1
|
Taha SR, Boulos F. E-cadherin staining in the diagnosis of lobular versus ductal neoplasms of the breast: the emperor has no clothes. Histopathology 2025; 86:327-340. [PMID: 39138705 PMCID: PMC11707503 DOI: 10.1111/his.15295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Categorizing breast neoplasia as ductal or lobular is a daily exercise that relies on a combination of histologic and immunohistochemical tools. The historically robust link between loss of the E-cadherin molecule and lobular neoplasia has rendered staining for E-cadherin by immunohistochemistry a staple of this diagnostic process. Unfortunately, discordances between E-cadherin expression and histomorphology, and variations in E-cadherin staining patterns and intensities abound in clinical practice, but are often neglected in favour of a binary interpretation of the E-cadherin result. In this article, we highlight the complexities of E-cadherin expression through a review of the E-cadherin protein and its associated gene (CDH1), the mechanisms leading to aberrant/absent E-cadherin expression, and the implications of these factors on the reliability of the E-cadherin immunohistochemical stain in the classification of ductal versus lobular mammary neoplasia.
Collapse
MESH Headings
- Female
- Humans
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/diagnosis
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Cadherins/metabolism
- Cadherins/analysis
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Lobular/diagnosis
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Immunohistochemistry
Collapse
Affiliation(s)
- Seyed R Taha
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| | - Fouad Boulos
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
2
|
Downs E, Gulbahce HE. "Lobular lesions of the breast: From the classic to the variants". Semin Diagn Pathol 2024; 41:258-271. [PMID: 39510943 DOI: 10.1053/j.semdp.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024]
Abstract
The aim of this review is to provide the surgical pathologist an overview of lobular lesions, from in situ to invasive carcinoma and the variants, by discussing the epidemiology, clinical characteristics, morphology, immunohistochemistry, known molecular data as well as the treatment recommendations. The recognition of histologic variants of both in situ and invasive lobular carcinoma has expanded the differential diagnosis. Awareness of these different entities is important as treatment recommendations continue to evolve.
Collapse
Affiliation(s)
- Erinn Downs
- Mayo Clinic Arizona Scottsdale, AZ, United States.
| | | |
Collapse
|
3
|
Uchida S, Sugino T. Insights into E-Cadherin Impairment in CDH1-Unaltered Invasive Lobular Carcinoma: A Comprehensive Bioinformatic Study. Int J Mol Sci 2024; 25:8961. [PMID: 39201647 PMCID: PMC11354486 DOI: 10.3390/ijms25168961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Invasive lobular carcinoma exhibits unique morphological features frequently associated with alterations in CDH1. Although some studies have identified abnormalities in adhesion factors other than E-cadherin, the molecular mechanisms underlying E-cadherin abnormalities in CDH1-unaltered invasive lobular carcinoma remain poorly understood. In this study, we investigated the molecular underpinnings of E-cadherin dysregulation in invasive lobular carcinoma in the absence of CDH1 gene alterations, using comprehensive bioinformatic analyses. We conducted a comparative study of CDH1-mutated and non-mutated invasive lobular carcinoma and evaluated the differences in mRNA levels, reverse-phase protein array, methylation, and miRNAs. We observed that invasive lobular carcinoma cases without CDH1 alterations exhibited a significantly higher incidence of the Claudin-low subtype (p < 0.01). The results of the reverse-phase protein array indicate no significant difference in E-cadherin expression between CDH1-mutated and non-mutated cases. Therefore, abnormalities in E-cadherin production also exist in CDH1 non-mutated invasive lobular carcinoma. Considering that there are no differences in mRNA levels and methylation status, post-translational modifications are the most plausible explanation for the same. Hence, future studies should focus on elucidating the mechanism underlying E-cadherin inactivation via post-translational modifications in CDH1 non-mutated invasive lobular carcinoma.
Collapse
Affiliation(s)
- Shiro Uchida
- Division of Diagnostic Pathology, Kikuna Memorial Hospital, 4-4-27, Kikuna, Kohoku-ku, Yokohama 222-0011, Japan
- Division of Pathology, Shizuoka Cancer Center, Shizuoka 411-8777, Japan;
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center, Shizuoka 411-8777, Japan;
| |
Collapse
|
4
|
González-Martínez S, Kajabova VH, Pérez-Mies B, Carretero-Barrio I, Caniego-Casas T, Sarrió D, Moreno-Bueno G, Gión M, Perez-García J, Cortés J, Smolkova B, Palacios J. CDH1 methylation analysis in invasive lobular breast carcinomas with and without gene mutation. Virchows Arch 2024; 485:291-297. [PMID: 38713384 PMCID: PMC11329400 DOI: 10.1007/s00428-024-03814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
The proposed role of CDH1 (E-cadherin gene) methylation as a mechanism of gene inactivation in invasive lobular carcinoma (ILC) remains inconclusive. For many years, CDH1 promoter hypermethylation has been regarded as a mechanism for gene inactivation in ILC. However, this assumption has primarily relied on non-quantitative assays, which have reported CDH1 methylation frequencies ranging from 26 to 93% at CpG sites within the island region. Few studies employing quantitative methods and covering CpG island shores, regions of relatively low CpG density situated proximal to conventional promoter CpGs, have been conducted, revealing lower percentages of methylation ranging from 0 to 51%. Therefore, using the quantitative pyrosequencing method, we examined CDH1 methylation in the island region and shores in E-cadherin deficient ILC cases (15 with CDH1 mutation and 22 non-mutated), 19 cases of invasive breast carcinomas non-special type (IBC-NSTs), and five cases of usual ductal hyperplasia (UDH). Our analysis revealed CDH1 methylation frequencies ranging from 3 to 64%, with no significant increase in methylation levels in any group of ILCs (median = 12%) compared to IBC-NST (median = 15%). In addition, considering the poorly studied association between the number of tumor-infiltrating lymphocytes (TILs) and CDH1 methylation in breast cancer, we undertook a thorough analysis within our dataset. Our findings revealed a positive correlation between CDH1 methylation and the presence of TILs (r = 0.5; p-value < 0.05), shedding light on an aspect of breast cancer biology warranting further investigation. These findings challenge CDH1 methylation as a CDH1 inactivation mechanism in ILC and highlight TILs as a potential confounding factor in gene methylation.
Collapse
Affiliation(s)
- Silvia González-Martínez
- "Contigo Contra el Cáncer de la Mujer" Foundation, 28010, Madrid, Spain
- Molecular Pathology of Cancer Group, Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029, Madrid, Spain
| | - Viera Horvathova Kajabova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 84505, Bratislava, Slovakia
| | - Belén Pérez-Mies
- Molecular Pathology of Cancer Group, Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029, Madrid, Spain
- Department of Pathology, Ramón y Cajal University Hospital, 28034, Madrid, Spain
- Faculty of Medicine, University of Alcalá, 28801, Madrid, Spain
| | - Irene Carretero-Barrio
- Molecular Pathology of Cancer Group, Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029, Madrid, Spain
- Department of Pathology, Ramón y Cajal University Hospital, 28034, Madrid, Spain
- Faculty of Medicine, University of Alcalá, 28801, Madrid, Spain
| | - Tamara Caniego-Casas
- Molecular Pathology of Cancer Group, Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029, Madrid, Spain
| | - David Sarrió
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029, Madrid, Spain
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols', Conexión Cáncer (UAM-CSIC), 28029, Madrid, Spain
| | - Gema Moreno-Bueno
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029, Madrid, Spain
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols', Conexión Cáncer (UAM-CSIC), 28029, Madrid, Spain
- MD Anderson Internacional Foundation, 28033, Madrid, Spain
| | - María Gión
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034, Madrid, Spain
| | - José Perez-García
- "Contigo Contra el Cáncer de la Mujer" Foundation, 28010, Madrid, Spain
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron-salud Group, 08017, Barcelona, Spain
- Medica Scientia Innovation Research, 08007, Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, NJ, 07450, USA
| | - Javier Cortés
- "Contigo Contra el Cáncer de la Mujer" Foundation, 28010, Madrid, Spain
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029, Madrid, Spain
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron-salud Group, 08017, Barcelona, Spain
- Medica Scientia Innovation Research, 08007, Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, NJ, 07450, USA
- Department of Medicine, Faculty of Biomedical and Health Sciences, European University of Madrid, 28670, Madrid, Spain
- IOB Institute of Oncology Madrid, Hospital Beata María Ana, Madrid, Spain
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 84505, Bratislava, Slovakia.
| | - José Palacios
- Molecular Pathology of Cancer Group, Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain.
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029, Madrid, Spain.
- Department of Pathology, Ramón y Cajal University Hospital, 28034, Madrid, Spain.
