1
|
Makhadmeh GN, AlZoubi T, Aljarrah AM, Abu Mhareb MH, Alami JHA, Zyoud SH. Enhancing photodynamic therapy efficacy through silica nanoparticle-mediated delivery of temoporfin for targeted in vitro breast cancer treatment. Photodiagnosis Photodyn Ther 2024; 46:104034. [PMID: 38423234 DOI: 10.1016/j.pdpdt.2024.104034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Photodynamic therapy (PDT), an approach to cancer treatment, relies fundamentally on two key elements: a light source and a photosensitizing agent. A primary challenge in PDT is the efficient delivery of photosensitizers to the target tissue, hindered by the body's reticuloendothelial system (RES). Silica nanoparticles (SiNPs), known for their unique properties, emerge as ideal carriers in this context. In this study, SiNPs are utilized to encapsulate Temoporfin, a photosensitizer, aiming to enhance its delivery and reduce toxicity, particularly for treating MCF-7 cancer cells in vitro. The synthesized SiNPs were meticulously characterized by their size and shape using Transmission Electron Microscopy (TEM). The study also involved evaluating the cytotoxicity of both encapsulated and naked Temoporfin across various concentrations. The objective was to determine the ideal concentration and exposure duration using red laser light (intensity approximately 110 mW/cm2) to effectively eradicate MCF-7 cells. The findings revealed that Temoporfin, when encapsulated in SiNPs, demonstrated significantly greater effectiveness compared to its naked form, with notable improvements in concentration efficiency (50 %) and exposure time efficiency (76.6 %). This research not only confirms the superior effectiveness of encapsulated Temoporfin in eliminating cancer cells but also highlights the potential of SiNPs as an efficient drug delivery system in photodynamic therapy. This sets the groundwork for more advanced strategies in cancer treatment.
Collapse
Affiliation(s)
- Ghaseb N Makhadmeh
- General Education Department, Skyline University College, P. O. Box 1797, Sharjah, the United Arab Emirates
| | - Tariq AlZoubi
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Amer M Aljarrah
- Engineering Technology & Science Division, Sharjah Higher College of Technology, P.O Box 7947, Sharjah, the United Arab Emirates
| | - Mohammad Hasan Abu Mhareb
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, PO Box 1982, Dammam 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, PO Box 1982, Dammam 31441, Saudi Arabia
| | - Jamil H Al Alami
- Department of Biomedical Engineering, Ajman University, P.O. Box 346, Ajman, the United Arab Emirates
| | - Samer H Zyoud
- Department of Mathematics and Sciences, Ajman University, P.O. Box 346, Ajman, the United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, P.O. Box 346, Ajman, the United Arab Emirates; Nonlinear Dynamics Research Center (NDRC), Ajman University, P.O. Box 346, Ajman, the United Arab Emirates; School of Physics, Universiti Sains Malaysia (USM), Penang 11800, Malaysia.
| |
Collapse
|
2
|
Valtsifer VA, Sivtseva AV, Kondrashova NB, Shamsutdinov AS, Averkina AS, Valtsifer IV, Feklistova IN, Strelnikov VN. Influence of Synthesis Conditions on the Properties of Zinc Oxide Obtained in the Presence of Nonionic Structure-Forming Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2537. [PMID: 37764565 PMCID: PMC10536475 DOI: 10.3390/nano13182537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
This work investigated the influence of synthesis conditions, including the use of nonionic structure-forming compounds (surfactants) with different molecular weights (400-12,600 g/mol) and various hydrophilic/hydrophobic characteristics, as well as the use of a glass substrate and hydrothermal exposure on the texture and structural properties of ZnO samples. By X-ray analysis, it was determined that the synthesis intermediate in all cases is the compound Zn5(OH)8(NO3)2∙2H2O. It was shown that thermolysis of this compound at 600 °C, regardless of the physicochemical properties of the surfactants, leads to the formation of ZnO with a wurtzite structure and spherical or oval particles. The particle size increased slightly as the molecular weight and viscosity of the surfactants grew, from 30 nm using Pluronic F-127 (MM = 12,600) to 80 nm using Pluronic L-31 (MM = 1100), PE-block-PEG (MM = 500) and PEG (MM = 400). Holding the pre-washed synthetic intermediates (Zn5(OH)8(NO3)2∙2H2O) under hydrothermal conditions resulted in the formation of hexagonal ZnO rod crystal structures of various sizes. It was shown that the largest ZnO particles (10-15 μm) were observed in a sample obtained during hydrothermal exposure using Pluronic P-123 (MM = 5800). Atomic adsorption spectroscopy performed comparative quantitative analysis of residual Zn2+ ions in the supernatant of ZnO samples with different particle sizes and shapes. It was shown that the residual amount of Zn2+ ions was higher in the case of examining ZnO samples which have spherical particles of 30-80 nm. For example, in the supernatant of a ZnO sample that had a particle size of 30 nm, the quantitative content of Zn2+ ions was 10.22 mg/L.
