1
|
Mottola S, Viscusi G, Belvedere R, Petrella A, De Marco I, Gorrasi G. Production of mono and bilayer devices for wound dressing by coupling of electrospinning and supercritical impregnation techniques. Int J Pharm 2024; 660:124308. [PMID: 38848800 DOI: 10.1016/j.ijpharm.2024.124308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
In this paper, electrospinning and supercritical impregnation were coupled to produce polyurethane fibrous membranes loaded with mesoglycan and lactoferrin. The proposed methodology allowed the production of three skin wound healing bilayer systems: a first system containing mesoglycan loaded through electrospinning and lactoferrin loaded by supercritical impregnation, a second system where the use of the two techniques was reversed, and a third sample where the drugs were both encapsulated through a one-step process. SEM analysis demonstrated the formation of microfibers with a homogeneous drug distribution. The highest loadings were 0.062 g/g for mesoglycan and 0.013 g/g for lactoferrin. Then, hydrophilicity and liquid retention analyses were carried out to evaluate the possibility of using the manufacturers as active patches. The kinetic profiles, obtained through in vitro tests conducted using a Franz diffusion cell, proved that the diffusion of the active drugs followed a double-step release before attaining the equilibrium after about 30 h. When the electrospun membranes were placed in contact with HUVEC, HaCaT, and BJ cell lines, as human endothelial cells, keratinocytes, and fibroblasts, respectively, no cytotoxic events were assessed. Finally, the capacity of the most promising system to promote the healing process was performed by carrying out scratch tests on HaCat cells.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
2
|
Paolella G, Montefusco A, Caputo I, Gorrasi G, Viscusi G. Quercetin encapsulated polycaprolactone-polyvinylpyrrolidone electrospun membranes as a delivery system for wound healing applications. Eur J Pharm Biopharm 2024; 200:114314. [PMID: 38740224 DOI: 10.1016/j.ejpb.2024.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The present work focuses on the production of electrospun membranes based on Poly(ε-caprolactone) (PCL) and Polyvinylpyrrolidone (PVP) for the topical release of Quercetin (Q). Membranes were prepared at 0.5, 1.0, 3.0, 7.0 and 15 % wt of Quercetin and studied from a morphological, physical, and biological point of view. The scanning electron microscopy (SEM) evidences micrometric dimensions of the fibres with a good dispersion of the functional molecule. The retention degree of liquids was evaluated by testing four different liquid media while the radical scavenging activity of Quercetin-loaded membranes was evaluated through DPPH analysis. The release kinetics of Quercetin highlights the presence of an initial burst followed by slower release up to attaining an equilibrium state, after roughly 50 h, showing the possibility of a fine-tuning of drug release. Diffusion coefficients were then evaluated by using Fick's law. Finally, to verify the actual biocompatibility of the systems produced and the possible application in the repair of tissue injury, the biological activity of Quercetin released from drug-loaded membranes was analysed in an immortalized human keratinocyte cell line HaCaT by a wound healing assay. So, the reported preliminary data confirm the possibility of applying the electrospun Quercetin-loaded PCL-PVP membranes for wound healing applications.
Collapse
Affiliation(s)
- Gaetana Paolella
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Antonio Montefusco
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Ivana Caputo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
3
|
Gürtler AL, Rades T, Heinz A. Electrospun fibers for the treatment of skin diseases. J Control Release 2023; 363:621-640. [PMID: 37820983 DOI: 10.1016/j.jconrel.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Skin diseases are among the most common diseases in the global population and with the growth of the aging population, they represent an increasing burden to healthcare systems worldwide. Even though they are rarely life-threatening, the suffering for those affected is high due to the visibility and physical discomfort related to these diseases. Typical symptoms of skin diseases include an inflamed, swollen or itchy skin, and therefore, there is a high demand for effective therapy options. In recent years, electrospinning has attracted considerable interest in the field of drug delivery. The technique allows producing multifunctional drug-loaded fibrous patches from various natural and synthetic polymers with fiber diameters in the nano- and micrometer range, suitable for the treatment of a wide variety of skin diseases. The great potential of electrospun fiber patches not only lies in their tunable drug release properties and the possibility to entrap a variety of therapeutic compounds, but they also provide physical and mechanical protection to the impaired skin area, exhibit a high surface area, allow gas exchange, absorb exudate due to their porous structure and are cytocompatible and biodegradable. In the case of wound healing, cell adhesion is promoted due to the resemblance of the electrospun fibers to the structure of the native extracellular matrix. This review gives an overview of the potential applications of electrospun fibers in skin therapy. In addition to the treatment of bacterial, diabetic and burn wounds, focus is placed on inflammatory diseases such as atopic dermatitis and psoriasis, and therapeutic options for the treatment of skin cancer, acne vulgaris and herpes labialis are discussed. While we aim to emphasize the great potential of electrospun fiber patches for the treatment of skin diseases with this review paper, we also highlight challenges and limitations of current research in the field.
