Paszkiewicz S, Irska I, Piesowicz E. Environmentally Friendly Polymer Blends Based on Post-Consumer Glycol-Modified Poly(Ethylene Terephthalate) (PET-G) Foils and Poly(Ethylene 2,5-Furanoate) (PEF): Preparation and Characterization.
MATERIALS (BASEL, SWITZERLAND) 2020;
13:E2673. [PMID:
32545434 PMCID:
PMC7345711 DOI:
10.3390/ma13122673]
[Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/21/2022]
Abstract
Environmentally friendly polymer blends between post-consumer PET-G and bio-based poly(ethylene 2,5 furanoate) (PEF) have been prepared. The PET-G granules were obtained from the post-consumer glycol-modified poly(ethylene terephthalate) PET-G foils from Nicrometal S.A. as a result of materials recycling. PEF was synthesized from dimethyl furan-2,5-dicarboxylate and 1,2-ethylene glycol (BioUltra) by a two-stage melt polycondensation process. According to the calculations followed by Hoy's method, one has studied the miscibility of the components in the blend. The molecular structure of PET-G/PEF blends was analyzed by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy, while the morphology of the blends was determined by Scanning Electron Microscopy (SEM). To evaluate phase transition temperatures, as well as the thermal effects in PET-G/PEF blends, Differential Scanning Calorimetry (DSC), Dynamic Mechanical Thermal Analysis (DMTA), and Thermogravimetric Analysis (TGA), were performed. Tensile tests revealed that along with an increase in the amount of PEF, an increase in Young's modulus was observed. Besides, the existence of interfacial interactions between polymers, especially in the case of PET-G/PEF 80/20, enabling the PET-G chains to form a network structure with the PEF by reacting with their functional groups, allows observation of a synergistic effect in the improvement of thermal stability and water absorption.
Collapse