Collapse
Affiliation(s)
- Viktor A. Valtsifer
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Anastasia V. Sivtseva
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Natalia B. Kondrashova
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Artem S. Shamsutdinov
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Anastasia S. Averkina
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Igor V. Valtsifer
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | | | - Vladimir N. Strelnikov
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| |
Collapse
|
3
|
Llenas M, Cuenca L, Santos C, Bdikin I, Gonçalves G, Tobías-Rossell G. Sustainable Synthesis of Highly Biocompatible 2D Boron Nitride Nanosheets. Biomedicines 2022; 10:3238. [PMID: 36551994 PMCID: PMC9775030 DOI: 10.3390/biomedicines10123238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
2D ultrafine nanomaterials today represent an emerging class of materials with very promising properties for a wide variety of applications. Biomedical fields have experienced important new achievements with technological breakthroughs obtained from 2D materials with singular properties. Boron nitride nanosheets are a novel 2D layered material comprised of a hexagonal boron nitride network (BN) with interesting intrinsic properties, including resistance to oxidation, extreme mechanical hardness, good thermal conductivity, photoluminescence, and chemical inertness. Here, we investigated different methodologies for the exfoliation of BN nanosheets (BNNs), using ball milling and ultrasound processing, the latter using both an ultrasound bath and tip sonication. The best results are obtained using tip sonication, which leads to the formation of few-layered nanosheets with a narrow size distribution. Importantly, it was observed that with the addition of pluronic acid F127 to the medium, there was a significant improvement in the BN nanosheets (BNNs) production yield. Moreover, the resultant BNNs present improved stability in an aqueous solution. Cytotoxicity studies performed with HeLa cells showed the importance of taking into account the possible interferences of the nanomaterial with the selected assay. The prepared BNNs coated with pluronic presented improved cytotoxicity at concentrations up to 200 μg mL-1 with more than 90% viability after 24 h of incubation. Confocal microscopy also showed high cell internalization of the nanomaterials and their preferential biodistribution in the cell cytoplasm.
Collapse
Affiliation(s)
- Marina Llenas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Lorenzo Cuenca
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Carla Santos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CQE—Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Igor Bdikin
- TEMA-Nanotechnology Research Group, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Intelligent Systems Associate Laboratory (LASI), 3810-193 Aveiro, Portugal
| | - Gil Gonçalves
- TEMA-Nanotechnology Research Group, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Intelligent Systems Associate Laboratory (LASI), 3810-193 Aveiro, Portugal
| | - Gerard Tobías-Rossell
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| |
Collapse
|
4
|
Guo F, Li DF, Gao F, Xu K, Zhang J, Yi XG, Li DP, Li YX. Highly Stable Europium(III) Tetrahedral (Eu 4L 4)(phen) 4 Cage: Structure, Luminescence Properties, and Cellular Imaging. Inorg Chem 2022; 61:17089-17100. [PMID: 36240513 DOI: 10.1021/acs.inorgchem.2c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Luminescent lanthanide cages have many potential applications in guest recognition, sensing, magnetic resonance imaging (MRI), and bioimaging. However, these polynuclear lanthanide assemblies' poor stability, dispersity, and luminescence properties have significantly constrained their practical applications. Furthermore, it is still a huge challenge to simultaneously synthesize and design lanthanide organic polyhedra with high stability and quantum yield. Herein, we demonstrate a simple and robust strategy to improve the rigidity, chemical stability, and luminescence of an Eu(III) tetrahedral cage by introducing the conjugated planar auxiliary phen ligand. The self-assembled tetrahedral cage, (Eu4L4)(phen)4 [L = (4,4',4″-tris(4,4,4-trifluoro-1,3-dioxobutyl)-triphenylamine), phen = 1,10-phenanthroline], exhibited characteristic luminescence of Eu3+ ions with high quantum yield (41%) and long lifetime (131 μs) in toluene (1.0 × 10-6 M). Moreover, the Eu(III) cage was stable in water and even in an aqueous solution with a pH range of 1-14. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cellular imaging revealed that the Pluronic F127-coated hybrid material, (Eu4L4)(phen)4@F127, exhibited low cytotoxicity, good biocompatibility, and cellular imaging ability, which may inspire more insights into the development of lanthanide organic polyhedra (LOPs) for potential biomedical applications.
Collapse
Affiliation(s)
- Feng Guo
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Duo-Fu Li
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Fang Gao
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang330006, China
| | - Jun Zhang
- Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei230601, China
| | - Xiu-Guang Yi
- School of Chemistry and Chemical Engineering, Jinggangshan University, Jian343009, China
| | - Dong-Ping Li
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Yong-Xiu Li
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| |
Collapse
|
5
|
Makhadmeh GN, Abuelsamen A, Al-Akhras MAH, Aziz AA. Silica Nanoparticles Encapsulated Cichorium Pumilum as Promising Photosensitizer for Osteosarcoma Photodynamic Therapy. Photodiagnosis Photodyn Ther 2022; 38:102801. [DOI: 10.1016/j.pdpdt.2022.102801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
|
6
|
Elyaci R, Bazarganipour M, Tavanai H, Esmaelion F, Shamsabadi AS. Preparation and characterization of zinc oxide nanoparticles incorporated tragacanth nanofibers for adsorbing fuel sulfur compounds. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Reza Elyaci
- Department of Textile Engineering Isfahan University of Technology Isfahan Iran
| | - Mehdi Bazarganipour
- Research Institute for Nanotechnology and Advanced Materials Isfahan University of Technology Isfahan Iran
| | - Hossein Tavanai
- Department of Textile Engineering Isfahan University of Technology Isfahan Iran
- Research Institute for Nanotechnology and Advanced Materials Isfahan University of Technology Isfahan Iran
| | - Fatemeh Esmaelion
- Department of Textile Engineering Isfahan University of Technology Isfahan Iran
| | - Amir Shahin Shamsabadi
- Research Institute for Nanotechnology and Advanced Materials Isfahan University of Technology Isfahan Iran
| |
Collapse
|