1
|
Clift CL, Blaser MC, Gerrits W, Turner ME, Sonawane A, Pham T, Andresen JL, Fenton OS, Grolman JM, Campedelli A, Buffolo F, Schoen FJ, Hjortnaes J, Muehlschlegel JD, Mooney DJ, Aikawa M, Singh SA, Langer R, Aikawa E. Intracellular proteomics and extracellular vesiculomics as a metric of disease recapitulation in 3D-bioprinted aortic valve arrays. SCIENCE ADVANCES 2024; 10:eadj9793. [PMID: 38416823 PMCID: PMC10901368 DOI: 10.1126/sciadv.adj9793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
In calcific aortic valve disease (CAVD), mechanosensitive valvular cells respond to fibrosis- and calcification-induced tissue stiffening, further driving pathophysiology. No pharmacotherapeutics are available to treat CAVD because of the paucity of (i) appropriate experimental models that recapitulate this complex environment and (ii) benchmarking novel engineered aortic valve (AV)-model performance. We established a biomaterial-based CAVD model mimicking the biomechanics of the human AV disease-prone fibrosa layer, three-dimensional (3D)-bioprinted into 96-well arrays. Liquid chromatography-tandem mass spectrometry analyses probed the cellular proteome and vesiculome to compare the 3D-bioprinted model versus traditional 2D monoculture, against human CAVD tissue. The 3D-bioprinted model highly recapitulated the CAVD cellular proteome (94% versus 70% of 2D proteins). Integration of cellular and vesicular datasets identified known and unknown proteins ubiquitous to AV calcification. This study explores how 2D versus 3D-bioengineered systems recapitulate unique aspects of human disease, positions multiomics as a technique for the evaluation of high throughput-based bioengineered model systems, and potentiates future drug discovery.
Collapse
Affiliation(s)
- Cassandra L Clift
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mark C Blaser
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Willem Gerrits
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mandy E Turner
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abhijeet Sonawane
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tan Pham
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jason L Andresen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Owen S Fenton
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua M Grolman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Materials Science and Engineering, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Alesandra Campedelli
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fabrizio Buffolo
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Internal Medicine and Hypertension Unite, Department of Medical Sciences, University of Torin, Turin, Italy
| | - Frederick J Schoen
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Masanori Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha A Singh
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Ma J, Chen Y, Zhang K, Yang T, Xie H, Yang X, Ding P. Study of vascular sclerosing agent based on the dual mechanism of vascular endothelial cell damage-plasmin system inhibition. Biochem Biophys Res Commun 2023; 680:135-140. [PMID: 37738903 DOI: 10.1016/j.bbrc.2023.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Venous malformations are a vascular disorder. Currently, the use of chemical sclerosing agents is a common clinical approach for the treatment of venous malformations. However, the effectiveness of existing sclerosing agents is unsatisfactory and often accompanied by severe side effects. In this study, we have developed a novel cationic surfactant-based sclerosing agent (POL-TA) by conjugating the plasmin inhibitor tranexamic acid (TA) with a nonionic surfactant polidocanol (POL) through an ester bond. POL-TA induces endothelial cell damage, triggering the coagulation cascade and thrombus formation. Moreover, it releases TA in vivo, which inhibits plasmin activity and the activation of matrix metalloproteinase (MMPs), thereby stabilizing the fibrin network of the thrombus and promoting vascular fibrosis. We have established a cell model using venous malformation endothelial cells and assessed the cellular damage and underlying mechanisms of POL-TA. The inhibitory effects of POL-TA on the plasmin-MMPs system were evaluated using MMP-9 activity assay kit. Additionally, the mice tail vein model was employed to investigate the vascular sclerosing effects and mechanisms of POL-TA.
Collapse
Affiliation(s)
- Jizhuang Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yongfeng Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Keda Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Huichao Xie
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Xinggang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Pingtian Ding
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
3
|
Kopytek M, Ząbczyk M, Mazur P, Undas A, Natorska J. PAI-1 Overexpression in Valvular Interstitial Cells Contributes to Hypofibrinolysis in Aortic Stenosis. Cells 2023; 12:1402. [PMID: 37408236 PMCID: PMC10216522 DOI: 10.3390/cells12101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
Aortic stenosis (AS) is associated with hypofibrinolysis, but its mechanism is poorly understood. We investigated whether LDL cholesterol affects plasminogen activator inhibitor 1 (PAI-1) expression, which may contribute to hypofibrinolysis in AS. Stenotic valves were obtained from 75 severe AS patients during valve replacement to assess lipids accumulation, together with PAI-1 and nuclear factor-κB (NF-κB) expression. Five control valves from autopsy healthy individuals served as controls. The expression of PAI-1 in valve interstitial cells (VICs) after LDL stimulation was assessed at protein and mRNA levels. PAI-1 activity inhibitor (TM5275) and NF-κB inhibitor (BAY 11-7082) were used to suppress PAI-1 activity or NF-κB pathway. Clot lysis time (CLT) was performed to assess fibrinolytic capacity in VICs cultures. Solely AS valves showed PAI-1 expression, the amount of which was correlated with lipid accumulation and AS severity and co-expressed with NF-κB. In vitro VICs showed abundant PAI-1 expression. LDL stimulation increased PAI-1 levels in VICs supernatants and prolonged CLT. PAI-1 activity inhibition shortened CLT, while NF-κB inhibition decreased PAI-1 and SERPINE1 expression in VICs, its level in supernatants and shortened CLT. In severe AS, valvular PAI-1 overexpression driven by lipids accumulation contributes to hypofibrinolysis and AS severity.
