1
|
Wen D, Zhang H, Zhou Y, Jian N, Jiang C, Wang J. MicroRNA-503 Suppresses Oral Mucosal Fibroblast Differentiation by Regulating RAS/RAF/MEK/ERK Signaling Pathway. Biomolecules 2024; 14:1259. [PMID: 39456192 PMCID: PMC11505938 DOI: 10.3390/biom14101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
The abnormal proliferation and differentiation of oral mucosal fibroblasts (FBs) is the key to the progression of oral submucosal fibrosis. To clarify the mechanism of platelet-derived growth factor (PDGF-BB)-induced FBs fibrosis in oral mucosa, real-time quantitative polymerase chain reaction and Western blot were used in this study to detect the expression of miR-503 and the expression of p-MEK, p-ERK, miR-503, RAF, smooth actin and type I collagen under different time and concentration stimulation of PDGF-BB. The effects of overexpression of miR-503 or RAF on the proliferation and migration of FBs were detected by cell counting kit 8 and cell scratch assay, respectively. A dual luciferase reporter gene assay was used to verify the targeting effect of miR-503 on RAF. The results showed that miR-503 was downregulated in a dose- and time-dependent manner in PDGF-BB-induced FBs. In addition, RAF is a direct target of miR-503 and can be negatively regulated. Overexpression of RAF can promote FB proliferation, migration, differentiation, collagen synthesis, and activation of downstream molecules (MEK/ERK), while overexpression of miR-503 can partially reverse the effects of RAF. Therefore, miR-503 regulates the biological behavior of PDGF-BB-induced oral mucosal FBs by influencing the activation of the RAS/RAF/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Dada Wen
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (D.W.); (H.Z.); (Y.Z.); (N.J.)
| | - Huamin Zhang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (D.W.); (H.Z.); (Y.Z.); (N.J.)
| | - Yutong Zhou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (D.W.); (H.Z.); (Y.Z.); (N.J.)
| | - Ni Jian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (D.W.); (H.Z.); (Y.Z.); (N.J.)
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410078, China;
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (D.W.); (H.Z.); (Y.Z.); (N.J.)
| |
Collapse
|
2
|
Luo L, Zhang W, You S, Cui X, Tu H, Yi Q, Wu J, Liu O. The role of epithelial cells in fibrosis: Mechanisms and treatment. Pharmacol Res 2024; 202:107144. [PMID: 38484858 DOI: 10.1016/j.phrs.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Fibrosis is a pathological process that affects multiple organs and is considered one of the major causes of morbidity and mortality in multiple diseases, resulting in an enormous disease burden. Current studies have focused on fibroblasts and myofibroblasts, which directly lead to imbalance in generation and degradation of extracellular matrix (ECM). In recent years, an increasing number of studies have focused on the role of epithelial cells in fibrosis. In some cases, epithelial cells are first exposed to external physicochemical stimuli that may directly drive collagen accumulation in the mesenchyme. In other cases, the source of stimulation is mainly immune cells and some cytokines, and epithelial cells are similarly altered in the process. In this review, we will focus on the multiple dynamic alterations involved in epithelial cells after injury and during fibrogenesis, discuss the association among them, and summarize some therapies targeting changed epithelial cells. Especially, epithelial mesenchymal transition (EMT) is the key central step, which is closely linked to other biological behaviors. Meanwhile, we think studies on disruption of epithelial barrier, epithelial cell death and altered basal stem cell populations and stemness in fibrosis are not appreciated. We believe that therapies targeted epithelial cells can prevent the progress of fibrosis, but not reverse it. The epithelial cell targeting therapies will provide a wonderful preventive and delaying action.