Collapse
Affiliation(s)
- Anna-Lena Gürtler
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Xing J, Zhang M, Liu X, Wang C, Xu N, Xing D. Multi-material electrospinning: from methods to biomedical applications. Mater Today Bio 2023; 21:100710. [PMID: 37545561 PMCID: PMC10401296 DOI: 10.1016/j.mtbio.2023.100710] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Electrospinning as a versatile, simple, and cost-effective method to engineer a variety of micro or nanofibrous materials, has contributed to significant developments in the biomedical field. However, the traditional electrospinning of single material only can produce homogeneous fibrous assemblies with limited functional properties, which oftentimes fails to meet the ever-increasing requirements of biomedical applications. Thus, multi-material electrospinning referring to engineering two or more kinds of materials, has been recently developed to enable the fabrication of diversified complex fibrous structures with advanced performance for greatly promoting biomedical development. This review firstly gives an overview of multi-material electrospinning modalities, with a highlight on their features and accessibility for constructing different complex fibrous structures. A perspective of how multi-material electrospinning opens up new opportunities for specific biomedical applications, i.e., tissue engineering and drug delivery, is also offered.
Collapse
Affiliation(s)
- Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Nannan Xu
- School of Computer Science and Technology, Ocean University of China, Qingdao, 266000, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Mottola S, Viscusi G, Iannone G, Belvedere R, Petrella A, De Marco I, Gorrasi G. Supercritical Impregnation of Mesoglycan and Lactoferrin on Polyurethane Electrospun Fibers for Wound Healing Applications. Int J Mol Sci 2023; 24:ijms24119269. [PMID: 37298221 DOI: 10.3390/ijms24119269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Fibrous membranes of thermoplastic polyurethane (TPU) were fabricated through a uni-axial electrospinning process. Fibers were then separately charged with two pharmacological agents, mesoglycan (MSG) and lactoferrin (LF), by supercritical CO2 impregnation. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) analysis proved the formation of a micrometric structure with a homogeneous distribution of mesoglycan and lactoferrin. Besides, the degree of retention is calculated in four liquid media with different pHs. At the same time, angle contact analysis proved the formation of a hydrophobic membrane loaded with MSG and a hydrophilic LF-loaded one. The impregnation kinetics demonstrated a maximum loaded amount equal to 0.18 ± 0.20% and 0.07 ± 0.05% for MSG and LT, respectively. In vitro tests were performed using a Franz diffusion cell to simulate the contact with the human skin. The release of MSG reaches a plateau after about 28 h while LF release leveled off after 15 h. The in vitro compatibility of electrospun membranes has been evaluated on HaCaT and BJ cell lines, as human keratinocytes and fibroblasts, respectively. The reported data proved the potential application of fabricated membranes for wound healing.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giovanna Iannone
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
6
|
Viscusi G, Paolella G, Lamberti E, Caputo I, Gorrasi G. Quercetin-Loaded Polycaprolactone-Polyvinylpyrrolidone Electrospun Membranes for Health Application: Design, Characterization, Modeling and Cytotoxicity Studies. MEMBRANES 2023; 13:membranes13020242. [PMID: 36837745 PMCID: PMC9965405 DOI: 10.3390/membranes13020242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/12/2023]
Abstract
Fibrous membranes of polycaprolactone (PCL)-polyvinylpyrrolidone (PVP) encapsulating 15% wt of quercetin are fabricated by a uniaxial electrospinning technique. Morphological analysis of the electrospun systems proved the fabrication of micrometric fibers (1.58 µm for PCL/PVP and 2.34 µm for quercetin-loaded membrane). The liquid retention degree of the electrospun membranes is evaluated by testing four different liquid media. The contact angle estimation is performed by testing three liquids: phosphate buffer solution, basic solution (pH = 13) and acidic solution (pH = 3), showing high hydrophobicity degree (contact angles > 90°) in all cases. The release of quercetin from the nanofibers in PBS (phosphate buffer solution) and pH = 3 medium, modeled through different models, shows the possibility of a fine tuning of drug release (up to 7 days) for the produced materials. The release profiles attained a plateau regime after roughly 50 h up to 82% and 71% for PBS and pH = 3 media, respectively. Then, since quercetin is known to undergo photooxidation upon UV radiation, release tests after different UV treatment times are carried out and compared with the untreated membrane, demonstrating that the release of the active drug changes from 82% for no-irradiated sample up to 57% after 10 h of UV exposure. The biology activity of released quercetin is evaluated on two human cell lines. The reported results demonstrate the ability of the quercetin-loaded membranes to reduce cell viability of human cell lines in two different conditions: direct contact between cells and quercetin-loaded membranes and cells treatment with culture medium previously conditioned with quercetin-loaded membranes. Therefore, the reported preliminary data confirm the possibility of applying the electrospun quercetin-loaded PCL-PVP membranes for health applications.
