Jain N, Waidi YO. The Multifaceted Role of 3D Printed Conducting Polymers in Next-Generation Energy Devices: A Critical Perspective.
JACS AU 2025;
5:411-425. [PMID:
40017762 PMCID:
PMC11862948 DOI:
10.1021/jacsau.4c00796]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 03/01/2025]
Abstract
The increasing human population is leading to growing consumption of energy sources which requires development in energy devices. The modern iterations of these devices fail to offer sustainable and environmentally friendly answers since they require costly equipment and produce a lot of waste. Three-dimensional (3D) printing has spurred incredible innovation over the years in a variety of fields and is clearly an attractive option because technology can create unique geometric items quickly, cheaply, and with little waste. Conducting polymers (CPs) are a significant family of functional materials that have garnered interest in the research community because of their high conductivity, outstanding sustainability, and economic significance. They have an extensive number of applications involving supercapacitors, power sources, electrochromic gadgets, electrostatic components, conducting pastes, sensors, and biological devices thanks to their special physical and electrical attributes, ease of synthesis, and appropriate frameworks for functional attachment. The use of three-dimensional printing has become popular as an exact way to enhance prepared networks. Rapid technological advancements are reproducing patterns and building structures that enable automated deposition of polymers for intricate structures. Different composites have been created using oxides of metals and carbon to improve the efficiency of the CPs. Such composites have been actively investigated as exceptional energy producers for low-power electronic techniques, and by increasing the range of applications, they have verified increasing surface area, electronic conductivity, and remarkable electrochemical behavior. The hybridization with such materials has produced a range of equipment, such as gathering energy, sensors, protective gadgets, and storage facilities. A few possible uses for these CPs such as sensors and energy storage devices are discussed in this perspective. We also provide an overview of the key strategies for scientific and industrial applications with an eye on potential improvements for a sustainable future.
Collapse