Collapse
Affiliation(s)
- Liuyi Luo
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Oral Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siyao You
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Xinyan Cui
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Hua Tu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Qiao Yi
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Jianjun Wu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| | - Ousheng Liu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Yang X, Zhao H, Li R, Chen Y, Xu Z, Shang Z. Stromal thrombospondin 1 suppresses angiogenesis in oral submucous fibrosis. Int J Oral Sci 2024; 16:17. [PMID: 38403794 PMCID: PMC10894862 DOI: 10.1038/s41368-024-00286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 01/21/2024] [Indexed: 02/27/2024] Open
Abstract
A decline in mucosal vascularity is a histological hallmark of oral submucous fibrosis (OSF), a premalignant disease that is largely induced by betel quid chewing. However, the lack of available models has challenged studies of angiogenesis in OSF. Here, we found that the expression of thrombospondin 1 (THBS1), an endogenous angiostatic protein, was elevated in the stroma of tissues with OSF. Using a fibroblast-attached organoid (FAO) model, the overexpression of THBS1 in OSF was stably recapitulated in vitro. In the FAO model, treatment with arecoline, a major pathogenic component in areca nuts, enhanced the secretion of transforming growth factor (TGF)-β1 by epithelial cells, which then promoted the expression of THBS1 in fibroblasts. Furthermore, human umbilical vein endothelial cells (HUVECs) were incorporated into the FAO to mimic the vascularized component. Overexpression of THBS1 in fibroblasts drastically suppressed the sprouting ability of endothelial cells in vascularized FAOs (vFAOs). Consistently, treatment with arecoline reduced the expression of CD31 in vFAOs, and this effect was attenuated when the endothelial cells were preincubated with neutralizing antibody of CD36, a receptor of THBS1. Finally, in an arecoline-induced rat OSF model, THBS1 inhibition alleviated collagen deposition and the decline in vascularity in vivo. Overall, we exploited an assembled organoid model to study OSF pathogenesis and provide a rationale for targeting THBS1.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Tong T, Xu A, Tan S, Jiang H, Liu L, Deng S, Wang H. Biological Effects and Biomedical Applications of Areca Nut and Its Extract. Pharmaceuticals (Basel) 2024; 17:228. [PMID: 38399443 PMCID: PMC10893415 DOI: 10.3390/ph17020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The dried, mature fruit of the palm tree species Areca catechu L. is known as the areca nut (AN) or betel nut. It is widely cultivated in the tropical regions. In many nations, AN is utilized for traditional herbal treatments or social activities. AN has historically been used to address various health issues, such as diarrhea, arthritis, dyspepsia, malaria, and so on. In this review, we have conducted a comprehensive summary of the biological effects and biomedical applications of AN and its extracts. Initially, we provided an overview of the constituents in AN extract. Subsequently, we summarized the biological effects of AN and its extracts on the digestive system, nervous system, and circulatory system. And we elucidated the contributions of AN and its extracts in antidepressant, anti-inflammatory, antioxidant, and antibacterial applications. Finally, we have discussed the challenges and future perspectives regarding the utilization of AN and its extracts as emerging pharmaceuticals or valuable adjuncts within the pharmaceutical field.
Collapse
Affiliation(s)
- Ting Tong
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Aiqing Xu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shuhua Tan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hengzhi Jiang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lixin Liu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Senwen Deng
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haihua Wang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
5
|
Gocol H, Zeng JH, Chang S, Koh BY, Nguyen H, Cirillo N. A Critical Interpretive Synthesis of the Role of Arecoline in Oral Carcinogenesis: Is the Local Cholinergic Axis a Missing Link in Disease Pathophysiology? Pharmaceuticals (Basel) 2023; 16:1684. [PMID: 38139811 PMCID: PMC10748297 DOI: 10.3390/ph16121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Arecoline is the primary active carcinogen found in areca nut and has been implicated in the pathogenesis of oral squamous cell carcinoma (OSCC) and oral submucous fibrosis (OSF). For this study, we conducted a stepwise review process by combining iterative scoping reviews with a post hoc search, with the aim of identifying the specific mechanisms by which arecoline initiates and promotes oral carcinogenesis. Our initial search allowed us to define the current trends and patterns in the pathophysiology of arecoline-induced OSF and OSCC, which include the induction of cell proliferation, facilitation of invasion, adhesion, and migration, increased collagen deposition and fibrosis, imbalance in immune and inflammatory mechanisms, and genotoxicity. Key molecular pathways comprise the activation of NOTCH1, MYC, PRDX2, WNT, CYR61, EGFR/Pl3K, DDR1 signaling, and cytokine upregulation. Despite providing a comprehensive overview of potential pathogenic mechanisms of OSF, the involvement of molecules functioning as areca alkaloid receptors, namely, the muscarinic and nicotinic acetylcholine receptors (AChRs), was not elucidated with this approach. Accordingly, our search strategy was refined to reflect these evidence gaps. The results of the second round of reviews with the post hoc search highlighted that arecoline binds preferentially to muscarinic AChRs, which have been implicated in cancer. Consistently, AChRs activate the signaling pathways that partially overlap with those described in the context of arecoline-induced carcinogenesis. In summary, we used a theory-driven interpretive review methodology to inform, extend, and supplement the conventional systematic literature assessment workflow. On the one hand, the results of this critical interpretive synthesis highlighted the prevailing trends and enabled the consolidation of data pertaining to the molecular mechanisms involved in arecoline-induced carcinogenesis, and, on the other, brought up knowledge gaps related to the role of the local cholinergic axis in oral carcinogenesis, thus suggesting areas for further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia (B.Y.K.)
| |
Collapse
|
6
|
Molecular pathways of oral submucous fibrosis and its progression to malignancy. Arch Oral Biol 2023; 148:105644. [PMID: 36804642 DOI: 10.1016/j.archoralbio.2023.105644] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
OBJECTIVE The review aims to comprehend various factors engaged in the alteration of molecular events resulting in Oral submucous fibrosis (OSMF) and its malignant transformation. DESIGN Literature pertinent to pathways involved in OSMF were explored in databases such as PubMed, Scopus and Google Scholar. The relevant literature was reviewed and critically appraised in this narrative review. RESULTS Areca nut components influence myriad of cellular molecules such as cytokines, growth factors, myofibroblasts, non-coding RNAs and alter their expression. These aberrantly expressed molecules drive the progression of OSMF from localized inflammation to fibrosis of buccal mucosa. The oral tissue suffers from oxidative stress, hypoxia, autophagy, aberration of cell cycle and DNA damage. Apoptosis of epithelial layer results in its atrophy facilitating deeper penetration of areca nut elements. With the advance of disease, epithelial-mesenchymal transition eventuates and promotes dysplasia. The jeopardized expression of various cellular molecules, suppressed apoptosis, along with increased genetic alterations and neovascularization favors the malignant transformation. CONCLUSION OSMF is a progressive disorder with complex mechanism of pathogenesis initiated by inflammation of oral mucosa. Continuous habit of areca nut chewing and the resulting insult to the tissues prevents healing process and is destined to debilitating disease which affects the quality of life with a higher probability of progression to malignancy.
