1
|
Ornell KJ, Coburn JM. Developing preclinical models of neuroblastoma: driving therapeutic testing. BMC Biomed Eng 2019; 1:33. [PMID: 32903387 PMCID: PMC7422585 DOI: 10.1186/s42490-019-0034-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022] Open
Abstract
Despite advances in cancer therapeutics, particularly in the area of immuno-oncology, successful treatment of neuroblastoma (NB) remains a challenge. NB is the most common cancer in infants under 1 year of age, and accounts for approximately 10% of all pediatric cancers. Currently, children with high-risk NB exhibit a survival rate of 40–50%. The heterogeneous nature of NB makes development of effective therapeutic strategies challenging. Many preclinical models attempt to mimic the tumor phenotype and tumor microenvironment. In vivo mouse models, in the form of genetic, syngeneic, and xenograft mice, are advantageous as they replicated the complex tumor-stroma interactions and represent the gold standard for preclinical therapeutic testing. Traditional in vitro models, while high throughput, exhibit many limitations. The emergence of new tissue engineered models has the potential to bridge the gap between in vitro and in vivo models for therapeutic testing. Therapeutics continue to evolve from traditional cytotoxic chemotherapies to biologically targeted therapies. These therapeutics act on both the tumor cells and other cells within the tumor microenvironment, making development of preclinical models that accurately reflect tumor heterogeneity more important than ever. In this review, we will discuss current in vitro and in vivo preclinical testing models, and their potential applications to therapeutic development.
Collapse
Affiliation(s)
- Kimberly J Ornell
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01605 USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01605 USA
| |
Collapse
|
2
|
Zormpas-Petridis K, Jerome NP, Blackledge MD, Carceller F, Poon E, Clarke M, McErlean CM, Barone G, Koers A, Vaidya SJ, Marshall LV, Pearson ADJ, Moreno L, Anderson J, Sebire N, McHugh K, Koh DM, Yuan Y, Chesler L, Robinson SP, Jamin Y. MRI Imaging of the Hemodynamic Vasculature of Neuroblastoma Predicts Response to Antiangiogenic Treatment. Cancer Res 2019; 79:2978-2991. [PMID: 30877107 PMCID: PMC6558276 DOI: 10.1158/0008-5472.can-18-3412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/25/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022]
Abstract
Childhood neuroblastoma is a hypervascular tumor of neural origin, for which antiangiogenic drugs are currently being evaluated; however, predictive biomarkers of treatment response, crucial for successful delivery of precision therapeutics, are lacking. We describe an MRI-pathologic cross-correlative approach using intrinsic susceptibility (IS) and susceptibility contrast (SC) MRI to noninvasively map the vascular phenotype in neuroblastoma Th-MYCN transgenic mice treated with the vascular endothelial growth factor receptor inhibitor cediranib. We showed that the transverse MRI relaxation rate R 2* (second-1) and fractional blood volume (fBV, %) were sensitive imaging biomarkers of hemorrhage and vascular density, respectively, and were also predictive biomarkers of response to cediranib. Comparison with MRI and pathology from patients with MYCN-amplified neuroblastoma confirmed the high degree to which the Th-MYCN model vascular phenotype recapitulated that of the clinical phenotype, thereby supporting further evaluation of IS- and SC-MRI in the clinic. This study reinforces the potential role of functional MRI in delivering precision medicine to children with neuroblastoma. SIGNIFICANCE: This study shows that functional MRI predicts response to vascular-targeted therapy in a genetically engineered murine model of neuroblastoma.
Collapse
Affiliation(s)
- Konstantinos Zormpas-Petridis
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Neil P Jerome
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Matthew D Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Fernando Carceller
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Matthew Clarke
- Division of Molecular Pathology, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Ciara M McErlean
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Giuseppe Barone
- Department of Pediatric Oncology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Alexander Koers
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Sucheta J Vaidya
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Lynley V Marshall
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Andrew D J Pearson
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Lucas Moreno
- Clinical Research Unit, Pediatric Oncology, Hematology and Stem Cell Transplant Department, Hospital Infantil Universitario Ninõ Jesús, Madrid, Spain
| | - John Anderson
- Department of Pediatric Oncology, Great Ormond Street Hospital for Children, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Neil Sebire
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Histopathology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kieran McHugh
- Department of Radiology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom.
| |
Collapse
|
3
|
VEGF expression correlates with neuronal differentiation and predicts a favorable prognosis in patients with neuroblastoma. Sci Rep 2017; 7:11212. [PMID: 28894229 PMCID: PMC5593816 DOI: 10.1038/s41598-017-11637-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/29/2017] [Indexed: 01/25/2023] Open
Abstract
Neuroblastoma (NB) is a childhood cancer with a low survival rate and great metastatic potential. Vascular endothelial growth factor (VEGF), an angiogenesis factor, has been found to be involved in CRT-related neuronal differentiation of NB cells. In this study, we further confirmed the role VEGF in NB through mouse xenograft model and clinical analysis from NB patients. In xenograft experiments, CRT overexpression effectively inhibited the tumor growth. In addition, the mRNA and protein levels of VEGF and differentiation marker GAP-43 were upregulated by induced CRT expression. However, no significant correlation between the expression level of VEGF and microvessel density was observed in human NB tumors, suggesting a novel mechanism of VEGF participating in NB tumorigenesis through an angiogenesis-independent pathway. In NB patients' samples, mRNA expression levels of CRT and VEGF were positively correlated. Furthermore, positive VEGF expression by immunostaining of NB tumors was found to correlate well with histological grade of differentiation and predicted a favorable prognosis. In conclusion, our findings suggest that VEGF is a favorable prognostic factor of NB and might affect NB tumor behavior through CRT-driven neuronal differentiation rather than angiogenesis that might shed light on a novel therapeutic strategy to improve the outcome of NB.