Collapse
Affiliation(s)
- Magdalena Kopytek
- Thromboembolic Disorders Department, Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St., 31-202 Krakow, Poland; (M.K.); (M.Z.); (A.U.)
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, 80 Pradnicka St., 31-202 Krakow, Poland
| | - Michał Ząbczyk
- Thromboembolic Disorders Department, Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St., 31-202 Krakow, Poland; (M.K.); (M.Z.); (A.U.)
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, 80 Pradnicka St., 31-202 Krakow, Poland
| | - Piotr Mazur
- Department of Cardiovascular Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
- Department of Cardiovascular Surgery and Transplantology, Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St., 31-202 Krakow, Poland
| | - Anetta Undas
- Thromboembolic Disorders Department, Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St., 31-202 Krakow, Poland; (M.K.); (M.Z.); (A.U.)
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, 80 Pradnicka St., 31-202 Krakow, Poland
| | - Joanna Natorska
- Thromboembolic Disorders Department, Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St., 31-202 Krakow, Poland; (M.K.); (M.Z.); (A.U.)
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, 80 Pradnicka St., 31-202 Krakow, Poland
| |
Collapse
|
4
|
The uPA/uPAR System Orchestrates the Inflammatory Response, Vascular Homeostasis, and Immune System in Fibrosis Progression. Int J Mol Sci 2023; 24:ijms24021796. [PMID: 36675310 PMCID: PMC9866279 DOI: 10.3390/ijms24021796] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fibrotic diseases, such as systemic sclerosis (SSc), idiopathic pulmonary fibrosis, renal fibrosis and liver cirrhosis are characterized by tissue overgrowth due to excessive extracellular matrix (ECM) deposition. Fibrosis progression is caused by ECM overproduction and the inhibition of ECM degradation due to several events, including inflammation, vascular endothelial dysfunction, and immune abnormalities. Recently, it has been reported that urokinase plasminogen activator (uPA) and its receptor (uPAR), known to be fibrinolytic factors, orchestrate the inflammatory response, vascular homeostasis, and immune homeostasis system. The uPA/uPAR system may show promise as a potential therapeutic target for fibrotic diseases. This review considers the role of the uPA/uPAR system in the progression of fibrotic diseases.
Collapse
|
5
|
Distinguishing Plasmin-Generating Microvesicles: Tiny Messengers Involved in Fibrinolysis and Proteolysis. Int J Mol Sci 2023; 24:ijms24021571. [PMID: 36675082 PMCID: PMC9860915 DOI: 10.3390/ijms24021571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
A number of stressors and inflammatory mediators (cytokines, proteases, oxidative stress mediators) released during inflammation or ischemia stimulate and activate cells in blood, the vessel wall or tissues. The most well-known functional and phenotypic responses of activated cells are (1) the immediate expression and/or release of stored or newly synthesized bioactive molecules, and (2) membrane blebbing followed by release of microvesicles. An ultimate response, namely the formation of extracellular traps by neutrophils (NETs), is outside the scope of this work. The main objective of this article is to provide an overview on the mechanism of plasminogen reception and activation at the surface of cell-derived microvesicles, new actors in fibrinolysis and proteolysis. The role of microvesicle-bound plasmin in pathological settings involving inflammation, atherosclerosis, angiogenesis, and tumour growth, remains to be investigated. Further studies are necessary to determine if profibrinolytic microvesicles are involved in a finely regulated equilibrium with pro-coagulant microvesicles, which ensures a balanced haemostasis, leading to the maintenance of vascular patency.
