Abstract
The regulatory peptide calcitonin was discovered in 1962. During the last decade it has been demonstrated to be part of a gene family. Calcitonin is synthesized in the parafollicular cells (C cells) of the thyroid gland. These cells give rise to an endocrine tumor, medullary thyroid carcinoma (MTC), which is found in a sporadic and an inherited form. Calcitonin is used as a tumor marker for MTC. The calcitonin gene was demonstrated in 1981 to give rise to an alternative peptide product, alpha-CGRP, and a second gene encoding a very similar peptide, beta-CGRP, has also been identified. A third CGRP-like peptide, amylin, was identified in 1986. This article summarizes the present knowledge about gene structure, regulation of gene expression, and expression of the calcitonin gene family in MTC and in MTC-derived cell lines. The methods employed for detection of gene expression and for measurement and characterized of peptide products are described, and finally the relevance of biochemical tumor markers is discussed in relation to the new diagnostic methods for inherited MTC based on molecular biological techniques.
Collapse