1
|
Castañón-Cortés LG, Bravo-Vázquez LA, Santoyo-Valencia G, Medina-Feria S, Sahare P, Duttaroy AK, Paul S. Current advances in the development of microRNA-integrated tissue engineering strategies: a cornerstone of regenerative medicine. Front Bioeng Biotechnol 2024; 12:1484151. [PMID: 39479296 PMCID: PMC11521876 DOI: 10.3389/fbioe.2024.1484151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Regenerative medicine is an innovative scientific field focused on repairing, replacing, or regenerating damaged tissues and organs to restore their normal functions. A central aspect of this research arena relies on the use of tissue-engineered scaffolds, which serve as structural supports that mimic the extracellular matrix, providing an environment that orchestrates cell growth and tissue formation. Remarkably, the therapeutic efficacy of these scaffolds can be improved by harnessing the properties of other molecules or compounds that have crucial roles in healing and regeneration pathways, such as phytochemicals, enzymes, transcription factors, and non-coding RNAs (ncRNAs). In particular, microRNAs (miRNAs) are a class of tiny (20-24 nt), highly conserved ncRNAs that play a critical role in the regulation of gene expression at the post-transcriptional level. Accordingly, miRNAs are involved in a myriad of biological processes, including cell differentiation, proliferation, and apoptosis, as well as tissue regeneration, angiogenesis, and osteogenesis. On this basis, over the past years, a number of research studies have demonstrated that miRNAs can be integrated into tissue-engineered scaffolds to create advanced therapeutic platforms that precisely modulate cellular behavior and offer a controlled and targeted release of miRNAs to optimize tissue repair and regeneration. Therefore, in this current review, we discuss the most recent advances in the development of miRNA-loaded tissue-engineered scaffolds and provide an overview of the future outlooks that should be aborded in this area of study in order to lay the groundwork for the clinical translation of these tissue engineering approaches.
Collapse
Affiliation(s)
| | | | | | - Sara Medina-Feria
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Padmavati Sahare
- School of Engineering and Sciences, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Queretaro, Mexico
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| |
Collapse
|
2
|
Askari M, Jadid Tavaf M, Ghorbani M, Yazdanian M, Moghaddam MM. Electrospun Propolis-coated PLGA Scaffold Enhances the Osteoinduction of Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2024; 19:94-102. [PMID: 36999189 DOI: 10.2174/1574888x18666230330104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Major injuries that are caused by trauma and cancer can not be repaired through bone remodeling. The goal of bone regeneration by tissue engineering approaches is to fabricate bone implants in order to restore bone structure and functions. The use of stem cells and polymer scaffolds provides the conditions for tissue regeneration based on tissue engineering. OBJECTIVE This study aimed to fabricate a combined matrix of poly(lactide-co-glycolide) (PLGA) and propolis extract, which is a mixture of pollen and beeswax collected by bees from certain plants and has long been used in traditional herbal medicine, to promote the osteogenic differentiation of human adipose- derived mesenchymal stem cells (AD-MSCs). METHODS The scaffold was fabricated through electrospinning and was immersed in a propolis extract solution. Then, AD-MSCs were cultured and differentiated into the osteogenic lineage. The cell viability on the scaffold was evaluated by MTT assay. Osteogenic differentiation of the seeded stem cells was detected by evaluating calcium content, alkaline phosphatase (ALP) activity, and the expression of bonespecific genes. RESULTS The viability of cells was not affected by propolis-coated and uncoated fabricated scaffolds, while higher calcium content, ALP activity, and expression of RUNX-2, type I collagen, osteocalcin, and osteonectin were observed in cells differentiated on propolis-coated PLGA scaffold on days 7, 14, and 21 of differentiation compared to PLGA scaffold. CONCLUSION The results of this study showed that the presence of propolis in the scaffold could lead to better cell attachment and strengthen the osteoinduction process in stem cells.
