1
|
Targeting IKKβ Activity to Limit Sterile Inflammation in Acetaminophen-Induced Hepatotoxicity in Mice. Pharmaceutics 2023; 15:pharmaceutics15020710. [PMID: 36840032 PMCID: PMC9959252 DOI: 10.3390/pharmaceutics15020710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The kinase activity of inhibitory κB kinase β (IKKβ) acts as a signal transducer in the activating pathway of nuclear factor-κB (NF-κB), a master regulator of inflammation and cell death in the development of numerous hepatocellular injuries. However, the importance of IKKβ activity on acetaminophen (APAP)-induced hepatotoxicity remains to be defined. Here, a derivative of caffeic acid benzylamide (CABA) inhibited the kinase activity of IKKβ, as did IMD-0354 and sulfasalazine which show therapeutic efficacy against inflammatory diseases through a common mechanism: inhibiting IKKβ activity. To understand the importance of IKKβ activity in sterile inflammation during hepatotoxicity, C57BL/6 mice were treated with CABA, IMD-0354, or sulfasalazine after APAP overdose. These small-molecule inhibitors of IKKβ activity protected the APAP-challenged mice from necrotic injury around the centrilobular zone in the liver, and rescued the mice from hepatic damage-associated lethality. From a molecular perspective, IKKβ inhibitors directly interrupted sterile inflammation in the Kupffer cells of APAP-challenged mice, such as damage-associated molecular pattern (DAMP)-induced activation of NF-κB activity via IKKβ, and NF-κB-regulated expression of cytokines and chemokines. However, CABA did not affect the upstream pathogenic events, including oxidative stress with glutathione depletion in hepatocytes after APAP overdose. N-acetyl cysteine (NAC), the only FDA-approved antidote against APAP overdose, replenishes cellular levels of glutathione, but its limited efficacy is concerning in late-presenting patients who have already undergone oxidative stress in the liver. Taken together, we propose a novel hypothesis that chemical inhibition of IKKβ activity in sterile inflammation could mitigate APAP-induced hepatotoxicity in mice, and have the potential to complement NAC treatment in APAP overdoses.
Collapse
|
2
|
Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, Browning JL, Goossens N, Nakagawa S, Gunasekaran G, Schwartz ME, Kobayashi M, Kumada H, Berger M, Pappo O, Rajewsky K, Hoshida Y, Karin M, Heikenwalder M, Ben-Neriah Y, Pikarsky E. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol 2015. [PMID: 26502405 DOI: 10.1038/ni.3290.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ectopic lymphoid-like structures (ELSs) are often observed in cancer, yet their function is obscure. Although ELSs signify good prognosis in certain malignancies, we found that hepatic ELSs indicated poor prognosis for hepatocellular carcinoma (HCC). We studied an HCC mouse model that displayed abundant ELSs and found that they constituted immunopathological microniches wherein malignant hepatocyte progenitor cells appeared and thrived in a complex cellular and cytokine milieu until gaining self-sufficiency. The egress of progenitor cells and tumor formation were associated with the autocrine production of cytokines previously provided by the niche. ELSs developed via cooperation between the innate immune system and adaptive immune system, an event facilitated by activation of the transcription factor NF-κB and abolished by depletion of T cells. Such aberrant immunological foci might represent new targets for cancer therapy.
Collapse
Affiliation(s)
- Shlomi Finkin
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Detian Yuan
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, Munich, Germany
| | - Ilan Stein
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Achim Weber
- Institute of Surgical Pathology, University and University-Hospital Zurich, Zurich, Switzerland
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics, Helmholtz-Zentrum München, Ingolstädter-Landstrasse, Neuherberg, Germany
| | - Jeffrey L Browning
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA.,Division of Gastroenterology &Hepatology Geneva University Hospital, Geneva, Switzerland
| | - Shigeki Nakagawa
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ganesh Gunasekaran
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Myron E Schwartz
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Michael Berger
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Orit Pappo
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, Munich, Germany.,Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Yinon Ben-Neriah
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
4
|
Wu S, Morrison A, Sun H, De Luca F. Nuclear factor-kappaB (NF-kappaB) p65 interacts with Stat5b in growth plate chondrocytes and mediates the effects of growth hormone on chondrogenesis and on the expression of insulin-like growth factor-1 and bone morphogenetic protein-2. J Biol Chem 2011; 286:24726-34. [PMID: 21592969 DOI: 10.1074/jbc.m110.175364] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth hormone (GH) stimulates growth plate chondrogenesis and longitudinal bone growth with its stimulatory effects primarily mediated by insulin-like growth factor-1 (IGF-1) both systemically and locally in the growth plate. It has been shown that the transcription factor Stat5b mediates the GH promoting effect on IGF-1 expression and on chondrogenesis, yet it is not known whether other signaling molecules are activated by GH in growth plate chondrocytes. We have previously demonstrated that nuclear factor-κB p65 is a transcription factor expressed in growth plate chondrocytes where it facilitates chondrogenesis. We have also shown that fibroblasts isolated from a patient with growth failure and a heterozygous mutation of inhibitor-κBα (IκB; component of the nuclear factor-κB (NF-κB) signaling pathway) exhibit GH insensitivity. In this study, we cultured rat metatarsal bones in the presence of GH and/or pyrrolidine dithiocarbamate (PDTC), a known NF-κB inhibitor. The GH-mediated stimulation of metatarsal longitudinal growth and growth plate chondrogenesis was neutralized by PDTC. In cultured chondrocytes isolated from rat metatarsal growth plates, GH induced NF-κB-DNA binding and chondrocyte proliferation and differentiation and prevented chondrocyte apoptosis. The inhibition of NF-κB p65 expression and activity (by NF-κB p65 siRNA and PDTC, respectively) in chondrocytes reversed the GH-mediated effects on chondrocyte proliferation, differentiation, and apoptosis. Lastly, the inhibition of Stat5b expression in chondrocytes prevented the GH promoting effects on NF-κB-DNA binding, whereas the inhibition of NF-κB p65 expression or activity prevented the GH-dependent activation of IGF-1 and bone morphogenetic protein-2 expression.
