1
|
Assiri AA, Glover K, Mishra D, Waite D, Vora LK, Thakur RRS. Block copolymer micelles as ocular drug delivery systems. Drug Discov Today 2024; 29:104098. [PMID: 38997002 DOI: 10.1016/j.drudis.2024.104098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Block copolymer micelles, formed by the self-assembly of amphiphilic polymers, address formulation challenges, such as poor drug solubility and permeability. These micelles offer advantages including a smaller size, easier preparation, sterilization, and superior solubilization, compared with other nanocarriers. Preclinical studies have shown promising results, advancing them toward clinical trials. Their mucoadhesive properties enhance and prolong contact with the ocular surface, and their small size allows deeper penetration through tissues, such as the cornea. Additionally, copolymeric micelles improve the solubility and stability of hydrophobic drugs, sustain drug release, and allow for surface modifications to enhance biocompatibility. Despite these benefits, long-term stability remains a challenge. In this review, we highlight the preclinical performance, structural frameworks, preparation techniques, physicochemical properties, current developments, and prospects of block copolymer micelles as ocular drug delivery systems.
Collapse
Affiliation(s)
- Ahmad A Assiri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK; Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - David Waite
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK.
| | | |
Collapse
|
2
|
Camacho-Ramírez A, Meléndez-Zamudio M, Cervantes J, Palestino G, Guerra-Contreras A. One-step synthesis of amphiphilic copolymers PDMS- b-PEG using tris(pentafluorophenyl)borane and subsequent study of encapsulation and release of curcumin. J Mater Chem B 2024; 12:7076-7089. [PMID: 38817163 DOI: 10.1039/d4tb00113c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A series of amphiphilic block copolymer (BCP) micelles based on poly(dimethylsiloxane) (PDMS) and poly(ethylene glycol) (PEG) were synthesized by a one-step reaction in the presence of tris(pentafluorophenyl)borane (BCF) as a catalyst. The structural composition of PDMS-b-PEG (PR11) and PEG-b-PDMS-b-PEG (PR12) was corroborated by FTIR, 29Si NMR, and TGA. The BCPs were assembled in an aqueous solution, obtaining micelles between 57 and 87 nm in size. PR11 exhibited a higher (2.0 g L-1) critical micelle concentration (CMC) than PR12 (1.5 g L-1) due to the short chain length. The synthesized nano micelles were used to encapsulate curcumin, which is one of three compounds of turmeric plant 'Curcuma longa' with significant biological activities, including antioxidant, chemoprotective, antibacterial, anti-inflammatory, antiviral, and anti-depressant properties. The encapsulation efficiency of curcumin was 60% for PR11 and 45% for PR12. Regarding the release study, PR11 delivered 53% curcumin after five days under acidic conditions (pH of 1.2) compared to 43% at a pH of 7.4. The degradation products of curcumin were observed under basic conditions and were more stable at acidic pH. In both situations, the release process is carried out by breaking the silyl-ether bond, allowing the release of curcumin. PR11 showed prolonged release times, so it could be used to reduce ingestion times and simultaneously work as a nanocarrier for other hydrophobic drugs.
Collapse
Affiliation(s)
- Abygail Camacho-Ramírez
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| | - Miguel Meléndez-Zamudio
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4M1, Canada
| | - Jorge Cervantes
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| | - Gabriela Palestino
- Biopolymers and Nanostructures Laboratory, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, S.L.P., C.P. 78210, Mexico
| | - Antonio Guerra-Contreras
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| |
Collapse
|
3
|
Sharma R, Shrivastava P, Gautam L, Agrawal U, Mohana Lakshmi S, Vyas SP. Rationally designed block copolymer-based nanoarchitectures: An emerging paradigm for effective drug delivery. Drug Discov Today 2023; 28:103786. [PMID: 37742910 DOI: 10.1016/j.drudis.2023.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Various polymeric materials have been investigated to produce unique modes of delivery for drug modules to achieve either temporal or spatial control of bioactives delivery. However, after intravenous administration, phagocytic cells quickly remove these nanostructures from the systemic circulation via the reticuloendothelial system (RES). To overcome these concerns, ecofriendly block copolymers are increasingly being investigated as innovative carriers for the delivery of bioactives. In this review, we discuss the design, fabrication techniques, and recent advances in the development of block copolymers and their applications as drug carrier systems to improve the physicochemical and pharmacological attributes of bioactives.