Collapse
|
4
|
Weng WC, Lin KH, Wu PY, Lu YC, Weng YC, Wang BJ, Liao YF, Hsu WM, Lee WT, Lee H. Calreticulin Regulates VEGF-A in Neuroblastoma Cells. Mol Neurobiol 2014; 52:758-70. [PMID: 25288151 DOI: 10.1007/s12035-014-8901-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/24/2014] [Indexed: 01/06/2023]
Abstract
Calreticulin (CRT) has been previously correlated with the differentiation of neuroblastoma (NB), implying a favorable prognostic factor. Vascular endothelial growth factor (VEGF) has been reported to participate in the behavior of NB. This study investigated the association of CRT and VEGF-A in NB cells. The expressions of VEGF-A and HIF-1α, with overexpression or knockdown of CRT, were measured in three NB cells (SH-SY5Y, SK-N-DZ, and stNB-V1). An inducible CRT NB cell line and knockdown CRT stable cell lines were also established. The impacts of CRT overexpression on NB cell apoptosis, proliferation, and differentiation were also evaluated. We further examined the role of VEGF-A in the NB cell differentiation via VEGF receptor blockade. Constitutive overexpression of CRT led to NB cell differentiation without proliferation. Thus, an inducible CRT stNB-V1 cell line was generated by a tetracycline-regulated gene system. CRT overexpression increased VEGF-A and HIF-1α messenger RNA (mRNA) expressions in SH-SY5Y, SK-N-DZ, and stNB-V1 cells. CRT overexpression also enhanced VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. Knockdown of CRT decreased VEGF-A and HIF-1α mRNA expressions and lowered VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. We further demonstrated that NB cell apoptosis was not affected by CRT overexpression in stNB-V1 cells. Nevertheless, overexpression of CRT suppressed cell proliferation and enhanced cell differentiation in stNB-V1 cells, whereas blockage of VEGFR-1 markedly suppressed the expression of neuron-specific markers including GAP43, NSE2, and NFH, as well as TrkA, a molecular marker indicative of NB cell differentiation. Our findings suggest that VEGF-A is involved in CRT-related neuronal differentiation in NB. Our work may provide important information for developing a new therapeutic strategy to improve the outcome of NB patients.
Collapse
Affiliation(s)
- Wen-Chin Weng
- Department of Pediatrics, College of Medicine, National Taiwan University Hospital and National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ha CT, Wu JA, Irmak S, Lisboa FA, Dizon AM, Warren JW, Ergun S, Dveksler GS. Human pregnancy specific beta-1-glycoprotein 1 (PSG1) has a potential role in placental vascular morphogenesis. Biol Reprod 2010; 83:27-35. [PMID: 20335639 PMCID: PMC2888962 DOI: 10.1095/biolreprod.109.082412] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous studies suggest that human pregnancy specific beta-1-glycoproteins (PSGs) play immunomodulatory roles during pregnancy; however, other possible functions of PSGs have yet to be explored. We have observed that PSGs induce transforming growth factor beta 1 (TGFB1), which among its other diverse functions inhibits T-cell function and has proangiogenic properties. The present study investigates a potential role for PSG1, the most abundant PSG in maternal serum, as a possible inducer of proangiogenic growth factors known to play an important role in establishment of the vasculature at the maternal-fetal interface. To this end, we measured TGFB1, vascular endothelial growth factors (VEGFs) A and C, and placental growth factor (PGF) protein levels in several cell types after PSG1 treatment. In addition, tube formation and wound healing assays were performed to investigate a possible direct interaction between PSG1 and endothelial cells. PSG1 induced up-regulation of both TGFB1 and VEGFA in human monocytes, macrophages, and two human extravillous trophoblast cell lines. We did not observe induction of VEGFC or PGF by PSG1 in any of the cells tested. PSG1 treatment resulted in endothelial tube formation in the presence and absence of VEGFA. Site-directed mutagenesis was performed to map the essential regions within the N-domain of PSG1 required for functional activity. We found that the aspartic acid at position 95, previously believed to be required for binding of PSGs to cells, is not required for PSG1 activity but that the amino acids implicated in the formation of a salt bridge within the N-domain are essential for PSG1 function.
Collapse
Affiliation(s)
- Cam T Ha
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Angiopoietin-1 mediates the proangiogenic activity of the bone morphogenic protein antagonist Drm. Blood 2008; 112:1154-7. [PMID: 18505784 DOI: 10.1182/blood-2007-09-111450] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent observations have shown that Drm, a member the Dan family of bone morphogenic protein (BMP) antagonists, induces endothelial cell (EC) sprouting in vitro and angiogenesis in vivo by interacting with signaling EC receptors in a BMP-independent manner. Here, recombinant Drm (rDrm) up-regulates angiopoientin-1 (Ang-1) expression in EC without affecting Ang-2 and Tie-2 receptor expression. Ang-1 up-regulation is mediated by the activation of the transcription factor NF-kappaB. Specific inhibition of Ang-1 activity by anti-Ang-1 antibodies, soluble Tie-2 receptor, or Ang-1 siRNA transfection significantly reduced the rDrm-mediated sprouting of EC in three-dimensional fibrin and type I collagen gels. In addition, Ang-1 antagonists inhibited the angiogenic activity exerted by rDrm in the chick embryo chorioallantoic membrane. Taken together, the data indicate that the proangiogenic activity of Drm is mediated by the activation of an Ang-1-dependent autocrine loop of stimulation in EC.
Collapse
|