- Faculty of Medicine, University of Alcalá, 28801, Madrid, Spain.
| |
Collapse
|
5
|
Bücker L, Lehmann U. CDH1 (E-cadherin) Gene Methylation in Human Breast Cancer: Critical Appraisal of a Long and Twisted Story. Cancers (Basel) 2022; 14:cancers14184377. [PMID: 36139537 PMCID: PMC9497067 DOI: 10.3390/cancers14184377] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Genes can be inactivated by specific modifications of DNA bases, most often by adding a methyl group to the DNA base cytosine if it is followed by guanosine (CG methylation). This modification prevents gene expression and has been reported for many different genes in nearly all types of cancer. A prominent example is the gene CDH1, which encodes the cell-adhesion molecule E-cadherin. This is an important player in the spreading of tumor cells within the body (metastasis). Particularly in human breast cancer, many different research groups have studied the inactivation of the CDH1 gene via DNA methylation using various methods. Over the last 20 years, different, in part, even contradicting results have been published for the CDH1 gene in breast cancer. This review summarizes the most important publications and explains the bewildering heterogeneity of results through careful analysis of the methods which have been used. Abstract Epigenetic inactivation of a tumor suppressor gene by aberrant DNA methylation is a well-established defect in human tumor cells, complementing genetic inactivation by mutation (germline or somatic). In human breast cancer, aberrant gene methylation has diagnostic, prognostic, and predictive potential. A prominent example is the hypermethylation of the CDH1 gene, encoding the adhesion protein E-Cadherin (“epithelial cadherin”). In numerous publications, it is reported as frequently affected by gene methylation in human breast cancer. However, over more than two decades of research, contradictory results concerning CDH1 gene methylation in human breast cancer accumulated. Therefore, we review the available evidence for and against the role of DNA methylation of the CDH1 gene in human breast cancer and discuss in detail the methodological reasons for conflicting results, which are of general importance for the analysis of aberrant DNA methylation in human cancer specimens. Since the loss of E-cadherin protein expression is a hallmark of invasive lobular breast cancer (ILBC), special attention is paid to CDH1 gene methylation as a potential mechanism for loss of expression in this special subtype of human breast cancer. Proper understanding of the methodological basis is of utmost importance for the correct interpretation of results supposed to demonstrate the presence and clinical relevance of aberrant DNA methylation in cancer specimens.
Collapse
Affiliation(s)
| | - Ulrich Lehmann
- Correspondence: ; Tel.: +49-(0)511-532-4501; Fax: +49-(0)511-532-5799
| |
Collapse
|
6
|
Yasui H, Kawata T, Muramatsu K, Kakuda Y, Oishi T, Norose T, Notsu A, Nishimura S, Fukuoka J, Sugino T. Expression of N-Terminal-Deficient E-Cadherin Protein in Invasive Lobular Carcinoma of the Breast. Am J Surg Pathol 2022; 46:383-391. [PMID: 34653059 DOI: 10.1097/pas.0000000000001822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Invasive lobular carcinoma (ILC) of the breast is characterized by the discohesive growth of tumor cells, which is mainly associated with the complete loss of E-cadherin (E-cad) expression. However, some aberrant expression patterns of E-cad protein that are inconsistent with their morphologies have been reported in ILC. We report herein ILC cases expressing a new type of abnormal E-cad protein that lacks the N-terminal domain, but conserves the C-terminal domain on the cell membrane. Immunohistochemical staining of 299 ILC cases using specific antibodies against the N-terminal or C-terminal region of E-cad revealed that 227 (76%) cases showed loss of the membranous expression of both terminuses (N-/C-) and 72 (24%) cases showed expression of only the C-terminus (N-/C+). In all cases, the expression of p120-catenin and β-catenin coincided with the expression of the C-terminus of E-cad. Clinicopathologic analysis revealed that N-/C+ expression in ILC cells was significantly associated with the histologic subtype (especially mixed-type ILC with another histologic type) and immunohistochemical molecular subtype (especially the triple-negative subtype), but not with prognostic factors (pT or pN). In addition, 12 of 15 cases (80%) with aberrant cytoplasmic localization of the N-terminal of E-cad showed diffuse membranous expression of the C-terminal domain. Additional immunohistochemistry using an antibody recognizing the extracellular juxtamembrane region showed that 28 (39%) of the N-/C+ cases had lost membranous expression, suggesting diversity in the deletion pattern of the N-terminal region. Our findings provide a novel mechanism for the loss of E-cad function because of N-terminal-deficient E-cad protein in ILC.
Collapse
Affiliation(s)
- Haruna Yasui
- Division of Pathology, Shizuoka Cancer Center, Shizuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takuya Kawata
- Division of Pathology, Shizuoka Cancer Center, Shizuoka
| | | | - Yuko Kakuda
- Division of Pathology, Shizuoka Cancer Center, Shizuoka
| | - Takuma Oishi
- Division of Pathology, Shizuoka Cancer Center, Shizuoka
| | - Tomoko Norose
- Division of Pathology, Shizuoka Cancer Center, Shizuoka
| | - Akifumi Notsu
- Department of Biostatistics, Clinical Research Center
| | | | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | |
Collapse
|
7
|
Chiang CC, Lin GL, Yang SY, Tu CW, Huang WL, Wei CF, Wang FC, Lin PJ, Huang WH, Chuang YM, Lee YT, Yeh CC, Chan M, Hsu YC. PCDHB15 as a potential tumor suppressor and epigenetic biomarker for breast cancer. Oncol Lett 2022; 23:117. [PMID: 35261631 PMCID: PMC8855166 DOI: 10.3892/ol.2022.13237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/07/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is among the most frequently diagnosed cancer types and the leading cause of cancer-related death in women. The mortality rate of patients with breast cancer is currently increasing, perhaps due to a lack of early screening tools. In the present study, using The Cancer Genome Atlas (TCGA) breast cancer dataset (n=883), it was determined that methylation of the protocadherin β15 (PCDHB15) promoter was higher in breast cancer samples than that in normal tissues. A negative association between promoter methylation and expression of PCDHB15 was observed in the TCGA dataset and breast cancer cell lines. In TCGA cohort, lower PCDHB15 expression was associated with shorter relapse-free survival times. Treatment with the DNA methyltransferase inhibitor restored PCDHB15 expression in a breast cancer cell line; however, overexpression of PCDHB15 was shown to suppress colony formation. PCDHB15 methylation detected in circulating cell-free DNA (cfDNA) isolated from serum samples was higher in patients with breast cancer (40.8%) compared with that in patients with benign tumors (22.4%). PCDHB15 methylation was not correlated with any clinical parameters. Taken together, PCDHB15 is a potential tumor suppressor in cases of breast cancer, which can be epigenetically silenced via promoter methylation. PCDHB15 methylation using cfDNA is a novel minimally invasive epigenetic biomarker for the diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Ching-Chung Chiang
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Guan-Ling Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Shu-Yi Yang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Chi-Wen Tu
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Wen-Long Huang
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan, R.O.C
| | - Chun-Feng Wei
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Feng-Chi Wang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Pin-Ju Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Wan-Hong Huang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Ming Chuang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Ting Lee
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Chia-Chou Yeh
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan, R.O.C
| | - Michael Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Chen Hsu
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| |
Collapse
|
8
|
Lobular Breast Cancer: Histomorphology and Different Concepts of a Special Spectrum of Tumors. Cancers (Basel) 2021; 13:cancers13153695. [PMID: 34359596 PMCID: PMC8345067 DOI: 10.3390/cancers13153695] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Invasive lobular breast cancer (ILC) is a special type of breast cancer (BC) that was first described in 1941. The diagnosis of ILC is made by microscopy of tumor specimens, which reveals a distinct morphology. This review recapitulates the developments in the microscopic assessment of ILC from 1941 until today. We discuss different concepts of ILC, provide an overview on ILC variants, and highlight advances which have contributed to a better understanding of ILC as a special histologic spectrum of tumors. Abstract Invasive lobular breast cancer (ILC) is the most common special histological type of breast cancer (BC). This review recapitulates developments in the histomorphologic assessment of ILC from its beginnings with the seminal work of Foote and Stewart, which was published in 1941, until today. We discuss different concepts of ILC and their implications. These concepts include (i) BC arising from mammary lobules, (ii) BC growing in dissociated cells and single files, and (iii) BC defined as a morpho-molecular spectrum of tumors with distinct histological and molecular characteristics related to impaired cell adhesion. This review also provides a comprehensive overview of ILC variants, their histomorphology, and differential diagnosis. Furthermore, this review highlights recent advances which have contributed to a better understanding of the histomorphology of ILC, such as the role of the basal lamina component laminin, the molecular specificities of triple-negative ILC, and E-cadherin to P-cadherin expression switching as the molecular determinant of tubular elements in CDH1-deficient ILC. Last but not least, we provide a detailed account of the tumor microenvironment in ILC, including tumor infiltrating lymphocyte (TIL) levels, which are comparatively low in ILC compared to other BCs, but correlate with clinical outcome. The distinct histomorphology of ILC clearly reflects a special tumor biology. In the clinic, special treatment strategies have been established for triple-negative, HER2-positive, and ER-positive BC. Treatment specialization for patients diagnosed with ILC is just in its beginnings. Accordingly, ILC deserves greater attention as a special tumor entity in BC diagnostics, patient care, and cancer research.