Collapse
|
7
|
Wang S, Zheng C, Huang Y, He X. Betel quid may stimulate oral submucous fibrosis by inducing increased mitochondrial reactive oxygen species generation via copper overload. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Guo ZX, Zhang Z, Yan JF, Xu HQ, Wang SY, Ye T, Han XX, Wang WR, Wang Y, Gao JL, Niu LN, Chang J, Jiao K. A biomaterial-based therapy using a sodium hyaluronate/bioglass composite hydrogel for the treatment of oral submucous fibrosis. Acta Biomater 2023; 157:639-654. [PMID: 36509401 DOI: 10.1016/j.actbio.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Oral submucous fibrosis (OSF) is a chronic, inflammatory and potentially malignant oral disorder. Its pathophysiology is extremely complex, including excessive collagen deposition, massive inflammatory infiltration, and capillary atrophy. However, the existing clinical treatment methods do not fully take into account all the pathophysiological processes of OSF, so they are generally low effective and have many side effects. In the present study, we developed an injectable sodium hyaluronate/45S5 bioglass composite hydrogel (BG/HA), which significantly relieved mucosal pallor and restricted mouth opening in OSF rats without any obvious side effects. The core mechanism of BG/HA in the treatment of OSF is the release of biologically active silicate ions, which inhibit collagen deposition and inflammation, and promote angiogenesis and epithelial regeneration. Most interestingly, silicate ions can overall regulate the physiological environment of OSF by down-regulating α-smooth muscle actin (α-SMA) and CD68 and up-regulating CD31 expression, as well as regulating the expression of pro-fibrotic factors [transforming growth factor-β1 (TGF-β1), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α) and tissue inhibitors of metalloproteinase-1 (TIMP-1)] and anti-fibrotic factors [interleukin-1β (IL-1β)] in macrophage. In conclusion, our study shows that BG/HA has great potential in the clinical treatment of OSF, which provides an important theoretical basis for the subsequent development of new anti-fibrotic clinical preparations. STATEMENT OF SIGNIFICANCE: : Oral submucous fibrosis (OSF) is a chronic, inflammatory and potentially malignant mucosal disease with significant impact on the quality of patients' life. However, the existing clinical treatments have limited efficacy and many side effects. There is an urgent need for development of specific drugs for OSF treatment. In the present study, bioglass (BG) composited with sodium hyaluronate solution (HA) was used to treat OSF in an arecoline-induced rat model. BG/HA can significantly inhibit collagen deposition, regulate inflammatory response, promote angiogenesis and repair damaged mucosal epithelial cells, and thereby mitigate the development of fibrosis in vivo.
Collapse
Affiliation(s)
- Zhen-Xing Guo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhaowenbin Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jian-Fei Yan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao-Qing Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shu-Yan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Tao Ye
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao-Xiao Han
- The College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China; State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wan-Rong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yue Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jia-Lu Gao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Jiang Chang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
9
|
Fucoidan-Mediated Inhibition of Fibrotic Properties in Oral Submucous Fibrosis via the MEG3/miR-181a/Egr1 Axis. Pharmaceuticals (Basel) 2022; 15:ph15070833. [PMID: 35890132 PMCID: PMC9317791 DOI: 10.3390/ph15070833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023] Open
Abstract
Oral submucous fibrosis (OSF) is a chronic fibrotic remodeling disease that can progress to oral cancer. However, efficient clinical diagnosis and treatment methods for OSF are still lacking. This study investigated the anti-fibrotic effect of fucoidan on oral fibrosis. To evaluate the fibrotic ability (myofibroblast activities), we performed wound-healing, Transwell migration, and collagen contraction assays by using patient-derived normal and fibrotic buccal submucous fibroblasts (BMFs and fBMFs, respectively). RNA-sequencing and dual-luciferase reporter and RNA immunoprecipitation chip assays were performed to identify the clinical significance and molecular mechanism of non-coding RNAs. Fucoidan suppressed the myofibroblast activities and inhibited the MEG3 in fBMFs. MEG3 was overexpressed in the OSF tissue and was positively associated with myofibroblast markers. Knockdown of MEG3 markedly inhibited myofibroblast activities, which were restored by inhibiting miR-181a and overexpressing Egr1. The results from luciferase reporter and RIP assays confirmed that MEG3 functioned as a competing endogenous RNA (ceRNA) and could directly target miR-181a, thereby preventing the miR-181a-mediated translational repression of Egr1. This study demonstrated that MEG3 exerts a profibrotic effect on OSF by targeting miR-181a/Egr1. Therefore, the administration of fucoidan may serve as a potential therapeutic strategy for OSF by targeting the overexpression of MEG3.