Collapse
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Elena Lamberti
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Ivana Caputo
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
7
|
Arshian M, Estaji S, Tayouri MI, Mousavi SR, Shojaei S, Khonakdar HA. Poly(lactic acid) films reinforced with hybrid zinc oxide
‐
polyhedral oligomeric silsesquioxane nanoparticles: Morphological, mechanical, and antibacterial properties. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Mahya Arshian
- Department of Biomedical Engineering, Central Tehran Branch Islamic Azad University Tehran Iran
| | - Sara Estaji
- Department of Polymer Processing Iran Polymer and Petrochemical Institute Tehran Iran
| | - Mohammad Iman Tayouri
- Department of Polymer Processing Iran Polymer and Petrochemical Institute Tehran Iran
| | - Seyed Rasoul Mousavi
- Department of Polymer Processing Iran Polymer and Petrochemical Institute Tehran Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Central Tehran Branch Islamic Azad University Tehran Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing Iran Polymer and Petrochemical Institute Tehran Iran
| |
Collapse
|
8
|
Yu P, Zhang J, Long J. Coaxial mechano‐electrospinning of oriented fibers with core‐shell structure for tactile sensing. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ping Yu
- College of Mechanical and Electrical Engineering Wenzhou University Wenzhou People's Republic of China
| | - Jiake Zhang
- College of Mechanical and Electrical Engineering Wenzhou University Wenzhou People's Republic of China
| | - Jiangqi Long
- College of Mechanical and Electrical Engineering Wenzhou University Wenzhou People's Republic of China
| |
Collapse
|
9
|
Bahmani E, Dizaji BF, Talaei S, Koushkbaghi S, Yazdani H, Abadi PG, Akrami M, Shahrousvand M, Jazi FS, Irani M. Fabrication of poly(ϵ‐caprolactone)/paclitaxel (core)/chitosan/zein/multi‐walled carbon nanotubes/doxorubicin (shell) nanofibers against
MCF
‐7 breast cancer. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ehsan Bahmani
- Department of Chemical Engineering Payam Noor University Tehran Iran
| | | | - Sam Talaei
- School of Pharmacy Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | - Hamid Yazdani
- Department of Chemical Engineering Payam Noor University Tehran Iran
| | | | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering College of Engineering, Chooka Branch, University of Tehran Rezvanshahr Iran
| | | | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy Alborz University of Medical Sciences Karaj Iran
| |
Collapse
|
10
|
Manatunga D, Jayasinghe JAB, Sandaruwan C, De Silva RM, De Silva KMN. Enhancement of Release and Solubility of Curcumin from Electrospun PEO-EC-PVP Tripolymer-Based Nanofibers: A Study on the Effect of Hydrogenated Castor Oil. ACS OMEGA 2022; 7:37264-37278. [PMID: 36312427 PMCID: PMC9608420 DOI: 10.1021/acsomega.2c03495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 05/15/2023]
Abstract
This study reveals the state-of-the-art fabrication of a tripolymer-based electrospun nanofiber (NF) system to enhance the release, solubility, and transdermal penetration of curcumin (Cur) with the aid of in situ release of infused castor oil (Co). In this regard, Cur-loaded Co-infused polyethylene oxide (PEO), ethyl cellulose (EC), and polyvinyl pyrrolidone (PVP) tripolymer-based NF systems were developed to produce a hybridized transdermal skin patch. Weight percentages of 1-4% Cur and 3-10% of Co were blended with PEO-EC-PEO and PEO-EC-PVP polymer systems. The prepared NFs were characterized by SEM, TEM, FT-IR analysis, PXRD, differential scanning calorimetry (DSC), and XPS. Dialysis membranes and vertical Franz diffusion cells were used to study the in vitro drug release and transdermal penetration, respectively. The results indicated that maintaining a Cur concentration of 1-3 wt % with 3 wt % Co in both PEO-EC-Co-Cur@PEO and PEO-EC-Co-Cur@PVP gave rise to nanofibers with lowered diameters (144.83 ± 48.05-209.26 ± 41.80 nm and 190.20 ± 59.42-404.59 ± 45.31 nm). Lowered crystallinity observed from the PXRD patterns and the disappearance of exothermic peaks corresponding to the melting point of Cur suggested the formation of an amorphous NF structure. Furthermore, the XPS data revealed that the Cur loading