Collapse
|
9
|
Suman M, Dugué PA, Wong EM, Joo JE, Hopper JL, Nguyen-Dumont T, Giles GG, Milne RL, McLean C, Southey MC. Association of variably methylated tumour DNA regions with overall survival for invasive lobular breast cancer. Clin Epigenetics 2021; 13:11. [PMID: 33461604 PMCID: PMC7814464 DOI: 10.1186/s13148-020-00975-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background Tumour DNA methylation profiling has shown potential to refine disease subtyping and improve the diagnosis and prognosis prediction of breast cancer. However, limited data exist regarding invasive lobular breast cancer (ILBC). Here, we investigated the genome-wide variability of DNA methylation levels across ILBC tumours and assessed the association between methylation levels at the variably methylated regions and overall survival in women with ILBC. Methods Tumour-enriched DNA was prepared by macrodissecting formalin-fixed paraffin embedded (FFPE) tumour tissue from 130 ILBCs diagnosed in the participants of the Melbourne Collaborative Cohort Study (MCCS). Genome-wide tumour DNA methylation was measured using the HumanMethylation 450K (HM450K) BeadChip array. Variably methylated regions (VMRs) were identified using the DMRcate package in R. Cox proportional hazards regression models were used to assess the association between methylation levels at the ten most significant VMRs and overall survival. Gene set enrichment analyses were undertaken using the web-based tool Metaspace. Replication of the VMR and survival analysis findings was examined using data retrieved from The Cancer Genome Atlas (TCGA) for 168 ILBC cases. We also examined the correlation between methylation and gene expression for the ten VMRs of interest using TCGA data. Results We identified 2771 VMRs (P < 10−8) in ILBC tumours. The ten most variably methylated clusters were predominantly located in the promoter region of the genes: ISM1, APC, TMEM101, ASCL2, NKX6, HIST3H2A/HIST3H2BB, HCG4P3, HES5, CELF2 and EFCAB4B. Higher methylation level at several of these VMRs showed an association with reduced overall survival in the MCCS. In TCGA, all associations were in the same direction, however stronger than in the MCCS. The pooled analysis of the MCCS and TCGA data showed that methylation at four of the ten genes was associated with reduced overall survival, independently of age and tumour stage; APC: Hazard Ratio (95% Confidence interval) per one-unit M-value increase: 1.18 (1.02–1.36), TMEM101: 1.23 (1.02–1.48), HCG4P3: 1.37 (1.05–1.79) and CELF2: 1.21 (1.02–1.43). A negative correlation was observed between methylation and gene expression for CELF2 (R = − 0.25, P = 0.001), but not for TMEM101 and APC. Conclusions Our study identified regions showing greatest variability across the ILBC tumour genome and found methylation at several genes to potentially serve as a biomarker of survival for women with ILBC.
Collapse
Affiliation(s)
- Medha Suman
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ee Ming Wong
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - JiHoon Eric Joo
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - John L Hopper
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Tu Nguyen-Dumont
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Catriona McLean
- Anatomical Pathology, Alfred Health, The Alfred Hospital, Melbourne, VIC, 3181, Australia
| | - Melissa C Southey
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia. .,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia. .,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
10
|
|
11
|
Luo W, Fedda F, Lynch P, Tan D. CDH1 Gene and Hereditary Diffuse Gastric Cancer Syndrome: Molecular and Histological Alterations and Implications for Diagnosis And Treatment. Front Pharmacol 2018; 9:1421. [PMID: 30568591 PMCID: PMC6290068 DOI: 10.3389/fphar.2018.01421] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer, a group of common malignancies, results in the most cancer mortality worldwide after only lung and colorectal cancer. Although familial gastric cancers have long been recognized, it was not until recently that they were discovered to be associated with mutations of specific genes. Mutations of CDH1, the gene encoding E-cadherin, are the most common germline mutations detected in gastric cancer and underlie hereditary diffuse gastric cancer (HDGC) syndrome. All reported HDGCs are the pure diffuse type by Lauren classification and are associated with dismal prognosis once the tumor invades the submucosa. Because CDH1 germline mutations are inherited in an autosomal-dominant fashion and have high penetrance, the International Gastric Cancer Linkage Consortium (IGCLC) developed criteria to facilitate the screening of CDH1 mutation carriers; these criteria have been proven to have excellent sensitivity and specificity. Recent histologic studies suggest that HDGC progresses through several stages. Even when the tumor becomes "invasive" in lamina propria, it may stay indolent for a long time. However, the molecular mechanisms that induce the transitions between stages and determine the length of the indolent phase remain to be determined. Although the standard management for CDH1 mutation carriers is prophylactic total gastrectomy, many questions must be answered before the surgery can be done. These include the optimal surveillance strategy, the best strategy to choose surgical candidates, and the ideal time to perform surgery. In addition to increasing the risk of gastric cancer, CDH1 germline mutations also increase the risk of invasive lobular carcinoma of the breast, and possibly colorectal adenocarcinoma, and are associated with blepharocheilodontic syndrome (a congenital development disorder). However, the optimal management of these conditions is less established owing to insufficient data regarding the risk of cancer development. This review focuses on molecular and histological findings in HDGC, as opposed to sporadic diffuse gastric cancer, and their implications for the management of CDH1 mutation carriers and the diagnosis and treatment of HDGC. Other conditions associated with CDH1 germline mutations and future research directions are also discussed.
Collapse
Affiliation(s)
- Wenyi Luo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Faysal Fedda
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Patrick Lynch
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dongfeng Tan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
12
|
Croes L, de Beeck KO, Pauwels P, Vanden Berghe W, Peeters M, Fransen E, Van Camp G. DFNA5 promoter methylation a marker for breast tumorigenesis. Oncotarget 2018; 8:31948-31958. [PMID: 28404884 PMCID: PMC5458261 DOI: 10.18632/oncotarget.16654] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/16/2017] [Indexed: 12/28/2022] Open
Abstract
Background Identification of methylation markers that are sensitive and specific for breast cancer may improve early detection. We hypothesize that DFNA5 promoter methylation can be a valuable epigenetic biomarker, based upon strong indications for its role as tumor suppressor gene and its function in regulated cell death. Results Statistically different levels of methylation were seen, with always very low levels in healthy breast reduction samples, very high levels in part of the adenocarcinoma samples and slightly increased levels in part of the normal tissue samples adjacent the tumor. One of the CpGs (CpG4) showed the best differentiation. A ROC curve for DFNA5 CpG4 methylation showed a sensitivity of 61.8% for the detection of breast cancer with a specificity of 100%. Materials and Methods We performed methylation analysis on four CpGs in the DFNA5 promoter region by bisulfite pyrosequencing on 123 primary breast adenocarcinomas and 24 healthy breast reductions. For 16 primary tumors, corresponding histological normal tissue adjacent to the tumor was available. Conclusions We conclude that DFNA5 methylation shows strong potential as a biomarker for detection of breast cancer. Slightly increased methylation in histologically normal breast tissue surrounding the tumor suggests that it may be a good early detection marker.
Collapse
Affiliation(s)
- Lieselot Croes
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem B-2650, Belgium.,Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Edegem B-2650, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem B-2650, Belgium.,Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Edegem B-2650, Belgium
| | - Patrick Pauwels
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Edegem B-2650, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Antwerp B-2610, Belgium
| | - Marc Peeters
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Edegem B-2650, Belgium
| | - Erik Fransen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem B-2650, Belgium.,StatUa Center for Statistics, University of Antwerp, Antwerp B-2000, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem B-2650, Belgium
| |
Collapse
|
13
|
Aberrantly Methylated DNA as a Biomarker in Breast Cancer. Int J Biol Markers 2018; 28:141-50. [DOI: 10.5301/jbm.5000009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 11/20/2022]
Abstract
Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients into subgroups based on DNA biomarkers may improve prognosis. Serial monitoring of DNA-methylation markers in blood during treatment may be useful, particularly when the cancer burden is below the detection level for standard imaging techniques. Overall, aberrant DNA methylation has a great potential as a versatile biomarker tool for screening, diagnosis, prognosis and monitoring of breast cancer. Standardization of methods and biomarker panels will be required to fully exploit this clinical potential.