Collapse
|
6
|
Kanno Y, Shu E. α2-Antiplasmin as a Potential Therapeutic Target for Systemic Sclerosis. Life (Basel) 2022; 12:life12030396. [PMID: 35330147 PMCID: PMC8953682 DOI: 10.3390/life12030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Systemic sclerosis is a connective tissue disease of unknown origin that is characterized by immune system abnormalities, vascular damage, and extensive fibrosis of the skin and visceral organs. α2-antiplasmin is known to be the main plasmin inhibitor and has various functions such as cell differentiation and cytokine production, as well as the regulation of the maintenance of the immune system, endothelial homeostasis, and extracellular matrix metabolism. The expression of α2-antiplasmin is elevated in dermal fibroblasts from systemic sclerosis patients, and the blockade of α2-antiplasmin suppresses fibrosis progression and vascular dysfunction in systemic sclerosis model mice. α2-antiplasmin may have promise as a potential therapeutic target for systemic sclerosis. This review considers the role of α2-antiplasmin in the progression of systemic sclerosis.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, 97-1 Kodo Kyotanabe, Kyoto 610-0395, Japan
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
- Correspondence: ; Tel.:+81-0774-65-8629
| | - En Shu
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
| |
Collapse
|
7
|
Kanno Y, Tsuchida K, Maruyama C, Hori K, Teramura H, Asahi S, Matsuo O, Ozaki KI. Alpha2-antiplasmin deficiency affects depression and anxiety-like behavior and apoptosis induced by stress in mice. J Basic Clin Physiol Pharmacol 2021; 33:633-638. [PMID: 34913624 DOI: 10.1515/jbcpp-2021-0282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Depression is a psychiatric disorder that affects about 10% of the world's population and is accompanied by anxiety. Depression and anxiety are often caused by various stresses. However, the etiology of depression and anxiety remains unknown. It has been reported that alpha2-antiplasmin (α2AP) not only inhibits plasmin but also has various functions such as cytokine production and cell growth. This study aimed to determine the roles of α2AP on the stress-induced depression and anxiety. METHODS We investigated the mild repeated restraint stress-induced depressive and anxiety-like behavior in the α2AP+/+ and α2AP-/- mice using the social interaction test (SIT), sucrose preference test (SPT), and elevated plus maze (EPM). RESULTS The stresses such as the mild repeated restraint stress suppressed α2AP expression in the hippocampus of mice, and the treatment of fluoxetine (selective serotonin reuptake inhibitor [SSRI]) recovered the stress-caused α2AP suppression. We also showed that α2AP deficiency promoted the mild restraint stress-stimulated depression-like behavior such as social withdrawal and apathy and apoptosis in mice. In contrast, α2AP deficiency attenuated the mild restraint stress induced the anxiety-like behavior in mice. CONCLUSIONS α2AP affects the pathogenesis of depression and anxiety induced by stress.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Kaho Tsuchida
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Chihiro Maruyama
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Kyoko Hori
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Hanako Teramura
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Shiho Asahi
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Osamu Matsuo
- Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Kei-Ichi Ozaki
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| |
Collapse
|
8
|
Comprehensive understanding of anchorage-independent survival and its implication in cancer metastasis. Cell Death Dis 2021; 12:629. [PMID: 34145217 PMCID: PMC8213763 DOI: 10.1038/s41419-021-03890-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Detachment is the initial and critical step for cancer metastasis. Only the cells that survive from detachment can develop metastases. Following the disruption of cell-extracellular matrix (ECM) interactions, cells are exposed to a totally different chemical and mechanical environment. During which, cells inevitably suffer from multiple stresses, including loss of growth stimuli from ECM, altered mechanical force, cytoskeletal reorganization, reduced nutrient uptake, and increased reactive oxygen species generation. Here we review the impact of these stresses on the anchorage-independent survival and the underlying molecular signaling pathways. Furthermore, its implications in cancer metastasis and treatment are also discussed.
Collapse
|
9
|
Kanno Y, Shu E, Niwa H, Seishima M, Ozaki KI. MicroRNA-30c attenuates fibrosis progression and vascular dysfunction in systemic sclerosis model mice. Mol Biol Rep 2021; 48:3431-3437. [PMID: 33913094 DOI: 10.1007/s11033-021-06368-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Systemic sclerosis (SSc) is characterized by peripheral circulatory disturbance and fibrosis in skin and visceral organs. We recently demonstrated that α2-antiplasmin (α2AP) is elevated in SSc dermal fibroblasts and SSc model mice, and is associated with fibrosis progression and vascular dysfunction. In the present study, we predicted that α2AP could be a target of microRNA-30c (miR-30c) using TargetScan online database, and investigated the effect of miR-30c on the pathogenesis of SSc using a bleomycin-induced SSc model mice. miR-30c attenuated α2AP expression, and prevented the pro-fibrotic changes (increased dermal thickness, collagen deposition, myofibroblast accmulation) and the vascular dysfunction (the reduction of vascular endothelial cells (ECs) and blood flow) in the skin of SSc model mice. Furthermore, miR-30c suppressed pulmonary fibrosis progression in the SSc model mice. miR-30c exerts the anti-fibrotic and anti-angiopathy effects on SSc model mice, and might provide a basis for clinical strategies for SSc.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan. .,Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - En Shu
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hirofumi Niwa
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kei-Ichi Ozaki
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan
| |
Collapse
|
10
|
Bäck M, Michel JB. From organic and inorganic phosphates to valvular and vascular calcifications. Cardiovasc Res 2021; 117:2016-2029. [PMID: 33576771 PMCID: PMC8318101 DOI: 10.1093/cvr/cvab038] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/26/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Calcification of the arterial wall and valves is an important part of the pathophysiological process of peripheral and coronary atherosclerosis, aortic stenosis, ageing, diabetes, and chronic kidney disease. This review aims to better understand how extracellular phosphates and their ability to be retained as calcium phosphates on the extracellular matrix initiate the mineralization process of arteries and valves. In this context, the physiological process of bone mineralization remains a human model for pathological soft tissue mineralization. Soluble (ionized) calcium precipitation occurs on extracellular phosphates; either with inorganic or on exposed organic phosphates. Organic phosphates are classified as either structural (phospholipids, nucleic acids) or energetic (corresponding to phosphoryl transfer activities). Extracellular phosphates promote a phenotypic shift in vascular smooth muscle and valvular interstitial cells towards an osteoblast gene expression pattern, which provokes the active phase of mineralization. A line of defense systems protects arterial and valvular tissue calcifications. Given the major roles of phosphate in soft tissue calcification, phosphate mimetics, and/or prevention of phosphate dissipation represent novel potential therapeutic approaches for arterial and valvular calcification.