Collapse
|
10
|
Saxena R, Prasoodanan P K V, Gupta SV, Gupta S, Waiker P, Samaiya A, Sharma AK, Sharma VK. Assessing the Effect of Smokeless Tobacco Consumption on Oral Microbiome in Healthy and Oral Cancer Patients. Front Cell Infect Microbiol 2022; 12:841465. [PMID: 35433507 PMCID: PMC9009303 DOI: 10.3389/fcimb.2022.841465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/02/2022] [Indexed: 01/19/2023] Open
Abstract
Oral cancer is a globally widespread cancer that features among the three most prevalent cancers in India. The risk of oral cancer is elevated by factors such as tobacco consumption, betel-quid chewing, excessive alcohol consumption, unhygienic oral condition, sustained viral infections, and also due to dysbiosis in microbiome composition of the oral cavity. Here, we performed an oral microbiome study of healthy and oral cancer patients to decipher the microbial dysbiosis due to the consumption of smokeless-tobacco-based products and also revealed the tobacco-associated microbiome. The analysis of 196 oral microbiome samples from three different oral sites of 32 healthy and 34 oral squamous cell carcinoma (OSCC) patients indicated health status, site of sampling, and smokeless tobacco consumption as significant covariates associated with oral microbiome composition. Significant similarity in oral microbiome composition of smokeless-tobacco-consuming healthy samples and OSCC samples inferred the possible role of smokeless tobacco consumption in increasing inflammation-associated species in oral microbiome. Significantly higher abundance of Streptococcus was found to adequately discriminate smokeless-tobacco-non-consuming healthy samples from smokeless-tobacco-consuming healthy samples and contralateral healthy site of OSCC samples from the tumor site of OSCC samples. Comparative analysis of oral microbiome from another OSCC cohort also confirmed Streptococcus as a potential marker for healthy oral microbiome. Gram-negative microbial genera such as Prevotella, Capnocytophaga, and Fusobacterium were found to be differentially abundant in OSCC-associated microbiomes and can be considered as potential microbiome marker genera for oral cancer. Association with lipopolysaccharide (LPS) biosynthesis pathway further confirms the differential abundance of Gram-negative marker genera in OSCC microbiomes.
Collapse
Affiliation(s)
- Rituja Saxena
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishnu Prasoodanan P K
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sonia Vidushi Gupta
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sudheer Gupta
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Prashant Waiker
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Atul Samaiya
- Department of Surgical Oncology, Bansal Hospital, Bhopal, India
| | - Ashok K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- Department of Gastroenterology, Inflammatory Bowel & Immunology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- *Correspondence: Vineet K. Sharma,
| |
Collapse
|
11
|
Bijai LK, Muthukrishnan A. Potential role of fibroblast senescence in malignant transformation of oral submucous fibrosis. Oral Oncol 2022; 127:105810. [PMID: 35303624 DOI: 10.1016/j.oraloncology.2022.105810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 01/29/2023]
Abstract
Oral Submucous Fibrosis (OSMF) is a disorder that occurs primarily due to the usage of betel nut and paan masala. The rate of malignant transformation from OSMF is 26 %. There are several markers to predict this malignant transformation such as inflammatory mediators, hypoxia, Cell cycle alteration, alteration in oncosuppressor genes, angiogenesis-related molecules, genetic susceptibility, and senescence. In carcinogenesis, multiple mutations occur leading to genetic damage. This affects the normal cell cycle and DNA repair. One of the reasons for the genetic damage and mutation to result is because of the release of by-products of oxidative metabolism called -reactive oxygen species (ROS) that can induce irreparable damage to cell structures. Free radicals produced in OSMF can cause DNA damage. An online search was performed on PubMed, Medline, Cochrane, and Web of Science databases. The keywords used were "oral Submucous fibrosis", "senescence-associated secretory phenotype molecule", "senescent fibroblast" and "oral squamous cell carcinoma". This review aims to narrate the role of senescence fibroblast cells in pathogenesis and malignant transformation of OSMF.
Collapse
Affiliation(s)
- Laliytha Kumar Bijai
- Maxillofacial Surgery and Diagnostic Sciences Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia.