Collapse
|
14
|
Molecular profile of atypical hyperplasia of the breast. Breast Cancer Res Treat 2017; 167:9-29. [DOI: 10.1007/s10549-017-4488-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
|
15
|
Trapani D, Esposito A, Criscitiello C, Mazzarella L, Locatelli M, Minchella I, Minucci S, Curigliano G. Entinostat for the treatment of breast cancer. Expert Opin Investig Drugs 2017; 26:965-971. [DOI: 10.1080/13543784.2017.1353077] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dario Trapani
- Division of Early Drug Development, European Institute of Oncology, Milan, Italy
| | - Angela Esposito
- Division of Early Drug Development, European Institute of Oncology, Milan, Italy
| | - Carmen Criscitiello
- Division of Early Drug Development, European Institute of Oncology, Milan, Italy
| | - Luca Mazzarella
- Division of Early Drug Development, European Institute of Oncology, Milan, Italy
| | - Marzia Locatelli
- Division of Early Drug Development, European Institute of Oncology, Milan, Italy
| | - Ida Minchella
- Division of Early Drug Development, European Institute of Oncology, Milan, Italy
| | - Saverio Minucci
- Division of Early Drug Development, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development, European Institute of Oncology, Milan, Italy
| |
Collapse
|
16
|
Danforth DN. Genomic Changes in Normal Breast Tissue in Women at Normal Risk or at High Risk for Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 10:109-46. [PMID: 27559297 PMCID: PMC4990153 DOI: 10.4137/bcbcr.s39384] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 12/12/2022]
Abstract
Sporadic breast cancer develops through the accumulation of molecular abnormalities in normal breast tissue, resulting from exposure to estrogens and other carcinogens beginning at adolescence and continuing throughout life. These molecular changes may take a variety of forms, including numerical and structural chromosomal abnormalities, epigenetic changes, and gene expression alterations. To characterize these abnormalities, a review of the literature has been conducted to define the molecular changes in each of the above major genomic categories in normal breast tissue considered to be either at normal risk or at high risk for sporadic breast cancer. This review indicates that normal risk breast tissues (such as reduction mammoplasty) contain evidence of early breast carcinogenesis including loss of heterozygosity, DNA methylation of tumor suppressor and other genes, and telomere shortening. In normal tissues at high risk for breast cancer (such as normal breast tissue adjacent to breast cancer or the contralateral breast), these changes persist, and are increased and accompanied by aneuploidy, increased genomic instability, a wide range of gene expression differences, development of large cancerized fields, and increased proliferation. These changes are consistent with early and long-standing exposure to carcinogens, especially estrogens. A model for the breast carcinogenic pathway in normal risk and high-risk breast tissues is proposed. These findings should clarify our understanding of breast carcinogenesis in normal breast tissue and promote development of improved methods for risk assessment and breast cancer prevention in women.
Collapse
Affiliation(s)
- David N Danforth
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Christgen M, Steinemann D, Kühnle E, Länger F, Gluz O, Harbeck N, Kreipe H. Lobular breast cancer: Clinical, molecular and morphological characteristics. Pathol Res Pract 2016; 212:583-97. [DOI: 10.1016/j.prp.2016.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 01/20/2023]
|
18
|
Naghitorabi M, Mohammadi-Asl J, Sadeghi HMM, Rabbani M, Jafarian-Dehkordi A, Javanmard SH. Quantitation of CDH1 promoter methylation in formalin-fixed paraffin-embedded tissues of breast cancer patients using differential high resolution melting analysis. Adv Biomed Res 2016; 5:91. [PMID: 27308263 PMCID: PMC4908786 DOI: 10.4103/2277-9175.183139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/12/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND E-cadherin (CDH1) plays an important role in cell-cell adhesion of epithelial tissues. Loss of E-cadherin expression can lead to loss of tissue integrity, metastasis, and cancer progression. Also loss of E-cadherin expression might be related to aberrant promoter methylation of the CDH1 gene. Many studies have been performed on CDH1 promoter methylation, especially in breast cancer. Although most of the studies have used qualitative methods for methylation analysis, this study is designed to quantitatively investigate CDH1 promoter methylation in breast cancer and its correlation with patients' clinicopathological features. MATERIALS AND METHODS Using differential high resolution melting analysis (D-HRMA), the methylation level of the CDH1 gene promoter was quantified in 98 breast cancer formalin-fixed paraffin-embedded (FFPE) tissues and also 10 fresh frozen normal breast tissues. RESULTS All samples were detected to be methylated at the CDH1 promoter region. About 74.5% of the breast cancer samples were hypermethylated with an average methylation level of around 60%, while 25.5% of the patients were methylated with the mean methylation level of about 33%, and 90% of the normal samples had a mean methylation level of about 18%. Statistical analyses represented a significant correlation between CDH1 promoter methylation and cancer progression hallmarks, such as, clinical stage, nodal involvement, tumor size, and histological grade. CONCLUSION In summary, quantitation of CDH1 promoter methylation can serve as a diagnostic and prognostic tool in breast cancer. Also D-HRMA can be used as a fast and reliable method for quantitation of promoter methylation.
Collapse
Affiliation(s)
- Mojgan Naghitorabi
- Department of Pharmaceutical Biotechnology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Mohammadi-Asl
- Cancer, Petroleum and Environmental Pollutants Research Centre, Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran
| | | | - Mohammad Rabbani
- Department of Pharmaceutical Biotechnology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Jafarian-Dehkordi
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
19
|
Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C, Bowlby R, Shen H, Hayat S, Fieldhouse R, Lester SC, Tse GMK, Factor RE, Collins LC, Allison KH, Chen YY, Jensen K, Johnson NB, Oesterreich S, Mills GB, Cherniack AD, Robertson G, Benz C, Sander C, Laird PW, Hoadley KA, King TA, Perou CM. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell 2016; 163:506-19. [PMID: 26451490 DOI: 10.1016/j.cell.2015.09.033] [Citation(s) in RCA: 1381] [Impact Index Per Article: 153.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/04/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023]
Abstract
Invasive lobular carcinoma (ILC) is the second most prevalent histologic subtype of invasive breast cancer. Here, we comprehensively profiled 817 breast tumors, including 127 ILC, 490 ductal (IDC), and 88 mixed IDC/ILC. Besides E-cadherin loss, the best known ILC genetic hallmark, we identified mutations targeting PTEN, TBX3, and FOXA1 as ILC enriched features. PTEN loss associated with increased AKT phosphorylation, which was highest in ILC among all breast cancer subtypes. Spatially clustered FOXA1 mutations correlated with increased FOXA1 expression and activity. Conversely, GATA3 mutations and high expression characterized luminal A IDC, suggesting differential modulation of ER activity in ILC and IDC. Proliferation and immune-related signatures determined three ILC transcriptional subtypes associated with survival differences. Mixed IDC/ILC cases were molecularly classified as ILC-like and IDC-like revealing no true hybrid features. This multidimensional molecular atlas sheds new light on the genetic bases of ILC and provides potential clinical options.
Collapse
Affiliation(s)
- Giovanni Ciriello
- Department of Medical Genetics, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michael L Gatza
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Andrew H Beck
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Matthew D Wilkerson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Suhn K Rhie
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Alessandro Pastore
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hailei Zhang
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michael McLellan
- The Genome Institute, Washington University School of Medicine, MO, 63108, USA
| | - Christina Yau
- Buck Institute For Research on Aging, Novato, CA, 94945, USA
| | - Cyriac Kandoth
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Reanne Bowlby
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z4S6, Canada
| | - Hui Shen
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Sikander Hayat
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Robert Fieldhouse
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Susan C Lester
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Rachel E Factor
- Department of Pathology, School of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Laura C Collins
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Kimberly H Allison
- Department of Pathology, School of Medicine, Stanford University Medical Center, Stanford University, Stanford, CA, USA
| | - Yunn-Yi Chen
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| | - Kristin Jensen
- Department of Pathology, School of Medicine, Stanford University Medical Center, Stanford University, Stanford, CA, USA; VA Palo Alto Healthcare System, Palo Alto, 94304, CA, USA
| | - Nicole B Johnson
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15232, USA
| | - Gordon B Mills
- MD Anderson Cancer Center, The University of Texas, Houston, TX, 77230, USA
| | - Andrew D Cherniack
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z4S6, Canada
| | | | - Chris Sander
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Peter W Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tari A King
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
20
|
Huang R, Ding P, Yang F. Clinicopathological significance and potential drug target of CDH1 in breast cancer: a meta-analysis and literature review. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5277-85. [PMID: 26425077 PMCID: PMC4583122 DOI: 10.2147/dddt.s86929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CDH1, as a tumor suppressor gene, contributes sporadic breast cancer (BC) progression. However, the association between CDH1 hypermethylation and BC, and its clinicopathological significance remains unclear. We conducted a meta-analysis to investigate the relationship between the CDH1 methylation profile and the major clinicopathological features. A detailed literature was searched through the electronic databases PubMed, Web of Science™, and EMBASE™ for related research publications. The data were extracted and assessed by two reviewers independently. Odds ratios (ORs) with corresponding confidence intervals (CIs) were calculated and summarized respectively. The frequency of CDH1 methylation was significantly higher in invasive ductal carcinoma than in normal breast tissues (OR =5.83, 95% CI 3.76-9.03, P<0.00001). CDH1 hypermethylation was significantly higher in estrogen receptor (ER)-negative BC than in ER-positive BC (OR =0.62, 95% CI 0.43-0.87, P=0.007). In addition, we found that the CDH1 was significantly methylated in HER2-negative BC than in HER2-positive BC (OR =0.26, 95% CI 0.15-0.44, P<0.00001). However, CDH1 methylation frequency was not associated with progesterone receptor (PR) status, or with grades, stages, or lymph node metastasis of BC patients. Our results indicate that CDH1 hypermethylation is a potential novel drug target for developing personalized therapy. CDH1 hypermethylation is strongly associated with ER-negative and HER2-negative BC, respectively, suggesting CDH1 methylation status could contribute to the development of novel therapeutic approaches for the treatment of ER-negative or HER2-negative BC with aggressive tumor biology.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, School of Public Health, Central South University, Changsha, Hunan, People's Republic of China
| | - Ping Ding
- Department of Occupational and Environmental Health, School of Public Health, Central South University, Changsha, Hunan, People's Republic of China
| | - Fei Yang
- Department of Occupational and Environmental Health, School of Public Health, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
21
|
Fridrichova I, Smolkova B, Kajabova V, Zmetakova I, Krivulcik T, Mego M, Cierna Z, Karaba M, Benca J, Pindak D, Bohac M, Repiska V, Danihel L. CXCL12 and ADAM23 hypermethylation are associated with advanced breast cancers. Transl Res 2015; 165:717-30. [PMID: 25620615 DOI: 10.1016/j.trsl.2014.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 12/31/2022]
Abstract
More than 25% of the patients with breast cancer (BC) develop metastatic disease. In the present study, we investigated the relationship between DNA methylation levels in genes regulating cell growth, invasiveness, and metastasis and advanced BCs and evaluated the clinical utility of methylation profiles for detecting metastatic potential. Pyrosequencing was used to quantify methylation levels in 11 cancer-associated genes in primary tumors (PTs), lymph node metastases (LNMs), plasma (PL), and blood cells from 206 patients with invasive BC. Protein expression was evaluated using immunohistochemistry. PTs showed hypermethylation of A isoform of the RAS-association domain family 1 (RASSF1A), adenomatous polyposis coli (APC), chemokine C-X-C motif ligand 12 (CXCL12), and disintegrin and metalloprotease domain 23 (ADAM23) (means 38.98%, 24.84%, 12.04%, and 10.01%, respectively). Positive correlations were identified between methylations in PTs and LNMs, but not between PL and PTs. The cumulative methylation of PTs and LNMs manifested similar spectrums of methylated genes that indicate the maintaining of aberrant methylation during breast tumorigenesis. Significantly increased methylation levels in RASSF1A, APC, CXCL12, and ADAM23 were found in estrogen receptor (ER) positive BCs in comparison with ER negative cases. Regarding these results, the evaluation of DNA methylation could be more informative in testing of patients with ER positive BC. The risk for LNMs development and higher proliferation of cancer cells measured through Ki-67 expression was increased by hypermethylation of CXCL12 and ADAM23, respectively. Therefore, the quantification of CXCL12 and ADAM23 methylation could be useful for the prediction of advanced stage of BC.