Collapse
Affiliation(s)
- Magnus Bäck
- Division of Valvular and Coronary Disease, Department of Cardiology, Karolinska University Hospital, 141 86 Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,University of Lorraine, Nancy University Hospital, INSERM U1116, Nancy, France
| | | |
Collapse
|
11
|
Sugioka K, Fukuda K, Nishida T, Kusaka S. The fibrinolytic system in the cornea: A key regulator of corneal wound healing and biological defense. Exp Eye Res 2021; 204:108459. [PMID: 33493476 DOI: 10.1016/j.exer.2021.108459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022]
Abstract
The cornea is a relatively unique tissue in the body in that it possesses specific features such as a lack of blood vessels that contribute to its transparency. The cornea is supplied with soluble blood components such as albumin, globulin, and fibrinogen as well as with nutrients, oxygen, and bioactive substances by diffusion from aqueous humor and limbal vessels as well as a result of its exposure to tear fluid. The healthy cornea is largely devoid of cellular components of blood such as polymorphonuclear leukocytes, monocytes-macrophages, and platelets. The location of the cornea at the ocular surface renders it susceptible to external insults, and its avascular nature necessitates the operation of healing and defense mechanisms in a manner independent of a direct blood supply. The fibrinolytic system, which was first recognized for its role in the degradation of fibrin clots in the vasculature, has also been found to contribute to various biological processes outside of blood vessels. Fibrinolytic factors thus play an important role in biological defense of the cornea. In this review, we address the function of the fibrinolytic system in corneal defense including wound healing and the inflammatory response.
Collapse
Affiliation(s)
- Koji Sugioka
- Department of Ophthalmology, Kindai University Nara Hospital, 1248-1 Otodacho, Ikoma City, Nara, 630-0293, Japan; Department of Ophthalmology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osakasayama City, Osaka, 589-8511, Japan.
| | - Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Nankoku City, Kochi, 783-8505, Japan
| | - Teruo Nishida
- Department of Ophthalmology, Kindai University Nara Hospital, 1248-1 Otodacho, Ikoma City, Nara, 630-0293, Japan; Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi, 755-8505, Japan; Division of Cornea and Ocular Surface, Ohshima Eye Hospital, 11-8 Kamigofukumachi, Hakata-ku, Fukuoka City, Fukuoka, 812-0036, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osakasayama City, Osaka, 589-8511, Japan
| |
Collapse
|
12
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
13
|
Lim J, Aguilan JT, Sellers RS, Nagajyothi F, Weiss LM, Angeletti RH, Bortnick AE. Lipid mass spectrometry imaging and proteomic analysis of severe aortic stenosis. J Mol Histol 2020; 51:559-571. [PMID: 32794037 DOI: 10.1007/s10735-020-09905-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022]
Abstract
Severe aortic stenosis (AS) is prevalent in adults ≥ 65 years, a significant cause of morbidity and mortality, with no medical therapy. Lipid and proteomic alterations of human AS tissue were determined using mass spectrometry imaging (MSI) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to understand histopathology, potential biomarkers of disease, and progression from non-calcified to calcified phenotype. A reproducible MSI method was developed using healthy murine aortic valves (n = 3) and subsequently applied to human AS (n = 2). Relative lipid levels were spatially mapped and associated with different microdomains. Proteomics for non-calcified and calcified microdomains were performed to ascertain differences in expression. Increased pro-osteogenic and inflammatory lysophosphatidylcholine (LPC) 16:0 and 18:0 were co-localized with calcified microdomains. Proteomics analysis identified differential patterns in calcified microdomains with high LPC and low cholesterol as compared to non-calcified microdomains with low LPC and high cholesterol. Calcified microdomains had higher levels of: apolipoproteins (Apo) B-100 (p < 0.001) and Apo A-IV (p < 0.001), complement C3 and C4-B (p < 0.001), C5 (p = 0.007), C8 beta chain (p = 0.013) and C9 (p = 0.010), antithrombotic proteins alpha-2-macroglobulin (p < 0.0001) and antithrombin III (p = 0.002), and higher anti-calcific fetuin-A (p = 0.02), while the osteoblast differentiating factor transgelin (p < 0.0001), extracellular matrix proteins versican, prolargin, and lumican ( p < 0.001) and regulator protein complement factor H (p < 0.001) were higher in non-calcified microdomains. A combined lipidomic and proteomic approach provided insight into factors potentially contributing to progression from non-calcified to calcific disease in severe AS. Additional studies of these candidates and protein networks could yield new targets for slowing progression of AS.