will possibly take place at the inner interface of PEO-EC-Co-PEO and PEO-EC-Co-PVP NFs rather than on the surface. The beneficiary role of Co on the release and dermal penetration of Cur was further confirmed from the respective release data which indicated that PEO-EC-Co-Cur@PEO would lead to a rapid release (4-5 h), while PEO-EC-Co-Cur@PVP would lead to a sustained release over a period of 24 h in the presence of Co. Transdermal penetration of the released Cur was further evidenced with the development of color in the receiver compartment of the diffusion cell. DPPH results further corroborated that a sustained antioxidant activity is observed in the released Cur where the free-radical scavenging activity is intact even after subjecting to an electrospinning process and under extreme freeze-thaw conditions.
Collapse
Affiliation(s)
- Danushika.
C. Manatunga
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
- Department
of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama10206, Sri Lanka
| | - J. Asanka Bandara Jayasinghe
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
- Sri
Lanka Institute of Nanotechnology, Mahenwatta, Pitipana, Homagama10206, Sri Lanka
| | - Chanaka Sandaruwan
- Sri
Lanka Institute of Nanotechnology, Mahenwatta, Pitipana, Homagama10206, Sri Lanka
| | - Rohini M. De Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
| | - K. M. Nalin De Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
| |
Collapse
|
11
|
Abdul Hameed MM, Mohamed Khan SAP, Thamer BM, Rajkumar N, El‐Hamshary H, El‐Newehy M. Electrospun nanofibers for drug delivery applications: Methods and mechanism. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Syed Ali Padusha Mohamed Khan
- PG and Research Department of Chemistry Jamal Mohamed College (Affiliated to Bharathidasan University) Tiruchirappalli India
| | - Badr M. Thamer
- Department of Chemistry College of Science, King Saud University Saudi Arabia
| | - Nirmala Rajkumar
- Department of Biotechnology Hindustan College of Arts and Science (Affiliated to University of Madras) Chennai India
| | - Hany El‐Hamshary
- Department of Chemistry College of Science, King Saud University Saudi Arabia
- Department of Chemistry, Faculty of Science Tanta University Egypt
| | - Mohamed El‐Newehy
- Department of Chemistry College of Science, King Saud University Saudi Arabia
- Department of Chemistry, Faculty of Science Tanta University Egypt
| |
Collapse
|
12
|
Gruppuso M, Guagnini B, Musciacchio L, Bellemo F, Turco G, Porrelli D. Tuning the Drug Release from Antibacterial Polycaprolactone/Rifampicin-Based Core-Shell Electrospun Membranes: A Proof of Concept. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27599-27612. [PMID: 35671365 PMCID: PMC9946292 DOI: 10.1021/acsami.2c04849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The employment of coaxial fibers for guided tissue regeneration can be extremely advantageous since they allow the functionalization with bioactive compounds to be preserved and released with a long-term efficacy. Antibacterial coaxial membranes based on poly-ε-caprolactone (PCL) and rifampicin (Rif) were synthesized here, by analyzing the effects of loading the drug within the core or on the shell layer with respect to non-coaxial matrices. The membranes were, therefore, characterized for their surface properties in addition to analyzing drug release, antibacterial efficacy, and biocompatibility. The results showed that the lower drug surface density in coaxial fibers hinders the interaction with serum proteins, resulting in a hydrophobic behavior compared to non-coaxial mats. The air-plasma treatment increased their hydrophilicity, although it induced rifampicin degradation. Moreover, the substantially lower release of coaxial fibers influenced the antibacterial efficacy, tested against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Indeed, the coaxial matrices were inhibitory and bactericidal only against S. aureus, while the higher release from non-coaxial mats rendered them active even against E. coli. The biocompatibility of the released rifampicin was assessed too on murine fibroblasts, revealing no cytotoxic effects. Hence, the presented coaxial system should be further optimized to tune the drug release according to the antibacterial effectiveness.