Collapse
Affiliation(s)
- Ivana Fridrichova
- Department of Genetics, Cancer Research Institute of SAS, Bratislava, Slovak Republic.
| | - Bozena Smolkova
- Department of Genetics, Cancer Research Institute of SAS, Bratislava, Slovak Republic
| | - Viera Kajabova
- Department of Genetics, Cancer Research Institute of SAS, Bratislava, Slovak Republic
| | - Iveta Zmetakova
- Department of Genetics, Cancer Research Institute of SAS, Bratislava, Slovak Republic
| | - Tomas Krivulcik
- Department of Genetics, Cancer Research Institute of SAS, Bratislava, Slovak Republic
| | - Michal Mego
- Faculty of Medicine, Second Department of Oncology, Comenius University, National Cancer Institute, Bratislava, Slovak Republic
| | - Zuzana Cierna
- Faculty of Medicine, Institute of Pathological Anatomy, Comenius University, University Hospital, Bratislava, Slovak Republic
| | - Marian Karaba
- Department of Surgical Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Juraj Benca
- Department of Surgical Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Daniel Pindak
- Department of Surgical Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Martin Bohac
- Department of Plastic, Aesthetic and Reconstructive Surgery, University Hospital, Bratislava, Slovak Republic
| | - Vanda Repiska
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, Comenius University, University Hospital, Bratislava, Slovak Republic
| | - Ludovit Danihel
- Faculty of Medicine, Institute of Pathological Anatomy, Comenius University, University Hospital, Bratislava, Slovak Republic; Pathological-Anatomical Workplace, Health Care Surveillance Authority, Bratislava, Slovak Republic
| |
Collapse
|
22
|
Telford BJ, Chen A, Beetham H, Frick J, Brew TP, Gould CM, Single A, Godwin T, Simpson KJ, Guilford P. Synthetic Lethal Screens Identify Vulnerabilities in GPCR Signaling and Cytoskeletal Organization in E-Cadherin–Deficient Cells. Mol Cancer Ther 2015; 14:1213-23. [DOI: 10.1158/1535-7163.mct-14-1092] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/06/2015] [Indexed: 11/16/2022]
|
23
|
McCart Reed AE, Kutasovic JR, Lakhani SR, Simpson PT. Invasive lobular carcinoma of the breast: morphology, biomarkers and 'omics. Breast Cancer Res 2015; 17:12. [PMID: 25849106 PMCID: PMC4310190 DOI: 10.1186/s13058-015-0519-x] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Invasive lobular carcinoma of the breast is the most common 'special' morphological subtype of breast cancer, comprising up to 15% of all cases. Tumours are generally of a good prognostic phenotype, being low histological grade and low mitotic index, hormone receptor positive and HER2, p53 and basal marker negative, and with a generally good response to endocrine therapy. Despite this, clinicians face countless challenges in the diagnosis and long-term management of patients, as they encounter a tumour that can be difficult to detect through screening, elicits a very invasive nature, a propensity for widespread metastatic colonisation and, consequently, in some studies a worse long-term poor outcome compared with invasive carcinoma of no special type. Here we review the morphological and molecular features that underpin the disparate biological and clinical characteristics of this fascinating tumour type.
Collapse
|
24
|
New Therapeutic Approaches for Invasive Lobular Carcinoma. CURRENT BREAST CANCER REPORTS 2014. [DOI: 10.1007/s12609-014-0158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Chen A, Beetham H, Black MA, Priya R, Telford BJ, Guest J, Wiggins GAR, Godwin TD, Yap AS, Guilford PJ. E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition. BMC Cancer 2014. [PMID: 25079037 DOI: 10.1186/1471-2407-14-552%2010.1186/1471-2407-14-552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND E-cadherin is an adherens junction protein that forms homophilic intercellular contacts in epithelial cells while also interacting with the intracellular cytoskeletal networks. It has roles including establishment and maintenance of cell polarity, differentiation, migration and signalling in cell proliferation pathways. Its downregulation is commonly observed in epithelial tumours and is a hallmark of the epithelial to mesenchymal transition (EMT). METHODS To improve our understanding of how E-cadherin loss contributes to tumorigenicity, we investigated the impact of its elimination from the non-tumorigenic breast cell line MCF10A. We performed cell-based assays and whole genome RNAseq to characterize an isogenic MCF10A cell line that is devoid of CDH1 expression due to an engineered homozygous 4 bp deletion in CDH1 exon 11. RESULTS The E-cadherin-deficient line, MCF10A CDH1-/- showed subtle morphological changes, weaker cell-substrate adhesion, delayed migration, but retained cell-cell contact, contact growth inhibition and anchorage-dependent growth. Within the cytoskeleton, the apical microtubule network in the CDH1-deficient cells lacked the radial pattern of organization present in the MCF10A cells and F-actin formed thicker, more numerous stress fibres in the basal part of the cell. Whole genome RNAseq identified compensatory changes in the genes involved in cell-cell adhesion while genes involved in cell-substrate adhesion, notably ITGA1, COL8A1, COL4A2 and COL12A1, were significantly downregulated. Key EMT markers including CDH2, FN1, VIM and VTN were not upregulated although increased expression of proteolytic matrix metalloprotease and kallikrein genes was observed. CONCLUSIONS Overall, our results demonstrated that E-cadherin loss alone was insufficient to induce an EMT or enhance transforming potential in the non-tumorigenic MCF10A cells but was associated with broad transcriptional changes associated with tissue remodelling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Parry J Guilford
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
26
|
Chen A, Beetham H, Black MA, Priya R, Telford BJ, Guest J, Wiggins GAR, Godwin TD, Yap AS, Guilford PJ. E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition. BMC Cancer 2014; 14:552. [PMID: 25079037 PMCID: PMC4131020 DOI: 10.1186/1471-2407-14-552] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/15/2014] [Indexed: 01/06/2023] Open
Abstract
Background E-cadherin is an adherens junction protein that forms homophilic intercellular contacts in epithelial cells while also interacting with the intracellular cytoskeletal networks. It has roles including establishment and maintenance of cell polarity, differentiation, migration and signalling in cell proliferation pathways. Its downregulation is commonly observed in epithelial tumours and is a hallmark of the epithelial to mesenchymal transition (EMT). Methods To improve our understanding of how E-cadherin loss contributes to tumorigenicity, we investigated the impact of its elimination from the non-tumorigenic breast cell line MCF10A. We performed cell-based assays and whole genome RNAseq to characterize an isogenic MCF10A cell line that is devoid of CDH1 expression due to an engineered homozygous 4 bp deletion in CDH1 exon 11. Results The E-cadherin-deficient line, MCF10A CDH1-/- showed subtle morphological changes, weaker cell-substrate adhesion, delayed migration, but retained cell-cell contact, contact growth inhibition and anchorage-dependent growth. Within the cytoskeleton, the apical microtubule network in the CDH1-deficient cells lacked the radial pattern of organization present in the MCF10A cells and F-actin formed thicker, more numerous stress fibres in the basal part of the cell. Whole genome RNAseq identified compensatory changes in the genes involved in cell-cell adhesion while genes involved in cell-substrate adhesion, notably ITGA1, COL8A1, COL4A2 and COL12A1, were significantly downregulated. Key EMT markers including CDH2, FN1, VIM and VTN were not upregulated although increased expression of proteolytic matrix metalloprotease and kallikrein genes was observed. Conclusions Overall, our results demonstrated that E-cadherin loss alone was insufficient to induce an EMT or enhance transforming potential in the non-tumorigenic MCF10A cells but was associated with broad transcriptional changes associated with tissue remodelling. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-552) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Parry J Guilford