Collapse
Affiliation(s)
- Jihyeon Lim
- Janssen Research and Development, Malvern, PA, USA
| | - Jennifer T Aguilan
- Laboratory for Macromolecular Analysis & Proteomics, Bronx, NY, USA.,Department of Pathology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Fnu Nagajyothi
- Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Louis M Weiss
- Laboratory for Macromolecular Analysis & Proteomics, Bronx, NY, USA
| | - Ruth Hogue Angeletti
- Laboratory for Macromolecular Analysis & Proteomics, Bronx, NY, USA.,Department of Biochemistry, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Developmental and Molecular Biology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna E Bortnick
- Department of Medicine, Division of Cardiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Division of Geriatrics, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA. .,Jack D. Weiler Hospital, 1825 Eastchester Road, Suite 2S-46, Bronx, NY, 10461, USA.
| |
Collapse
|
14
|
Kanno Y, Miyashita M, Seishima M, Matsuo O. α2AP is associated with the development of lupus nephritis through the regulation of plasmin inhibition and inflammatory responses. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:267-278. [PMID: 32237065 PMCID: PMC7416015 DOI: 10.1002/iid3.302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 03/18/2020] [Indexed: 01/19/2023]
Abstract
Introduction Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE), which is a chronic autoimmune disease. However, the detailed mechanisms underlying this disorder have remained unclear. Alpha2‐antiplasmin (α2AP) is known to perform various functions, such as plasmin inhibition and cytokine production, and to be associated with immune and inflammatory responses. Methods We investigated the roles of α2AP in the pathogenesis of LN using a pristane‐induced lupus mouse model. Results The levels of plasmin‐α2AP complex and α2AP were elevated in the lupus model mice. In addition, α2AP deficiency attenuated the pristane‐induced glomerular cell proliferation, mesangial matrix expansion, collagen production, fibrin deposition, immunoglobulin G deposition, and proinflammatory cytokine production in the model mice. We also showed that interferon‐γ (IFN‐γ), which is an essential inducer of LN, induced α2AP production through the c‐Jun N‐terminal kinase (JNK) pathway in fibroblasts. In addition, plasmin attenuated the IFN‐γ‐induced proinflammatory cytokine production through the AMPK pathway in macrophages, and α2AP eliminated these effects. Furthermore, we showed that α2AP induced proinflammatory cytokine production through the ERK1/2 and JNK pathways in macrophages. Conclusion α2AP regulates the inflammatory responses through plasmin inhibition and proinflammatory cytokine production and is associated with the development of LN. Our findings may be used to develop a novel therapeutic approach for SLE.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan.,Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Mei Miyashita
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Matsuo
- Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
15
|
Horowitz JC, Tschumperlin DJ, Kim KK, Osterholzer JJ, Subbotina N, Ajayi IO, Teitz-Tennenbaum S, Virk A, Dotson M, Liu F, Sicard D, Jia S, Sisson TH. Urokinase Plasminogen Activator Overexpression Reverses Established Lung Fibrosis. Thromb Haemost 2019; 119:1968-1980. [PMID: 31705517 DOI: 10.1055/s-0039-1697953] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Impaired plasminogen activation (PA) is causally related to the development of lung fibrosis. Prior studies demonstrate that enhanced PA in the lung limits the severity of scarring following injury and in vitro studies indicate that PA promotes matrix degradation and fibroblast apoptosis. These findings led us to hypothesize that increased PA in an in vivo model would enhance the resolution of established lung fibrosis in conjunction with increased myofibroblast apoptosis. METHODS Transgenic C57BL/6 mice with doxycycline inducible lung-specific urokinase plasminogen activator (uPA) expression or littermate controls were treated (day 0) with bleomycin or saline. Doxycycline was initiated on days 1, 9, 14, or 21. Lung fibrosis, stiffness, apoptosis, epithelial barrier integrity, and inflammation were assessed. RESULTS Protection from fibrosis with uPA upregulation from day 1 through day 28 was associated with reduced parenchymal stiffness as determined by atomic force microscopy. Initiation of uPA expression beginning in the late inflammatory or the early fibrotic phase reduced stiffness and fibrosis at day 28. Induction of uPA activity in mice with established fibrosis decreased lung collagen and lung stiffness while increasing myofibroblast apoptosis. Upregulation of uPA did not alter lung inflammation but was associated with improved epithelial cell homeostasis. CONCLUSION Restoring intrapulmonary PA activity diminishes lung fibrogenesis and enhances the resolution of established lung fibrosis. This PA-mediated resolution is associated with increased myofibroblast apoptosis and improved epithelial cell homeostasis. These studies support the potential capacity of the lung to resolve existing scar in murine models.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States.,Veterans Affairs Medical Center, Ann Arbor, Michigan, United States