Collapse
Affiliation(s)
- Martina Gruppuso
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Benedetta Guagnini
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Luigi Musciacchio
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Francesca Bellemo
- Department
of Engineering and Architecture, University
of Trieste, Via Alfonso
Valerio 6/1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Davide Porrelli
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| |
Collapse
|
13
|
Poly(lactic acid)-Based Electrospun Fibrous Structures for Biomedical Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063192] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly(lactic acid)(PLA) is an aliphatic polyester that can be derived from natural and renewable resources. Owing to favorable features, such as biocompatibility, biodegradability, good thermal and mechanical performance, and processability, PLA has been considered as one of the most promising biopolymers for biomedical applications. Particularly, electrospun PLA nanofibers with distinguishing characteristics, such as similarity to the extracellular matrix, large specific surface area and high porosity with small pore size and tunable mechanical properties for diverse applications, have recently given rise to advanced spillovers in the medical area. A variety of PLA-based nanofibrous structures have been explored for biomedical purposes, such as wound dressing, drug delivery systems, and tissue engineering scaffolds. This review highlights the recent advances in electrospinning of PLA-based structures for biomedical applications. It also gives a comprehensive discussion about the promising approaches suggested for optimizing the electrospun PLA nanofibrous structures towards the design of specific medical devices with appropriate physical, mechanical and biological functions.
Collapse
|
14
|
Fabrication and characterization of chitosan-polycaprolactone core-shell nanofibers containing tetracycline hydrochloride. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128163] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Di Salle A, Viscusi G, Di Cristo F, Valentino A, Gorrasi G, Lamberti E, Vittoria V, Calarco A, Peluso G. Antimicrobial and Antibiofilm Activity of Curcumin-Loaded Electrospun Nanofibers for the Prevention of the Biofilm-Associated Infections. Molecules 2021; 26:molecules26164866. [PMID: 34443457 PMCID: PMC8400440 DOI: 10.3390/molecules26164866] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
Curcumin extracted from the rhizome of Curcuma Longa has been used in therapeutic preparations for centuries in different parts of the world. However, its bioactivity is limited by chemical instability, water insolubility, low bioavailability, and extensive metabolism. In this study, the coaxial electrospinning technique was used to produce both poly (ε-caprolactone) (PCL)-curcumin and core-shell nanofibers composed of PCL and curcumin in the core and poly (lactic acid) (PLA) in the shell. Morphology and physical properties, as well as the release of curcumin were studied and compared with neat PCL, showing the formation of randomly oriented, defect-free cylindrical fibers with a narrow distribution of the dimensions. The antibacterial and antibiofilm potential, including the capacity to interfere with the quorum-sensing mechanism, was evaluated on Pseudomonas aeruginosa PAO1, and Streptococcus mutans, two opportunistic pathogenic bacteria frequently associated with infections. The reported results demonstrated the ability of the Curcumin-loading membranes to inhibit both PAO1 and S. mutans biofilm growth and activity, thus representing a promising solution for the prevention of biofilm-associated infections. Moreover, the high biocompatibility and the ability to control the oxidative stress of damaged tissue, make the synthesized membranes useful as scaffolds in tissue engineering regeneration, helping to accelerate the healing process.
Collapse
Affiliation(s)
- Anna Di Salle
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | | | - Anna Valentino
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani, 2, 28100 Novara, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- Correspondence: (G.G.); (A.C.)
| | - Elena Lamberti
- Nice Filler s.r.l., Via Loggia dei Pisani, 25, 80133 Naples, Italy; (E.L.); (V.V.)
| | - Vittoria Vittoria
- Nice Filler s.r.l., Via Loggia dei Pisani, 25, 80133 Naples, Italy; (E.L.); (V.V.)
| | - Anna Calarco
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
- Correspondence: (G.G.); (A.C.)
| | - Gianfranco Peluso
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
| |
Collapse
|