Collapse
Affiliation(s)
- Shufang Wu
- Section of Endocrinology and Diabetes, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, Pennsylvania 19134, USA
| | | | | | | |
Collapse
|
5
|
Wu S, Walenkamp MJ, Lankester A, Bidlingmaier M, Wit JM, De Luca F. Growth hormone and insulin-like growth factor I insensitivity of fibroblasts isolated from a patient with an I{kappa}B{alpha} mutation. J Clin Endocrinol Metab 2010; 95:1220-8. [PMID: 20080849 DOI: 10.1210/jc.2009-1662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT NF-kappaB is a family of transcription factors involved in cell proliferation, differentiation, and apoptosis. OBJECTIVE We have recently demonstrated that NF-kappaB is expressed in the growth plate and it mediates the growth-promoting effects of IGF-I on chondrogenesis and longitudinal bone growth. Humans with defects of the NF-kappaB pathway exhibit growth failure, which suggests a possible regulatory role for NF-kappaB in statural growth. We have previously reported a child with ectodermal dysplasia, immunodeficiency, and growth retardation, harboring a heterozygous mutation of IkappaBalpha, an essential component of the NF-kappaB pathway. Since he was found with low IGF-l and IGFBP-3, and elevated GH secretion, an IGF-l generation test was carried out: baseline IGF-l was low and only responded to a high dose of GH. Thus, the diagnosis of GH resistance was made. RESULTS To assess the underlying mechanisms of his GH resistance, we cultured the patient's skin fibroblasts with GH and/or IGF-I. While both GH and IGF-l induced cell proliferation and NF-kappaB activity in controls' fibroblasts, they had no effect on the patient's fibroblasts. In the fibroblasts of the patient's father (who displays mosaicism for the IkappaBalpha mutation), GH and IGF-l elicited an attenuated stimulatory effect. In addition, GH stimulated STAT5 phosphorylation and IGF-l mRNA expression in controls ' and the father's fibroblasts, while IGF-l induced PI3K activity and mRNA and protein expression of TDAG51, a target gene for IGF-I. In contrast, none of these effects was elicited by GH or IGF-l in the patient's fibroblasts. CONCLUSION Our findings suggest that this patient's IkappaBalpha mutation caused GH and IGF-l resistance which, in turn, contributed to his growth failure.
Collapse
Affiliation(s)
- Shufang Wu
- St. Christopher's Hospital for Children, 3601 A Street, Philadelphia, Pennsylvania 19134, USA
| | | | | | | | | | | |
Collapse
|
6
|
Papa S, Bubici C, Zazzeroni F, Franzoso G. Mechanisms of liver disease: cross-talk between the NF-kappaB and JNK pathways. Biol Chem 2010; 390:965-76. [PMID: 19642868 DOI: 10.1515/bc.2009.111] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The liver plays a central role in the transformation and degradation of endogenous and exogenous chemicals, and in the removal of unwanted cells such as damaged, genetically mutated and virus-infected cells. Because of this function, the liver is susceptible to toxicity caused by the products generated during these natural occurrences. Hepatocyte death is the major feature of liver injury. In response to liver injury, specific intracellular processes are initiated to maintain liver integrity. Inflammatory cytokines including tumor necrosis factor (TNF)alpha and interleukin-6 (IL-6) are key mediators of these processes and activate different cellular response such as proliferation, survival and death. TNFalpha induces specific signaling pathways in hepatocytes that lead to activation of either pro-survival mediators or effectors of cell death. Whereas activation of transcription factor NF-kappaB promotes survival, c-Jun N-terminal kinases (JNKs) and caspases are strategic effectors of cell death in the TNFalpha-mediated signaling pathway. This review summarizes recent advances in the mechanisms of TNFalpha-induced hepatotoxicity and suggests that NF-kappaB plays a protective role against JNK-induced hepatocyte death. Identification of the mechanisms regulating interplay between the NF-kappaB and JNK pathways is required in the search for novel targets for the treatment of liver disease, including hepatitis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Salvatore Papa
- Department of Immunology, Investigative Science, Imperial College London, London W12 0NN, UK.
| | | | | | | |
Collapse
|
7
|
Abstract
The role of the NF-κB signaling pathway in liver cancer is complex. While some evidence suggests that in the liver, like in many other organ systems, NF-κB is oncogenic, there is strong evidence showing that in certain liver cancer models NF-κB suppresses tumorigenesis. These contrasting findings cannot be dismissed on technicalities and are likely due to the complex nature of the NF-κB response. Similar contrasting findings regarding NF-κB activity are revealed in skin cancer models. Thus, it is possible that the contradictory role of NF-κB in tumorigenesis is a general phenomenon and not an oddity related solely to the liver. Further studies are indicated to decipher the underlying molecular mechanisms. Revealing these mechanisms may facilitate the identification of patient subgroups and specific situations in which NF-κB inhibition will be a preferred therapeutic option. Moreover, it is possible that specific interventions could boost the tumor suppressor functions of NF-κB in tumors that harbor mutations that render this pathway constitutively active.
Collapse
Affiliation(s)
- Shlomi Finkin
- Department of Immunology and Cancer Research and Department of Pathology, IMRIC, Hebrew University Hadassah Medical School, Ein Kerem, 91120, Jerusalem, Israel
| | | |
Collapse
|