| | - Natalya Subbotina
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Iyabode O Ajayi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Seagal Teitz-Tennenbaum
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States.,Veterans Affairs Medical Center, Ann Arbor, Michigan, United States
| | - Ammara Virk
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Megan Dotson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Fei Liu
- Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, Massachusetts, United States
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Shijing Jia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
16
|
Kanno Y, Shu E, Kanoh H, Seishima M. The Antifibrotic Effect of α2AP Neutralization in Systemic Sclerosis Dermal Fibroblasts and Mouse Models of Systemic Sclerosis. J Invest Dermatol 2015; 136:762-769. [PMID: 26743600 DOI: 10.1016/j.jid.2015.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/16/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease of autoimmune origin characterized by the fibrosis of skin and visceral organs, and peripheral circulatory disturbance. We recently demonstrated that α2-antiplasmin (α2AP), which is the physiological inhibitor of plasmin, is associated with the development of fibrosis. The aim of this study was to clarify the role of α2AP in the pathogenesis of SSc. The administration of α2AP in mice induced profibrotic changes, such as increased dermal thickness, collagen production, and myofibroblast differentiation. Conversely, the α2AP neutralization prevented not only profibrotic changes, but also the production of autoantibodies in bleomycin-induced mouse models of SSc. The expression of α2AP was elevated in dermal fibroblasts obtained from patients with SSc. Furthermore, α2AP treatment promoted profibrotic changes in human normal dermal fibroblasts, and α2AP neutralization reversed a profibrotic phenotype of SSc dermal fibroblasts, in the absence of plasmin. Our findings demonstrated that α2AP has a profibrotic effect probably not by the action as a plasmin inhibitor, and that the blocking of α2AP exerts an antifibrotic effect in humans and mice with SSc.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's Collage of Liberal Arts, Kodo Kyo-tanabe, Kyoto, Japan.
| | - En Shu
- Department of Dermatology, Gifu University Graduate School of Medicine, Yanagido Gifu, Japan
| | - Hiroyuki Kanoh
- Department of Dermatology, Gifu University Graduate School of Medicine, Yanagido Gifu, Japan
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, Yanagido Gifu, Japan
| |
Collapse
|
17
|
Multi-antibody composition in lupus nephritis: isotype and antigen specificity make the difference. Autoimmun Rev 2015; 14:692-702. [PMID: 25888464 DOI: 10.1016/j.autrev.2015.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/02/2015] [Indexed: 12/16/2022]
Abstract
Research on autoimmune processes involved in glomerulonephritis has been for years based on experimental models. Recent progress in proteomics has radically modified perspectives: laser microdissection and proteomics were crucial for an in vivo analysis of autoantibodies eluted from human biopsies. Lupus nephritis has been the subject of recent independent researches. Main topics have been the definition of renal autoimmune components in human lupus biopsies; methods were laser capture of glomeruli and/or of single cells (CD38+ or Ki-67+) from tubulointerstitial areas as starting step followed by elution and characterization of renal antibodies by proteomics. The innovative approach highlighted different panels of autoantibodies deposited in glomeruli and in tubulo-interstitial areas that actually represented the unique autoimmune components in these patients. IgG2 was the major isotype; new podocyte proteins (αenolase, annexin AI) and already known implanted molecules (DNA, histone 3, C1q) were their target antigens in glomeruli. Vimentin was the antigen in tubulo-interstitial areas. Matching renal autoantibodies with serum allowed the definition of a typical autoantibody serum map that included the same anti-αenolase, anti-annexin AI, anti-DNA, and anti-histone 3 IgG2 already detected in renal tissue. Serum levels of specific autoantibodies were tenfold increased in patients with lupus nephritis allowing a clear differentiation from both rheumatoid arthritis and other glomerulonephritis. In all cases, targeted antigens were characterized as components of lupus NETosis. Matching renal/serum autoantibody composition in vivo furnishes new insights on human lupus nephritis and allows to refine composition of circulating antibodies in patients with lupus. A thoughtful passage from bench to bedside of new knowledge would expand our clinical and therapeutic opportunities.