| | - Arvind Muthukrishnan
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Chennai, India
| |
Collapse
|
12
|
Wang Y, Ding M, Ma H, Wu J, Zhao H, Wan Y. Development of a specific monoclonal antibody-based icELISA for detection of arecoline in traditional Chinese medicines and fresh areca nuts. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2021.2025347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yunhe Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, People’s Republic of China
| | - Mengying Ding
- Hainan State Key Laboratory of South China Sea Marine Resource Utilization, College of Marine Science, Hainan University, Haikou, People’s Republic of China
| | - Huaqing Ma
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, People’s Republic of China
| | - Jiao Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, People’s Republic of China
| | - Hongwei Zhao
- Center for tropical eco-environment restoration engineering of Hainnan Province, College of Ecology and Environment, Hainan University, Haikou, People’s Republic of China
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, People’s Republic of China
| |
Collapse
|
13
|
Saxena R, Prasoodanan P K V, Gupta SV, Gupta S, Waiker P, Samaiya A, Sharma AK, Sharma VK. Assessing the Effect of Smokeless Tobacco Consumption on Oral Microbiome in Healthy and Oral Cancer Patients. Front Cell Infect Microbiol 2022. [PMID: 35433507 DOI: 10.3389/fcimb.2022.841465/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Oral cancer is a globally widespread cancer that features among the three most prevalent cancers in India. The risk of oral cancer is elevated by factors such as tobacco consumption, betel-quid chewing, excessive alcohol consumption, unhygienic oral condition, sustained viral infections, and also due to dysbiosis in microbiome composition of the oral cavity. Here, we performed an oral microbiome study of healthy and oral cancer patients to decipher the microbial dysbiosis due to the consumption of smokeless-tobacco-based products and also revealed the tobacco-associated microbiome. The analysis of 196 oral microbiome samples from three different oral sites of 32 healthy and 34 oral squamous cell carcinoma (OSCC) patients indicated health status, site of sampling, and smokeless tobacco consumption as significant covariates associated with oral microbiome composition. Significant similarity in oral microbiome composition of smokeless-tobacco-consuming healthy samples and OSCC samples inferred the possible role of smokeless tobacco consumption in increasing inflammation-associated species in oral microbiome. Significantly higher abundance of Streptococcus was found to adequately discriminate smokeless-tobacco-non-consuming healthy samples from smokeless-tobacco-consuming healthy samples and contralateral healthy site of OSCC samples from the tumor site of OSCC samples. Comparative analysis of oral microbiome from another OSCC cohort also confirmed Streptococcus as a potential marker for healthy oral microbiome. Gram-negative microbial genera such as Prevotella, Capnocytophaga, and Fusobacterium were found to be differentially abundant in OSCC-associated microbiomes and can be considered as potential microbiome marker genera for oral cancer. Association with lipopolysaccharide (LPS) biosynthesis pathway further confirms the differential abundance of Gram-negative marker genera in OSCC microbiomes.
Collapse
Affiliation(s)
- Rituja Saxena
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishnu Prasoodanan P K
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sonia Vidushi Gupta
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sudheer Gupta
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Prashant Waiker
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Atul Samaiya
- Department of Surgical Oncology, Bansal Hospital, Bhopal, India
| | - Ashok K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- Department of Gastroenterology, Inflammatory Bowel & Immunology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
14
|
Zhang B, Gao L, Shao C, Deng M, Chen L. Arecoline Enhances Phosphodiesterase 4A Activity to Promote Transforming Growth Factor-β-Induced Buccal Mucosal Fibroblast Activation via cAMP-Epac1 Signaling Pathway. Front Pharmacol 2021; 12:722040. [PMID: 34819854 PMCID: PMC8606562 DOI: 10.3389/fphar.2021.722040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Chewing areca nut (betel quid) is strongly associated with oral submucous fibrosis (OSF), a pre-cancerous lesion. Among the areca alkaloids, arecoline is the main agent responsible for fibroblast proliferation; however, the specific molecular mechanism of arecoline affecting the OSF remains unclear. The present study revealed that arecoline treatment significantly enhanced Transforming growth factor-β (TGF-β)-induced buccal mucosal fibroblast (BMF) activation and fibrotic changes. Arecoline interacts with phosphodiesterase 4A (PDE4A) to exert its effects through modulating PDE4A activity but not PDE4A expression. PDE4A silence reversed the effects of arecoline on TGF-β-induced BMFs activation and fibrotic changes. Moreover, the exchange protein directly activated by cAMP 1 (Epac1)-selective Cyclic adenosine 3′,5′-monophosphate (cAMP) analog (8-Me-cAMP) but not the protein kinase A (PKA)-selective cAMP analog (N6-cAMP) remarkably suppressed α-smooth muscle actin(α-SMA) and Collagen Type I Alpha 1 Chain (Col1A1) protein levels in response to TGF-β1 and arecoline co-treatment, indicating that cAMP-Epac1 but not cAMP-PKA signaling is involved in arecoline functions on TGF-β1-induced BMFs activation. In conclusion, arecoline promotes TGF-β1-induced BMFs activation through enhancing PDE4A activity and the cAMP-Epac1 signaling pathway during OSF. This novel mechanism might provide more powerful strategies for OSF treatment, requiring further in vivo and clinical investigation.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Stomatology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lihua Gao
- Department of Dermatology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Chunsheng Shao
- Department of Stomatology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Mingsi Deng
- Department of Orthodontics, Changsha Stomatological Hospital, Changsha, China
| | - Liangjian Chen
- Department of Stomatology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
15
|
He Y, Wang W, Jiang P, Yang L, Guo Q, Xiang J, Gao Y, Wang Y, Chen R. Long Non-Coding RNAs in Oral Submucous Fibrosis: Their Functional Mechanisms and Recent Research Progress. J Inflamm Res 2021; 14:5787-5800. [PMID: 34764671 PMCID: PMC8578048 DOI: 10.2147/jir.s337014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown that most genomes are transcribed into non-coding RNAs (ncRNAs), including microRNAs (miRs) and long non-coding RNAs (lncRNAs), which can affect different cell characteristics. LncRNAs are long heterologous RNAs that regulate gene expression and various signaling pathways during homeostasis and development. Studies have shown that a lncRNA is an important regulatory molecule that can be targeted to change the physiology and function of cells. Expression or dysfunction of lncRNAs is closely related to various genetic, autoimmune, and metabolic diseases. The importance of ncRNAs in oral submucosal fibrosis (OSF) has garnered much attention in recent years. However, most research has focused on miRs. The role of these molecules in OSF is incompletely understood. This review focuses on the emerging role and function of lncRNAs in OSF as novel regulators. Finally, the potential functional role of lncRNAs as biomarkers for OSF diagnosis is also described. LncRNAs are expected to become a new therapeutic target, but more research is needed to understand their biological functions more deeply.