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
27
|
Chen A, Beetham H, Black MA, Priya R, Telford BJ, Guest J, Wiggins GAR, Godwin TD, Yap AS, Guilford PJ. E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition. BMC Cancer 2014. [PMID: 25079037 PMCID: PMC4131020 DOI: 10.1186/1471-2407-14-552 10.1186/1471-2407-14-552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND E-cadherin is an adherens junction protein that forms homophilic intercellular contacts in epithelial cells while also interacting with the intracellular cytoskeletal networks. It has roles including establishment and maintenance of cell polarity, differentiation, migration and signalling in cell proliferation pathways. Its downregulation is commonly observed in epithelial tumours and is a hallmark of the epithelial to mesenchymal transition (EMT). METHODS To improve our understanding of how E-cadherin loss contributes to tumorigenicity, we investigated the impact of its elimination from the non-tumorigenic breast cell line MCF10A. We performed cell-based assays and whole genome RNAseq to characterize an isogenic MCF10A cell line that is devoid of CDH1 expression due to an engineered homozygous 4 bp deletion in CDH1 exon 11. RESULTS The E-cadherin-deficient line, MCF10A CDH1-/- showed subtle morphological changes, weaker cell-substrate adhesion, delayed migration, but retained cell-cell contact, contact growth inhibition and anchorage-dependent growth. Within the cytoskeleton, the apical microtubule network in the CDH1-deficient cells lacked the radial pattern of organization present in the MCF10A cells and F-actin formed thicker, more numerous stress fibres in the basal part of the cell. Whole genome RNAseq identified compensatory changes in the genes involved in cell-cell adhesion while genes involved in cell-substrate adhesion, notably ITGA1, COL8A1, COL4A2 and COL12A1, were significantly downregulated. Key EMT markers including CDH2, FN1, VIM and VTN were not upregulated although increased expression of proteolytic matrix metalloprotease and kallikrein genes was observed. CONCLUSIONS Overall, our results demonstrated that E-cadherin loss alone was insufficient to induce an EMT or enhance transforming potential in the non-tumorigenic MCF10A cells but was associated with broad transcriptional changes associated with tissue remodelling.
Collapse
Affiliation(s)
- Augustine Chen
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Henry Beetham
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Michael A Black
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Rashmi Priya
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane 4072 Australia
| | - Bryony J Telford
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Joanne Guest
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - George A R Wiggins
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Tanis D Godwin
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Alpha S Yap
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane 4072 Australia
| | - Parry J Guilford
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| |
Collapse
|
28
|
Gu X, Xue JQ, Zhu X, Ye MS, Zhang WH. Aberrant promoter methylation of the CHD1 gene may contribute to the pathogenesis of breast cancer: a meta-analysis. Tumour Biol 2014; 35:9395-404. [PMID: 24952891 DOI: 10.1007/s13277-014-2235-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/12/2014] [Indexed: 12/28/2022] Open
Abstract
Cadherin-1 (CHD1), as an invasion suppressor gene, could suppress tumor cell invasion and metastasis in various tumors, but reduced CHD1 levels, resulting from epigenetic silencing, are common in poorly differentiated, advanced stage carcinomas. This meta-analysis was performed to evaluate the relationships between promoter methylation of CHD1 and breast cancer. Relevant studies were retrieved from the Web of Science (1945 ~ 2013), the Cochrane Library (Issue 12, 2013), PubMed (1966 ~ 2013), EMBASE (1980 ~ 2013), CINAHL (1982 ~ 2013), and the Chinese Biomedical Database (CBM) (1982 ~ 2013) using a systematic literature search. Results were summarized by meta-analyses, conducted using the STATA software (version 12.0, Stata Corporation, College Station, TX, USA). Odds ratios (ORs) and 95 % confidence intervals (95 % CIs) were calculated. In the present meta-analysis, 9 cohort studies with a total of 425 patients with breast cancer were included. Our meta-analysis results demonstrated that the frequency of CHD1 promoter methylation in cancer tissues was significantly higher than that in normal tissues, adjacent tissues, and benign tissues (cancer tissue vs. normal tissue OR = 30.87, 95 % CI = 16.76 ~ 56.86, P < 0.001; cancer tissue vs. adjacent tissue OR = 23.30, 95 % CI = 12.85 ~ 42.26, P < 0.001; cancer tissue vs. benign tissue OR = 2.94, 95 % CI = 1.60 ~ 5.40, P < 0.001; respectively). Ethnicity-stratified analysis indicated that aberrant CHD1 promoter methylation was strongly correlated with breast cancer among both Asians and Caucasians in the majority of subgroups. Our results suggest that aberrant promoter methylation of the CHD1 gene may have a high frequency in breast cancer tissues. Thus, CHD1 methylation could be correlated with the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Xi Gu
- Department of Breast Surgery, Shengjing Hospital, China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Verschuur-Maes AHJ, Moelans CB, de Bruin PC, van Diest PJ. Analysis of gene copy number alterations by multiplex ligation-dependent probe amplification in columnar cell lesions of the breast. Cell Oncol (Dordr) 2014; 37:147-54. [PMID: 24692099 DOI: 10.1007/s13402-014-0170-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Columnar cell lesions (CCLs) are possible precursors of breast cancer, but little is known about the role of breast cancer-related genes in the progression of CCL to invasive breast cancer. METHODS Gene copy numbers of 17 breast cancer-related genes were analyzed using Multiplex Ligation-dependent Probe Amplification (MLPA) in CCL (N = 28), ductal carcinoma in situ (DCIS) grade I likely originating from CCL (N = 5), and paired CCL (N = 14/28) with DCIS (N = 7) and/or invasive carcinoma (N = 13). The genes included were BIRC5, C11orf30, CCND1, CCNE1, CDH1, CPD, EGFR, ERBB2, ESR1, FGFR1, IKBKB, MAPT, MED1, MTDH, MYC, TOP2A and TRAF4. RESULTS No high level gene amplifications were observed in CCL, but copy number gains were encountered for the C11orf30 (3/28), MYC, CPD, MTDH (2/28), and CCND1, CCNE1, ESR1 and TOP2A genes (1/28). In addition, CDH1 showed loss in 2/28 and TOP2A in 1/28 cases. CCLs with or without atypia exhibited comparable numbers of copy number changes (p = 0.312). Overall, the frequency of gene copy number changes increased from CCL towards DCIS and invasive carcinoma (p = 0.004). Also in the cases with synchronous lesions, the CCLs exhibited fewer copy number changes than the DCIS/invasive carcinomas. CONCLUSIONS CCLs carry copy number changes of several known breast cancer-related genes, thereby substantiating their role in breast carcinogenesis. Among them, CCND1 and ESR1 copy number gains and CDH1 copy number losses are of particular interest. Since the copy number changes observed were more prevalent in DCIS and invasive carcinoma than in CCL, the corresponding gene alterations may represent rather late occurring events in low nuclear grade breast carcinogenesis.