Collapse
Affiliation(s)
- Mohammad Askari
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Jadid Tavaf
- Department of Hematology, Tarbiat Modarres University of Medical Sciences, Tehran, Iran
| | - Masoud Ghorbani
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Raoufinia R, Afrasiabi P, Dehghanpour A, Memarpour S, Hosseinian SHS, Saburi E, Naghipoor K, Rezaei S, Haghmoradi M, Keyhanvar N, Rostami M, Fakoor F, Kazemi MI, Moghbeli M, Rahimi HR. The Landscape of microRNAs in Bone Tumor: A Comprehensive Review in Recent Studies. Microrna 2024; 13:175-201. [PMID: 39005129 DOI: 10.2174/0122115366298799240625115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Cancer, the second greatest cause of mortality worldwide, frequently causes bone metastases in patients with advanced-stage carcinomas such as prostate, breast, and lung cancer. The existence of these metastases contributes to the occurrence of skeletal-related events (SREs), which are defined by excessive pain, pathological fractures, hypercalcemia, and spinal cord compression. These injurious incidents leave uncomfortably in each of the cancer patient's life quality. Primary bone cancers, including osteosarcoma (OS), chondrosarcoma (CS), and Ewing's sarcoma (ES), have unclear origins. MicroRNA (miRNA) expression patterns have been changed in primary bone cancers such as OS, CS, and ES, indicating a role in tumor development, invasion, metastasis, and treatment response. These miRNAs are persistent in circulation and exhibit distinct patterns in many forms of bone tumors, making them potential biomarkers for early detection and treatment of such diseases. Given their crucial regulatory functions in various biological processes and conditions, including cancer, this study aims to look at miRNAs' activities and possible contributions to bone malignancies, focusing on OS, CS, and ES. In conclusion, miRNAs are valuable tools for diagnosing, monitoring, and predicting OS, CS, and ES outcomes. Further research is required to fully comprehend the intricate involvement of miRNAs in these bone cancers and to develop effective miRNA-based treatments.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Afrasiabi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Memarpour
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naghipoor
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Rezaei
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meisam Haghmoradi
- Orthopedic Research Center, Shahid Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Keyhanvar
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, 94107, USA
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Fakoor
- Department of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Izadpanah Kazemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Daliri Shadmehri F, Karimi E, Saburi E. Electrospun PCL/fibrin scaffold as a bone implant improved the differentiation of human adipose-derived mesenchymal stem cells into osteo-like cells. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2124253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Ehsan Karimi
- Department of biology, Mashhad branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Kharaghani D, Kurniwan EB, Khan MQ, Yoshiko Y. MiRNA-Nanofiber, the Next Generation of Bioactive Scaffolds for Bone Regeneration: A Review. MICROMACHINES 2021; 12:mi12121472. [PMID: 34945325 PMCID: PMC8707075 DOI: 10.3390/mi12121472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022]
Abstract
Scaffold-based bone tissue engineering has been introduced as an alternative treatment option for bone grafting due to limitations in the allograft. Not only physical conditions but also biological conditions such as gene expression significantly impact bone regeneration. Scaffolds in composition with bioactive molecules such as miRNA mimics provide a platform to enhance migration, proliferation, and differentiation of osteoprogenitor cells for bone regeneration. Among scaffolds, fibrous structures showed significant advantages in promoting osteogenic differentiation and bone regeneration via delivering bioactive molecules over the past decade. Here, we reviewed the bone and bone fracture healing considerations for the impact of miRNAs on bone regeneration. We also examined the methods used to improve miRNA mimics uptake by cells, the fabrication of fibrous scaffolds, and the effective delivery of miRNA mimics using fibrous scaffold and their processes for bone development. Finally, we offer our view on the principal challenges of miRNA mimics delivery by nanofibers for bone tissue engineering.
Collapse
Affiliation(s)
- Davood Kharaghani
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
- Correspondence: ; Tel.: +81-82-257-5621
| | - Eben Bashir Kurniwan
- School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| | - Muhammad Qamar Khan
- Nanotechnology Research Lab, Department of Textile and Clothing, National Textile University, Karachi Campus, Karachi 74900, Pakistan;
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| |
Collapse
|
6
|
Qi P, Niu Y, Wang B. MicroRNA-181a/b-1-encapsulated PEG/PLGA nanofibrous scaffold promotes osteogenesis of human mesenchymal stem cells. J Cell Mol Med 2021; 25:5744-5752. [PMID: 33991050 PMCID: PMC8184675 DOI: 10.1111/jcmm.16595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Bioactive nanofibres play a useful role in increasing the efficiency of tissue engineering scaffolds. MicroRNAs (miRs) alone, and in combination with tissue engineering scaffolds, can be effective in treating bone fractures and osteoporosis by regulating many post‐transcriptional cellular pathways. Herein, miR‐181a/b‐1 was incorporated in the electrospun poly (lactic‐co‐glycolic acid) (PLGA) nanofibres (PLGA‐miR). After characterization scaffolds, the osteoinductive capacity of the nanofibres was investigated when adipose‐derived mesenchymal stem cells (AT‐MSCs) were cultured on the PLGA and PLGA‐miR nanofibres. miR incorporating in the nanofibres has not any significant effect on the size and morphology of the nanofibres, but its biocompatibility was increased significantly compared to the empty nanofibres. Alkaline phosphatase (ALP) activity and calcium measures were evaluated as two important osteogenic markers, and the results revealed that the highest measures were observed in the AT‐MSCs cultured on PLGA‐miR nanofibres. Detected ALP activity and calcium measures in miR‐transduced AT‐MSCs cultured on TCPS were also significantly higher than AT‐MSCs cultured on PLGA and TCPS groups. The highest expression levels of bone‐related genes were observed in the AT‐MSCs cultured on PLGA‐miR nanofibres. This improvement in the osteogenic differentiation potential of the AT‐MSCs was also confirmed by evaluating osteopontin protein in the cells cultured on PLGA‐miR. It can be concluded that miR‐181a/b‐1 has a significant impact on the AT‐MSC osteogenic differentiation, and this impact synergistically increased when incorporated in the PLGA nanofibres.
Collapse
Affiliation(s)
- Peiyi Qi
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yali Niu
- Department of Lung Transplantation Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- Department of Thoracic Heart Surgery, Changyi People's Hospital, Weifang, China
| |
Collapse
|