Collapse
Affiliation(s)
- Yaodong He
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Wei Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Pingping Jiang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, 230032, People's Republic of China
| | - Lin Yang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Qi Guo
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Junwei Xiang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Yuling Gao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Ran Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| |
Collapse
|
16
|
Kerr AR, Lodi G. Management of Oral Potentially Malignant Disorders. Oral Dis 2021; 27:2008-2025. [PMID: 34324758 DOI: 10.1111/odi.13980] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022]
Abstract
Patients with oral potentially malignant disorders (OPMDs), including oral leukoplakia and erythroplakia, proliferative verrucous leukoplakia, oral submucous fibrosis, and oral lichen planus/lichenoid lesions can be challenging to manage. A small proportion will undergo cancer development and determining a patient's cancer risk is key to making management decisions. Yet, our understanding of the natural history of OPMDs has not been fully elucidated, and a precision approach based on the integration of numerous predictive markers has not been validated by prospective studies. Evidence-based health promotion by clinicians and healthcare systems is not embraced universally. Medical and surgical interventions evaluated by rigorous research measuring important endpoints, such as cancer development, mortality, or survival are difficult and expensive to run. Most of these studies employ non-ideal surrogate endpoints and have deep methodologic flaws. Diagnostic criteria for enrolling research subjects are not uniform, and patients with the highest risk for cancer development comprise small proportions of those enrolled. Few studies explore quality of life and patient preferences. It is time to rethink how we approach the management of these patients, across each OPMD, and considering the healthcare infrastructure and cost effectiveness. Global networks with well-characterized patient populations with OPMDs and well-designed interventional trials using validated outcome measures are needed.
Collapse
Affiliation(s)
- A Ross Kerr
- Department of Oral & Maxillofacial Pathology, Radiology & Medicine.,New York University College of Dentistry, New York, NY, USA
| | - Giovanni Lodi
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milano, Italia
| |
Collapse
|
17
|
He ZB, Niu WB, Peng C, Gao C, Gao HJ, Niu J. The relationship between integrin avß6 and HBV infection in patients with liver cirrhosis and hepatocellular carcinoma: a preliminary report. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2021; 112:462-466. [PMID: 32450701 DOI: 10.17235/reed.2020.6607/2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE the aim of this study was to investigate the expression of integrin αvβ6 in normal, hepatitis B, HBV-associated cirrhosis and HBV-associated HCC liver tissues. METHODS immunohistochemistry and real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to study the expression of integrin αvβ6 in HBV-associated cirrhosis (n = 88), chronic hepatitis B ( n= 11), HBV-associated HCC (n = 84) and normal (n = 10) human liver tissues. RESULTS the expression of integrin αvβ6 was significantly upregulated in HBV-associated liver cirrhosis and the expression increased with an increase in severity of cirrhosis. Furthermore, it was moderately or weakly expressed in chronic hepatitis B and HBV-associated HCC liver tissues when compared to normal liver tissue. CONCLUSION integrin αvβ6 could be a predictive marker for the progression of liver cirrhosis associated with HBV infection. Further studies are needed to determine the association between the expression of integrin αvβ6 in hepatitis B and HBV-associated HCC liver tissues.