Collapse
|
18
|
Predominant role of host proteases in myocardial damage associated with infectious endocarditis induced by Enterococcus faecalis in a rat model. Infect Immun 2013; 81:1721-9. [PMID: 23478315 DOI: 10.1128/iai.00775-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infective endocarditis (IE) remains a life-threatening infectious disease with high morbidity and mortality. The objectives of the present study are to assess the host proteolytic activities of the vegetations and their cytotoxic potential in a rat model of experimental IE. Rats were infected with a strain of Enterococcus faecalis of particularly low virulence and weak protease expression. We tested the presence of proteases released by infiltrated leukocytes (matrix metalloproteinases and elastase) or produced in situ within the septic vegetation, such as those linked to the fibrinolytic system (plasmin and plasminogen activators). We also assessed the tissue damage induced by the infective thrombus in vitro and ex vivo. The model of IE was characterized by larger and more extensive vegetations in infected than in nonseptic rats and by an intense neutrophil infiltrate interfacing with the injured underlying tissue. Neutrophil extracellular DNA was shown to trap bacteria and to produce increased levels of cell-free DNA in plasma. Matrix metalloproteinase-9, elastase, and plasminogen activators were increased in septic versus nonseptic vegetations (as shown by zymography and immunohistology). Finally, proteolysis of the extracellular matrix and apoptosis were shown to be associated with host proteases. Bacteria exhibited no detectable proteolytic activity or direct cytotoxic effects. Bacterial membranes/dead bacteria were sufficient to induce leukocyte recruitment and activation that could promote vegetation formation and growth. Our results suggest that, despite the lack of bacterial proteases, the continuous attractant signals coming from bacterial colonies may lead to a chronic and deleterious aggression toward myocardial/valvular tissues by host proteases.
Collapse
|
19
|
α-Enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol 2012; 2012:156795. [PMID: 23118496 PMCID: PMC3479624 DOI: 10.1155/2012/156795] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/25/2012] [Indexed: 12/29/2022] Open
Abstract
α-Enolase is a key glycolytic enzyme in the cytoplasm of prokaryotic and eukaryotic cells and is considered a multifunctional protein. α-enolase is expressed on the surface of several cell types, where it acts as a plasminogen receptor, concentrating proteolytic plasmin activity on the cell surface. In addition to glycolytic enzyme and plasminogen receptor functions, α-Enolase appears to have other cellular functions and subcellular localizations that are distinct from its well-established function in glycolysis. Furthermore, differential expression of α-enolase has been related to several pathologies, such as cancer, Alzheimer's disease, and rheumatoid arthritis, among others. We have identified α-enolase as a plasminogen receptor in several cell types. In particular, we have analyzed its role in myogenesis, as an example of extracellular remodelling process. We have shown that α-enolase is expressed on the cell surface of differentiating myocytes, and that inhibitors of α-enolase/plasminogen binding block myogenic fusion in vitro and skeletal muscle regeneration in mice. α-Enolase could be considered as a marker of pathological stress in a high number of diseases, performing several of its multiple functions, mainly as plasminogen receptor. This paper is focused on the multiple roles of the α-enolase/plasminogen axis, related to several pathologies.
Collapse
|
20
|
Role of vegetation-associated protease activity in valve destruction in human infective endocarditis. PLoS One 2012; 7:e45695. [PMID: 23029186 PMCID: PMC3447824 DOI: 10.1371/journal.pone.0045695] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/22/2012] [Indexed: 12/25/2022] Open
Abstract
AIMS Infective endocarditis (IE) is characterized by septic thrombi (vegetations) attached on heart valves, consisting of microbial colonization of the valvular endocardium, that may eventually lead to congestive heart failure or stroke subsequent to systemic embolism. We hypothesized that host defense activation may be directly involved in tissue proteolytic aggression, in addition to pathogenic effects of bacterial colonization. METHODS AND RESULTS IE valve samples collected during surgery (n = 39) were dissected macroscopically by separating vegetations (VG) and the surrounding damaged part of the valve from the adjacent, apparently normal (N) valvular tissue. Corresponding conditioned media were prepared separately by incubation in culture medium. Histological analysis showed an accumulation of platelets and polymorphonuclear neutrophils (PMNs) at the interface between the VG and the underlying tissue. Apoptotic cells (PMNs and valvular cells) were abundantly detected in this area. Plasminogen activators (PA), including urokinase (uPA) and tissue (tPA) types were also associated with the VG. Secreted matrix metalloproteinase (MMP) 9 was also increased in VG, as was leukocyte elastase and myeloperoxidase (MPO). The presence of neutrophil extracellular traps (NETs) associating MPO and externalized nucleosomes, was shown by immunostaining in the VG. Both MPO and cell-free DNA were released in larger amounts by VG than N samples, suggesting bacterial activation of PMNs within the vegetation. Finally, evidence of proteolytic tissue damage was obtained by the release of fragments of extracellular matrix components such as fibrinogen and fibronectin, as well as protease-sensitive receptors such as the uPA receptor. CONCLUSION Our data obtained using human IE valves suggest that septic vegetations represent an important source of proteases originating from massive leukocyte recruitment and activation of the host plasminergic system. The latter forms a potential therapeutic target to minimize valvular tissue degradation independently from that induced by bacterial proteases.