Collapse
Affiliation(s)
- Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| | - Priya Shrivastava
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - Laxmikant Gautam
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India; Babulal Tarabai Institute of Pharmaceutical Science, Sagar, M.P., 470228
| | - Udita Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - S Mohana Lakshmi
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| | - Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India.
| |
Collapse
|
4
|
Zafar A, Arshad R, Ur.Rehman A, Ahmed N, Akhtar H. Recent Developments in Oral Delivery of Vaccines Using Nanocarriers. Vaccines (Basel) 2023; 11:490. [PMID: 36851367 PMCID: PMC9964829 DOI: 10.3390/vaccines11020490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
As oral administration of vaccines is the preferred route due to its high patient compliance and ability to stimulate both cellular and humoral immune responses, it is also associated with several challenges that include denaturation of vaccine components in the acidic environment of the stomach, degradation from proteolytic enzymes, and poor absorption through the intestinal membrane. To achieve effective delivery of such biomolecules, there is a need to investigate novel strategies of formulation development that can overcome the barriers associated with conventional vaccine delivery systems. Nanoparticles are advanced drug delivery carriers that provide target-oriented delivery by encapsulating vaccine components within them, thus making them stable against unfavorable conditions. This review provides a detailed overview of the different types of nanocarriers and various approaches that can enhance oral vaccine delivery.
Collapse
Affiliation(s)
- Amna Zafar
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Raffia Arshad
- Yusra Institute of Pharmaceutical Sciences, Yusra Medical and Dental College, Islamabad 45730, Pakistan
| | - Asim Ur.Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hashaam Akhtar
- Yusra Institute of Pharmaceutical Sciences, Yusra Medical and Dental College, Islamabad 45730, Pakistan
| |
Collapse
|
5
|
Jia Y, Sun Z, Hu C, Pang X. Switchable Polymerization: A Practicable Strategy to Produce Biodegradable Block Copolymers with Diverse Properties. Chempluschem 2022; 87:e202200220. [PMID: 36071346 DOI: 10.1002/cplu.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Indexed: 11/11/2022]
Abstract
With the global demand for sustainable development, there has been an increasing interest in using natural biomass as raw resources to produce sustainable polymers as an alternative to petroleum-based polymers. Because monocomponent biodegradable polymers are often insufficient in performance, copolymers with well-engineered block structures are synthesized to reach wide tunability. Switchable polymerization is such a practical strategy to produce biodegradable block copolymers with diverse performance. This review focus on the performance of block copolymers bearing biodegradable polymer segments produced by diverse switchable polymerization. We highlight two main segments that are critical for biodegradable block copolymers, i. e., polyester and polycarbonate, summarize the multiple characters of materials from switchable polymerization such as antibacterial, shape memory, adhesives, etc. The state-of-the-art research on biodegradable block copolymers, as well as an outlook on the preparation and application of novel materials, are presented.
Collapse
Affiliation(s)
- Yifan Jia
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
6
|
Yusoff NISM, Tham WH, Wahit MU, Abdul Kadir MR, Wong T. The effect of hydroxyapatite filler on biodegradable poly(sorbitol sebacate malate) composites. J Appl Polym Sci 2022. [DOI: 10.1002/app.52862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Noor Izyan Syazana Mohd Yusoff
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Weng Hong Tham
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Mat Uzir Wahit
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
- Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Mohammed Rafiq Abdul Kadir
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Tuck‐Whye Wong
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| |
Collapse
|
7
|
Hu C, Pang X, Chen X. Self-Switchable Polymerization: A Smart Approach to Sequence-Controlled Degradable Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|