Collapse
Affiliation(s)
- Anoek H J Verschuur-Maes
- Department of Pathology, University Medical Center Utrecht Cancer Center, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
30
|
Nuclear localization of Kaiso promotes the poorly differentiated phenotype and EMT in infiltrating ductal carcinomas. Clin Exp Metastasis 2014; 31:497-510. [PMID: 24570268 DOI: 10.1007/s10585-014-9644-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
The expression and biological consequences of Kaiso, a novel bi-modal transcription factor, in infiltrating ductal carcinomas (IDCs) have not been widely investigated. In the present study, we determined Kaiso expression and subcellular localization in 146 normal tissues, 376 IDCs, and 85 lymph node metastases. In IDCs, there was higher Kaiso expression in both the cytoplasmic and nuclear compartments, which correlated with age <48 (cytoplasmic p < 0.0093; nuclear p < 0.0001) and moderate differentiation (cytoplasmic p < 0.0042; nuclear p < 0.0001), as determined by Chi square analysis. However, only nuclear Kaiso correlated with poor prognostic factors, i.e., race (African Americans) (p < 0.0001), poor differentiation (p < 0.0001), and metastases (p < 0.0001). Nuclear Kaiso was also associated with worse overall survival (p < 0.0019), with African American patients displaying worse survival rates relative to Caucasian patients (p < 0.029). MCF-7 (non-metastatic), MDA-MB-468 (few metastases), and MDA-MB-231 (highly metastatic) breast cancer cells demonstrated increasing Kaiso levels, with more nuclear localization in the highly metastatic cell line. Over-expression of Kaiso in MCF-7 cells increased cell migration and invasion, but treatment of MDA-MB-468 and MDA-MB-231 cells with si-Kaiso decreased cell migration and invasion and induced expression of E-cadherin RNA and protein. E-cadherin re-expression was associated with a reversal of mesenchymal associated cadherins, N-cadherin and cadherin 11, as well as decreased vitamin expression. Further, Kaiso directly bound to methylated sequences in the E-cadherin promoter, an effect prevented by 5-aza-2-deoxycytidine. Immunofluorescence co-staining of poorly differentiated IDCs demonstrated that nuclear Kaiso is associated with a loss of E-cadherin expression. These findings support a role for Kaiso in promoting aggressive breast tumors.
Collapse
|
31
|
Shah P, Gau Y, Sabnis G. Histone deacetylase inhibitor entinostat reverses epithelial to mesenchymal transition of breast cancer cells by reversing the repression of E-cadherin. Breast Cancer Res Treat 2013; 143:99-111. [PMID: 24305977 DOI: 10.1007/s10549-013-2784-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/20/2013] [Indexed: 12/26/2022]
Abstract
Loss of ERα in breast cancer correlates with poor prognosis, increased recurrence rates, and higher incidence of metastasis. Epigenetic silencing of E-cadherin (loss of which is associated with more invasive phenotype) is observed in metastatic cell lines and invasive breast cancers. Here, we are showing that entinostat (ENT) can reverse epithelial to mesenchymal transition (EMT), which is considered to be a first step in the process of metastases formation. Triple-negative breast cancer cells such as MDA-MB-231 and Hs578T show a basal phenotype characterized by loss of E-cadherin expression and higher expression of mesenchymal markers such as N-cadherin and vimentin along with transcriptional repressors such as twist and snail. When MDA-MB-231 and Hs578T cells or tumors were treated with ENT, E-cadherin transcription was increased along with reduction in N-cadherin mRNA expression. Chromatin immunoprecipitation assay showed that treatment of MDA-MB-231 and Hs578T cells increased the activation of E-cadherin promoter by reducing the association of twist and snail with the E-cadherin (CDH1) promoter and downregulated both the snail and twist. ENT also inhibited cell migration in vitro. In addition, phosphorylation of vimentin was increased, as well as remodeling of vimentin filaments. ENT treatment also reduced formation of tubulin-based microtentacles, which help floating cells attach to other surfaces. These findings suggest that ENT can reverse EMT and may reduce the formation of metastasis.
Collapse
Affiliation(s)
- Preeti Shah
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 685 W. Baltimore St, HSF-I 580-I, Baltimore, MD, 21201, USA
| | | | | |
Collapse
|
32
|
Diagnostic impact of promoter methylation and E-cadherin gene and protein expression levels in laryngeal carcinoma. Contemp Oncol (Pozn) 2013; 17:263-71. [PMID: 24596512 PMCID: PMC3934075 DOI: 10.5114/wo.2013.35284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 04/27/2013] [Accepted: 05/08/2013] [Indexed: 01/22/2023] Open
Abstract
Aim of the study Inactivation of the tumor suppressor E-cadherin (CDH1) and its decreased expression is an important occurrence during carcinogenesis. Nevertheless, the relationship of CDH1 expression and the promoter methylation with laryngeal cancer cell aggressiveness is still unclear. The purpose of this study was to elucidate the gene and protein E-cadherin expression and the DNA methylation levels and to describe the correlations with morphological features in squamous cell laryngeal cancer. Material and methods The authors studied E-cadherin and the DNA methylation level in 86 cases to gain a further understanding of the clinicopathologic significance of analyzed parameters. The pathological evaluation included pTNM classification and the tumor front grading (TFG) criteria. Quantitative analysis of the amplified product in real time (qRT-PCR) for estimation of CDH1 mRNA was used. The methylation status was investigated by using methyl-specific polymerase chain reaction (MSP). The level of CDH1 protein expression by Western blot was determined. Results Downregulation of E-cadherin was found to be related to promoter methylation (p < 0.001). In tumors with the highest invasiveness according to TFG criteria the lowest E-cadherin gene and protein level in the study group was observed (p = 0.046 and p = 0.0002, respectively). In SCLC with muscle and cartilage invasion and disperse infiltration the lowest CDH1 gene and protein expression was noted (p = 0.0003 and p = 0.003 for deep invasion, p = 0.033 and p = 0.003 for multifocal infiltration, respectively). Conclusions The current findings suggest an association of E-cadherin tumor expression with progression of laryngeal cancer. CDH1 gene level may be an auxiliary molecular marker for advanced cases of laryngeal carcinoma; however, further studies are necessary.
Collapse
|
33
|
Field cancerization in mammary carcinogenesis — Implications for prevention and treatment of breast cancer. Exp Mol Pathol 2012; 93:391-8. [DOI: 10.1016/j.yexmp.2012.10.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 02/07/2023]
|
34
|
Sun Q, Yang YM, Yu SH, Zhang YX, He XG, Sun SS, Liang XS, Pang D. Covariation of copy number located at 16q22.1: new evidence in mammary ductal carcinoma. Oncol Rep 2012; 28:2156-62. [PMID: 23007606 DOI: 10.3892/or.2012.2050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/07/2012] [Indexed: 11/05/2022] Open
Abstract
Copy number variation (CNV) is crucial for gene regulation in humans. A number of studies have revealed that CNV contributes to the initiation and progression of cancer. In this study, we analysed four breast cancer cell lines and six fresh frozen tissues from patients to evaluate the CNV present in the genome using microarray-based comparative genomic hybridization (aCGH). Six genes located at 16q22.1 were analysed by real-time PCR. The real-time PCR analysis revealed that the loss of CDH1/E2F4 may be associated with worse clinical and pathological findings. Interestingly, covariation of CDH1, CDH3, CTCF and E2F4 was found to be associated with triple negative breast cancer and HER-2 receptor status. In conclusion, our study supports the idea that CNV at 16q22.1 in breast cancer is a frequent event; furthermore, it reveals the covariation of CDH1, CDH3, CTCF and E2F4. The role of the covariation is more complex than a simple additive effect of these four separate genes, which may provide a novel target for breast cancer.
Collapse
Affiliation(s)
- Qian Sun
- Department of Breast Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Huynh KT, Chong KK, Greenberg ES, Hoon DSB. Epigenetics of estrogen receptor-negative primary breast cancer. Expert Rev Mol Diagn 2012; 12:371-82. [PMID: 22616702 DOI: 10.1586/erm.12.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Increasingly, breast cancer is being recognized as a heterogeneous disease comprised of molecularly and phenotypically distinct intrinsic tumor subtypes with different clinical outcomes. This biological heterogeneity has significant implications, particularly as it relates to expression profiling of estrogen receptor (ER) status, as classifying breast cancers based on hormone receptor expression impacts not only prognosis but also treatment options and long-term outcomes. Epigenetics has emerged as a promising field for the assessment of hormone receptor status. Epigenetic aberrations have been shown to regulate ER and offer reversible targets for development of new therapies. This review covers ER-negative breast tumor epigenetic aberrations and summarizes the major epigenetic mechanisms governing ER expression and how it impacts treatment of ER-negative breast cancer.
Collapse
Affiliation(s)
- Kelly T Huynh
- Department of Molecular Oncology, John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | | | | | | |
Collapse
|
36
|
Nuclear Kaiso indicates aggressive prostate cancers and promotes migration and invasiveness of prostate cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1836-46. [PMID: 22974583 DOI: 10.1016/j.ajpath.2012.08.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/25/2012] [Accepted: 08/01/2012] [Indexed: 12/13/2022]
Abstract
Kaiso, a p120 catenin-binding protein, is expressed in the cytoplasmic and nuclear compartments of cells; however, the biological consequences and clinical implications of a shift between these compartments have yet to be established. Herein, we report an enrichment of nuclear Kaiso expression in cells of primary and metastatic prostate tumors relative to the normal prostate epithelium. Nuclear expression of Kaiso correlates with Gleason score (P < 0.001) and tumor grade (P < 0.001). There is higher nuclear expression of Kaiso in primary tumor/normal matched samples and in primary tumors from African American men (P < 0.0001). We further found that epidermal growth factor (EGF) receptor up-regulates Kaiso at the RNA and protein levels in prostate cancer cell lines, but more interestingly causes a shift of cytoplasmic Kaiso to the nucleus that is reversed by the EGF receptor-specific kinase inhibitor, PD153035. In both DU-145 and PC-3 prostate cancer cell lines, Kaiso inhibition (short hairpin RNA-Kaiso) decreased cell migration and invasion even in the presence of EGF. Further, Kaiso directly binds to the E-cadherin promoter, and inhibition of Kaiso in PC-3 cells results in increased E-cadherin expression, as well as re-establishment of cell-cell contacts. In addition, Kaiso-depleted cells show more epithelial morphology and a reversal of the mesenchymal markers N-cadherin and fibronectin. Our findings establish a defined oncogenic role of Kaiso in promoting the progression of prostate cancer.