Collapse
|
21
|
Kochtebane N, Choqueux C, Michel JB, Jacob MP. [Aortic stenosis and extracellular matrix remodeling]. Biol Aujourdhui 2012; 206:135-43. [PMID: 22748051 DOI: 10.1051/jbio/2012015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Indexed: 11/14/2022]
Abstract
Valvular heart diseases represent an important public health burden. With the decrease in the incidence of rheumatic heart disease, calcific aortic stenosis has now become the most common valvular disease in Western countries. Its prevalence increases with age, such that its affects about 4% of the elderly population and it is the most common motive for valve replacement. Several tissue abnormalities were observed in aortic valves from patients suffering from aortic stenosis: presence of large calcium deposits, inflammatory cells, lipids, and neocapillaries as well as extracellular matrix remodeling. The aortic valves show three characteristic layers: the fibrosa composed mainly of collagen bundles, the spongiosa which consists of a proteoglycan matrix, and the ventricularis which contains several elastic lamellae. The components of the extracellular matrix are synthesized by valvular mesenchymal cells. The turn-over of collagen and elastic fibers is low; the other macromolecules are more rapidly synthesized and hydrolysed. Serine proteases such as enzymes of the fibrinolytic system and matrix metalloproteinases play a role in the remodeling of the extracellular matrix. The hydrolysis of adhesive proteins, such as fibronectin, by plasmin triggers the apoptosis of valvular (myo)fibroblasts, a biological process named anoikis. Cellular events and extracellular matrix remodeling thus participate to the evolution of aortic valves towards aortic stenosis.
Collapse
Affiliation(s)
- Najlah Kochtebane
- INSERM UMR 698, Hématologie, Bio-Ingénierie et Remodelage Cardiovasculaire, Université Paris 7 Denis Diderot, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris Cedex 18, France
| | | | | | | |
Collapse
|
22
|
Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J Pathol 2012; 226:380-93. [PMID: 21953325 DOI: 10.1002/path.3000] [Citation(s) in RCA: 417] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anoikis is a programmed cell death occurring upon cell detachment from the correct extracellular matrix, thus disrupting integrin ligation. It is a critical mechanism in preventing dysplastic cell growth or attachment to an inappropriate matrix. Anoikis prevents detached epithelial cells from colonizing elsewhere and is thus essential for tissue homeostasis and development. As anchorage-independent growth and epithelial-mesenchymal transition, two features associated with anoikis resistance, are crucial steps during tumour progression and metastatic spreading of cancer cells, anoikis deregulation has now evoked particular attention from the scientific community. The aim of this review is to analyse the molecular mechanisms governing both anoikis and anoikis resistance, focusing on their regulation in physiological processes, as well as in several diseases, including metastatic cancers, cardiovascular diseases and diabetes.
Collapse
Affiliation(s)
- M L Taddei
- Department of Biochemical Sciences, University of Florence, and Tumour Institute and Centre for Research, Transfer and High Education DenoTHE, Florence, Italy
| | | | | | | |
Collapse
|
23
|
Beaufort N, Corvazier E, Hervieu A, Choqueux C, Dussiot M, Louedec L, Cady A, de Bentzmann S, Michel JB, Pidard D. The thermolysin-like metalloproteinase and virulence factor LasB from pathogenic Pseudomonas aeruginosa induces anoikis of human vascular cells. Cell Microbiol 2011; 13:1149-67. [DOI: 10.1111/j.1462-5822.2011.01606.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Abstract
Cell activation by stressors is characterized by a sequence of detectable phenotypic cell changes. A given stimulus, depending on its strength, induces modifications in the activity of membrane phospholipid transporters and calpains, which lead to phosphatidylserine exposure, membrane blebbing and the release of microparticles (nanoscale membrane vesicles). This vesiculation could be considered as a warning signal that may be followed, if the stimulus is maintained, by cell detachment-induced apoptosis. In the present study, plasminogen incubated with adherent cells is converted into plasmin by constitutively expressed tPA (tissue-type plasminogen activator) or uPA (urokinase-type plasminogen activator). Plasmin formed on the cell membrane then induces a unique response characterized by membrane blebbing and vesiculation. Hitherto unknown for plasmin, these membrane changes are similar to those induced by thrombin on platelets. If plasmin formation persists, matrix proteins are then degraded, cells lose their attachments and enter the apoptotic process, characterized by DNA fragmentation and specific ultrastructural features. Since other proteolytic or inflammatory stimuli may evoke similar responses in different types of adherent cells, the proposed experimental procedure can be used to distinguish activated adherent cells from cells entering the apoptotic process. Such a distinction is crucial for evaluating the effects of mediators, inhibitors and potential therapeutic agents.
Collapse
|