Collapse
Affiliation(s)
- Zhao-Bin He
- Hepatobiliary Medicine, Qilu Hospital. Shandong University
| | - Wei-Bo Niu
- Hepatobiliary Medicine, Qilu Hospital. Shandong University
| | - Cheng Peng
- Hepatobiliary Medicine, Qilu Hospital. Shandong University
| | - Chao Gao
- Hepatobiliary Medicine, Qilu Hospital. Shandong University
| | - Hui-Jie Gao
- Hepatobiliary Medicine, Qilu Hospital. Shandong University
| | - Jun Niu
- Hepatobiliary Medicine, Qilu Hospital. Shandong University, China
| |
Collapse
|
18
|
Wang J, You J, Gong D, Xu Y, Yang B, Jiang C. PDGF-BB induces conversion, proliferation, migration, and collagen synthesis of oral mucosal fibroblasts through PDGFR-β/PI3K/ AKT signaling pathway. Cancer Biomark 2021; 30:407-415. [PMID: 33492283 DOI: 10.3233/cbm-201681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To explore the pathogenesis of oral submucosal fibrosis (OSF) by analyzing the impact of Platelet Derived Growth Factor (PDGF)-BB on oral mucosal fibroblasts (FB) and PDGFR-β/Phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (AKT) signaling pathway. METHODS The isolated and purified oral mucosal fibroblasts were divided into four groups: the control group (CON, 10% FBS DMEM), the PDGF-BB group (40 ng/ml PDGF-BB), the PDGF-BB+IMA group (40 ng/ml PDGF-BB and 60 μmol/L IMA), and the PDGF-BB+LY294002 group (40 ng/ml PDGF-BB and 48 μmol/L LY294002). Primary human FB cells were isolated and cultured for detecting the effects of PDGF-BB on α-smooth muscle actin (α-SMA) by indirect immunofluorescence. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, Thiazolyl Blue Tetrazolium Bromide (MTT) method and scratch test were used to detect the proliferation and migration of FB. Western blots were used to detect the synthesis of type I collagen (Col I) and the expression of PDGFR-β/PI3K/AKT signaling pathway-related proteins. The effects of PDGFR-β inhibitor and PI3K inhibitor were observed. RESULTS Compared with group CON, group IMA, and group LY294002, α-SMA was upregulated in group PDGF-BB (p< 0.05), with higher OD490 nm value (p< 0.05), narrower average scratch width, and higher relative cell migration rate (p< 0.05). The expression levels of Col I, p-PDGFR-β, p-PI3K, and p-AKT were higher in group PDGF-BB (p< 0.05). CONCLUSIONS PDGF-BB induces FB to transform into myofibroblasts (MFB) through the PDGFR-β/PI3K/AKT signaling pathway, and promotes the proliferation, migration, and collagen synthesis.
Collapse
Affiliation(s)
- Jie Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jialing You
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ding Gong
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ying Xu
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Yang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Small Molecule "Silmitasertib" Repurposed as Inhibitor of Transforming Growth Factor Beta 1 for the Development of Therapeutics for Oral Submucous Fibrosis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6631848. [PMID: 33869629 PMCID: PMC8035005 DOI: 10.1155/2021/6631848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022]
Abstract
Oral submucous fibrosis (OSMF) is considered a premalignant condition characterized by aggressive fibrosis of the submucosal tissues of the oral cavity reflecting its malignant transformation potential. Activation of transforming growth factor beta (TGF-β) signaling has been reported to lead increased collagen production and fibrosis. Recently, significant upregulation of TGF-β1 has been reported in OSMF as compared to normal tissues. Therefore, inhibition of the TGF-β1 may pave for the development of therapeutics of OSMF. Based on the structure-assisted drug designing, we found "silmitasertib" as potent inhibitor of TGF-β1. We suggest that this molecule can be validated and implemented for the treatment of OSMF.
Collapse
|
20
|
Das A, Giri S. A Review on Role of Arecoline and Its Metabolites in the Molecular Pathogenesis of Oral Lesions with an Insight into Current Status of Its Metabolomics. Prague Med Rep 2020; 121:209-235. [PMID: 33270010 DOI: 10.14712/23362936.2020.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Areca nut consumption is a popular habit in Southeast Asian countries. One of the important biologically active alkaloids of areca nut is arecoline, which plays a role in mediating the development of several pathologies of the primary exposure site, the oral cavity. Studies on the metabolism of arecoline revealed the formation of several metabolites which themselves might be toxic. Moreover, polymorphisms in genes encoding enzymes involved in the metabolism of arecoline might predispose an organism towards the development of oral cancer. The present review tries to accumulate all the relevant existing literature and then elucidate the molecular mechanism by which arecoline plays a role in the development of oral submucous fibrosis and oral cancer. Existing information regarding arecoline metabolism, enzymes involved in the metabolic process and biological effects of the metabolites of arecoline have also been compiled and compared to study the toxicity of metabolites with its parent compound arecoline and whether they play any role in the pathogenesis of oral cancer mediated by areca nut consumption. A repertoire of molecular targets has come up in the discussion whose expression profile is perturbed by arecoline. Construction of induction cascade from existing literature has given an idea about the process of molecular pathogenesis. The summarized and analysed data can help to determine the molecular mechanism and drug targets, which in turn could be helpful in the prevention or treatment of these pathological conditions. It also brings into light areas where further research needs to be directed.