Collapse
|
37
|
Cole K, Tabernero M, Anderson KS. Biologic characteristics of premalignant breast disease. Cancer Biomark 2012; 9:177-92. [PMID: 22112476 DOI: 10.3233/cbm-2011-0187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Breast cancer is the second leading cause of cancer death in women in the United States. While mammography and breast magnetic resonance imaging (MRI) improve detection of early disease, there remains an unmet need for biomarkers for risk stratification, early detection, prediction, and disease prognosis. A number of early breast lesions, from atypical hyperplasias to carcinomas in situ, are associated with an increased risk of developing subsequent invasive breast carcinoma. The recent development of genomic, epigenomic, and proteomic tools for tissue biomarker detection, including array CGH, RNA expression microarrays, and proteomic arrays have identified a number of potential biomarkers that both identify patients at increased risk, as well as provided insights into the pathology of early breast cancer development. This chapter focuses on the detection and application of tissue and serum biomarkers for the identification and risk stratification of early breast cancer lesions.
Collapse
Affiliation(s)
- Kimberly Cole
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA, USA
| | | | | |
Collapse
|
38
|
Huynh KT, Hoon DSB. Epigenetics of regional lymph node metastasis in solid tumors. Clin Exp Metastasis 2012; 29:747-56. [DOI: 10.1007/s10585-012-9491-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/20/2012] [Indexed: 01/01/2023]
|
39
|
Morrogh M, Andrade VP, Giri D, Sakr RA, Paik W, Qin LX, Arroyo CD, Brogi E, Morrow M, King TA. Cadherin-catenin complex dissociation in lobular neoplasia of the breast. Breast Cancer Res Treat 2011; 132:641-52. [PMID: 22080244 DOI: 10.1007/s10549-011-1860-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/25/2011] [Indexed: 12/11/2022]
Abstract
E-cadherin (E-CD) inactivation with loss of E-CD-mediated cell adhesion is the hallmark of lesions of the lobular phenotype. E-CD is typically absent by immunohistochemistry in both lobular carcinoma in situ (LCIS) and invasive lobular lesions, suggesting it occurs early in the neoplastic process. In laboratory models, downstream post-transcriptional modifiers such as TWIST and SNAIL contribute to the dissociation of the intracellular component of the cadherin-catenin complex (CCC), resulting in tumor progression and invasion. We hypothesized that complete CCC dissociation may play a role in lobular neoplasia progression. Here we explore the relationship between loss of E-CD and dissociation of the CCC in pure LCIS and LCIS associated with invasive cancer. Fresh-frozen tissues were obtained from 36 patients undergoing mastectomy for pure LCIS (n = 11), LCIS with ILC (n = 18) or LCIS with IDC (n = 7). Individual lesions were subject to laser-capture microdissection and gene-expression analysis (Affymetrix HG-U133A 2.0). Immunohistochemistry for ER,PR,HER2, E-CD,N-CD,α-,β-, and phosphoβ-catenin, TWIST, and SNAIL were evaluated in normal, in situ, and invasive components from matched formalin-fixed paraffin-embedded samples (n = 36). CCC-dissociation was defined as negative membranous E-CD, α- and β-catenin expression. E-CD was negative in all LCIS and ILC lesions, and positive in all normal and IDC lesions. Membranous α and β-catenin expressions decreased with the transition from LCIS to ILC (pure LCIS 82%; LCIS w/ILC 28%; ILC 0%), while TWIST expression increased (pure LCIS low; LCIS w/ILC moderate; ILC high). Gene expression paralleled IHC-staining patterns with a stepwise downregulation of E-CD, α and β-catenins from normal to LCIS to invasive lesions, and increasing expression of TWIST from normal to LCIS to ILC. Loss of E-CD expression is an early event in lobular neoplasia. Decreasing membranous catenin expression in tandem with increasing levels of TWIST across the spectrum of lobular lesions suggests that CCC dissociation is a progressive process.
Collapse
Affiliation(s)
- Mary Morrogh
- Breast Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 300 E. 66th St., New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
David S, Meltzer SJ. Epigenetic Alterations as Contributors to the Pathogenesis, Detection, Prognosis and Treatment of Human Pre-invasive Neoplasia. PRE-INVASIVE DISEASE: PATHOGENESIS AND CLINICAL MANAGEMENT 2011:41-63. [DOI: 10.1007/978-1-4419-6694-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Napieralski R, Brünner N, Mengele K, Schmitt M. Emerging biomarkers in breast cancer care. Biomark Med 2010; 4:505-22. [DOI: 10.2217/bmm.10.73] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Currently, decision-making for breast cancer treatment in the clinical setting is mainly based on clinical data, histomorphological features of the tumor tissue and a few cancer biomarkers such as steroid hormone receptor status (estrogen and progesterone receptors) and oncoprotein HER2 status. Although various therapeutic options were introduced into the clinic in recent decades, with the objective of improving surgery, radiotherapy, biochemotherapy and chemotherapy, varying response of individual patients to certain types of therapy and therapy resistance is still a challenge in breast cancer care. Therefore, since breast cancer treatment should be based on individual features of the patient and her tumor, tailored therapy should be an option by integrating cancer biomarkers to define patients at risk and to reliably predict their course of the disease and/or response to cancer therapy. Recently, candidate-marker approaches and genome-wide transcriptomic and epigenetic screening of different breast cancer tissues and bodily fluids resulted in new promising biomarker panels, allowing breast cancer prognosis, prediction of therapy response and monitoring of therapy efficacy. These biomarkers are now subject of validation in prospective clinical trials.
Collapse
Affiliation(s)
- Rudolf Napieralski
- Clinical Research Unit, Department of Obstetrics & Gynecology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Germany
| | - Nils Brünner
- University of Copenhagen, Faculty of Life Sciences, Department of Veterinary Disease Biology, Ridebanevej 9, DK-1870 Frederiksberg C, Denmark
| | - Karin Mengele
- Clinical Research Unit, Department of Obstetrics & Gynecology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Germany
| | - Manfred Schmitt
- Clinical Research Unit, Department of Obstetrics & Gynecology, Ismaninger Strasse 22, Klinikum rechts der Isar, Technische Universitaet Muenchen, D-81675 Munich, Germany
| |
Collapse
|
42
|
De la cellule mammaire normale à la cellule cancéreuse. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE 2010. [DOI: 10.1016/j.mednuc.2009.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Humar B, Guilford P. Hereditary diffuse gastric cancer: a manifestation of lost cell polarity. Cancer Sci 2009; 100:1151-7. [PMID: 19432899 PMCID: PMC11158563 DOI: 10.1111/j.1349-7006.2009.01163.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/15/2009] [Indexed: 12/21/2022] Open
Abstract
Hereditary diffuse gastric cancer is a cancer syndrome caused by germline mutations in the gene for the cell adhesion protein E-cadherin (CDH1). E-cadherin plays a central role in the maintenance of cell polarity and its loss during tumorigenesis is associated with poorly differentiated cancers and a poor prognosis. Hereditary diffuse gastric cancer is dominated by diffuse-type gastric adenocarcinoma, often with signet ring cell morphology. Large numbers of stage T1a signet ring cell carcinomas exist in the stomachs of CDH1 mutation carriers from a young age, and these foci sometimes show enrichment to the transition zone between the body and antrum. Generally these signet ring cell carcinomas are hypoproliferative, lack Wnt pathway activation, and are relatively indolent. However, a small proportion of the T1a foci contain cells that are poorly differentiated, display mesenchymal features, and express activated c-Src and its downstream targets. These same features are observed in more advanced stages of hereditary diffuse gastric cancer progression, suggesting that an epithelial-mesenchymal transition is required for tumor invasion beyond the muscularis mucosae. Hereditary diffuse gastric cancer initiation requires somatic down-regulation of the second CDH1 allele, which in most cases is caused by DNA promoter hypermethylation. Subsequent to CDH1 down-regulation, lost polarity in gastric stem or progenitor cells would be predicted to interfere with mitotic spindle orientation and the segregation of cell fate determinants. We predict that this disruption of cell division results in daughter cells being deposited in the lamina propria where their population expands and partially differentiates, resulting in the formation of foci of signet ring cells.
Collapse
Affiliation(s)
- Bostjan Humar
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | |
Collapse
|