Cellulose Nanoparticles from Recycled Waste Cotton for Anticancer Drug Delivery. ChemistrySelect 2021. [DOI: 10.1002/slct.202101683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aydan Gülsu
- Molecular Biology and Genetics Department Mugla Sitki Kocman University Muğla 48000 Turkey
| | - Ecem Yüksektepe
- Molecular Biology and Genetics Department Mugla Sitki Kocman University Muğla 48000 Turkey
| |
Collapse
|
21
|
Alavi SF, Abasian P, Eslami H. Synthesis and characterization of polystyrene/poly(ethyl acrylate) mushroom‐like Janus particles. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Payam Abasian
- Department of chemical Isfahan University of Technology Isfahan Iran
| | - Hormoz Eslami
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
22
|
Khan RU, Yu H, Wang L, Teng L, Zain‐ul‐Abdin, Nazir A, Fahad S, Elshaarani T, Haq F, Shen D. Synthesis of amino‐cosubstituted polyorganophosphazenes and fabrication of their nanoparticles for anticancer drug delivery. J Appl Polym Sci 2020. [DOI: 10.1002/app.49424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rizwan Ullah Khan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Lisong Teng
- Oncological Surgery and Cancer Center, the First Affiliated HospitalZhejiang University Hangzhou People's Republic of China
| | - Zain‐ul‐Abdin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Ahsan Nazir
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Tarig Elshaarani
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| |
Collapse
|
23
|
Mishra SK, Sinha S, Chauhan R, Kumar A. Intravitreal Dexamethasone Implant versus Intravitreal Ranibizumab Injection for Treatment of Non-Proliferative Diabetic Macular Edema: A Prospective, Randomized and Blinded Trial. Curr Drug Deliv 2020; 18:825-832. [PMID: 33267762 DOI: 10.2174/1567201817666201202093637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION In the working age population, Diabetic Macular Edema (DME) is the most common cause of visual loss. PURPOSE The present study is aimed to assess the safety and efficacy of intravitreal injection of Ranibizumab (IVR) versus intravitreal Dexamethasone implant (IVD) in patients with DME in a tertiary care centre upto 4 months. METHODS This is a comparative, prospective, randomized study that was done on 140 patients with macular edema confirmed on optical coherence tomography (OCT). IVD group received Ozurdex® (Allergan, Inc, Ireland) while the IVR group received Lucentis® (Novartis, Basel, Switzerland); the groups were followed up at day-1 and weeks 4, 8, 12, 16. Patients were divided into Group A, in which patients were given 3 doses (monthly) of IVR 0.3 mg in 0.05 ml (n=70). Group B patients were given a single dose of IVD implant 0.7 mg (n=70). RESULTS The mean number of injections given was 1 Ozurdex® per patient vs. 3 Lucentis® per patient. The maximum reduction in central macular thickness (CMT) with IVD was 167.8 μm and 138.8μm in the 2nd and 3rd months, respectively, with IVR. The mean best-corrected visual acuity (BCVA) in the 4th month was 0.34 logMAR and 0.33 logMAR, in IVD and IVR groups, respectively, with consistent improvement. Patients with 0-5 letters, 6-10 letters and 10-15 letters, and >15 letters visibility in IVD group were 9.5, 20.6, 4.8, 6.4%, and 20.4, 18.8, 20.3 20.3% in IVR groups, respectively. The maximum intraocular pressure (IOP) rise with IVD was found to be 16 mmHg in 2 patients (3.17%). IOP rise >10 mmHg was observed in 14/63 patients (22.22%); the majority of patients indicated a high rise at 2nd month with all returning to baseline by 4th month. No reports of infectious endophthalmitis or new cataracts were detected in either of the treated groups. CONCLUSION Both intravitreal Ranibizumab injection and Dexamethasone implants were found to be safe and effective in lowering CMT and improving BCVA at the 4-month follow up in patients with DME. Since there was no recurrence of CMT in the Dexamethasone implant group, we suggest that early administration before the 4th month may indicate superior efficacy over the ranibizumab injection. Further randomized trials in a large sample size with a longer period follow- up would be performed to justify the obtained results in the present study.
Collapse
Affiliation(s)
- Sanjay Kumar Mishra
- Department of Ophthalmology, Army Base Hospital and Army College of Medical Sciences, Delhi Cantonment, New Delhi, India
| | - Shruti Sinha
- Department of Ophthalmology, Army Base Hospital and Army College of Medical Sciences, Delhi Cantonment, New Delhi, India
| | - Ravi Chauhan
- Department of Ophthalmology, Command Hospital, Lucknow Cantonment, India
| | - Ashok Kumar
- Department of Ophthalmology, Armed Forces Medical College, Pune, India
| |
Collapse
|
24
|
Abasian P, Shakibi S, Maniati MS, Nouri Khorasani S, Khalili S. Targeted delivery, drug release strategies, and toxicity study of polymeric drug nanocarriers. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Payam Abasian
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| | - Sepideh Shakibi
- Department of Textile Engineering Amirkabir University of Technology (Tehran Polytechnique) Tehran Iran
| | - Mohammad Saeed Maniati
- Cellular and Molecular Biology Research Center, Health Research Institute Babol University of Medical Sciences Babol Iran
| | | | - Shahla Khalili
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| |
Collapse
|
25
|
Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104501] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Zhang Q, Chen X, Wu H, Luo W, Liu X, Feng L, Zhao T. Comparison of Clay Ceramsite and Biodegradable Polymers as Carriers in Pack-bed Biofilm Reactor for Nitrate Removal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214184. [PMID: 31671860 PMCID: PMC6862475 DOI: 10.3390/ijerph16214184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
Abstract
In recent years, there is a trend of low C/N ratio in municipal domestic wastewater, which results in serious problems for nitrogen removal from wastewater. The addition of an external soluble carbon source has been the usual procedure to achieve denitrification. However, the disadvantage of this treatment process is the need of a closed, rather sophisticated and costly process control as well as the risk of overdosing. Solid-phase denitrification using biodegradable polymers as biofilm carrier and carbon source was considered as an attractive alternative for biological denitrification. The start-up time of the novel process using PCL (polycaprolactone) as biofilm carrier and carbon source was comparable with that of conventional process using ceramsite as biofilm carrier and acetate as carbon source. Further, the solid-phase denitrification process showed higher nitrogen removal efficiency under shorter hydraulic retention time (HRT) and low carbon to nitrogen (C/N) ratio since the biofilm was firmly attached to the clear pores on the surface of PCL carriers and in this process bacteria that could degrade PCL carriers to obtain electron donor for denitrification was found. In addition, solid-phase denitrification process had a stronger resistance of shock loading than that in conventional process. This study revealed, for the first time, that the physical properties of the biodegradable polymer played a vital role in denitrification, and the different microbial compositions of the two processes was the main reason for the different denitrification performances under low C/N ratio.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Xue Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Heng Wu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Wandong Luo
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Xiangyang Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Li Feng
- Chongqing Academy of Environmental Science, Chongqing 401147, China.
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|