Collapse
Affiliation(s)
- Aparajita Das
- Laboratory of Molecular and Cell Biology, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Sarbani Giri
- Laboratory of Molecular and Cell Biology, Department of Life Science and Bioinformatics, Assam University, Silchar, India.
| |
Collapse
|
21
|
Li L, Gu L, Yao Z, Wang Y, Tang Z, Wu X. Arecoline suppresses epithelial cell viability by upregulating tropomyosin-1 through the transforming growth factor-β/Smad pathway. PHARMACEUTICAL BIOLOGY 2020; 58:1244-1251. [PMID: 33332205 PMCID: PMC7751430 DOI: 10.1080/13880209.2020.1851729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Oral submucous fibrosis (OSF) is a chronic and progressive disease. Arecoline, present in betel nuts, has been proposed as a vital aetiological factor. However, the underlying mechanism remains unclear. OBJECTIVES This research elucidates the expression of tropomyosin-1 (TPM1) and its regulation mechanism in HaCaT cells treated with arecoline. MATERIALS AND METHODS HaCaT cells were assigned into three groups: (1) Control; (2) Treated with arecoline (0.16 mM) for 48 h (3) Treated with arecoline (0.16 mM) and transfected with small interfering RNA (siRNA) for TPM1 (50 nM) for 48 h. CCK8, cell cycle, and apoptosis phenotypic analyses were performed. PCR and western blot analyses were performed to detect the expression level of TPM1 and examine the related signalling pathway. RESULTS The IC50 of arecoline was approximately 50 μg/mL (0.21 mM). The arecoline dose (0.16 mM) and time (48 h) markedly increased TPM1 expression at the mRNA and protein levels in HaCaT cells. Arecoline suppressed the cell growth, caused cell cycle arrest at the G1 phase, and induced cell apoptosis in HaCaT cells. siRNA-mediated knockdown of TPM1 attenuated the effect of arecoline on cell proliferation, apoptosis, and cell cycle arrest at the G1 phase. Furthermore, blocking of the transforming growth factor (TGF)-β receptor using SB431542 significantly suppressed TPM1 expression in the cells treated with arecoline. DISCUSSION AND CONCLUSIONS Arecoline suppresses HaCaT cell viability by upregulating TPM1 through the TGF-β/Smad signalling pathway. This research provides a scientific basis for further study of arecoline and TPM1 in OSF and can be generalised to broader pharmacological studies. TPM1 may be a promising molecular target for treating OSF.
Collapse
Affiliation(s)
- Long Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
| | - Liqun Gu
- Xiangya Stomatological Hospital, Central South University, Changsha, China
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhigang Yao
- Xiangya Stomatological Hospital, Central South University, Changsha, China
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yuehong Wang
- Xiangya Stomatological Hospital, Central South University, Changsha, China
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Xiangya Stomatological Hospital, Central South University, Changsha, China
- Xiangya School of Stomatology, Central South University, Changsha, China
- Zhangui Tang Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoying Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
- CONTACT Xiaoying Wu Department of Pathology, Xiangya Hospital, Central South University, Changsha410013, China
| |
Collapse
|
22
|
Genetic Susceptibility and Protein Expression of Extracellular Matrix Turnover-Related Genes in Oral Submucous Fibrosis. Int J Mol Sci 2020; 21:ijms21218104. [PMID: 33143101 PMCID: PMC7663238 DOI: 10.3390/ijms21218104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Betel quid (BQ) chewing increased the risk of oral cancer and oral submucous fibrosis (OSMF), an oral premalignant disorder (OPMD) with malignant transformation potential. BQ components such as areca nut (AN), trauma by coarse AN fiber, catechin, copper, alkaloids, stimulated reactive oxygen species (ROS), inflammation and cytotoxicity are suggested to be the contributing factors. They may induce tissue inflammation, proliferation of fibroblasts and collagen deposition, myofibroblast differentiation and contraction, collagen cross-links and inhibit collagen phagocytosis, finally leading to the development of OSMF and oral cancer. These events are mediated by BQ components-induced changes of extracellular matrix (ECM) turnover via regulation of TGF-β1, plasminogen activator inhibitor-1 (PAI-1), cystatin, lysyl oxidase (LOX) and tissue inhibitors of metalloproteinases (TIMPs) and metalloproteinases (MMPs). Genetic susceptibility is also involved in these disease processes. Further understanding the molecular mechanisms of BQ-induced OSMF and oral cancer can be helpful for future disease prevention and treatment.
Collapse
|
23
|
Phulari RGS, Dave EJ. A systematic review on the mechanisms of malignant transformation of oral submucous fibrosis. Eur J Cancer Prev 2020; 29:470-473. [PMID: 32740174 DOI: 10.1097/cej.0000000000000575] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oral submucous fibrosis (OSMF), the most commonly encountered potentially premalignant oral epithelial lesion, is a chronic disorder associated with areca nut chewing. It has a relatively high potential for malignant transformation resulting into oral squamous cell carcinoma (OSCC), the most common oral malignancy with high mortality rate. Paymaster first described the malignant potential of OSMF in 1956, the rate of which had been estimated to be 7-13%. The pathogenesis of OSMF in itself is quite varied, and hence, its transformation to malignancy is also open to many varied mechanisms. The early diagnosis and sequentially, early treatment of OSMF is desirable so that the progression towards malignancy can be controlled. There are various theories that have been put forward explaining the probable pathway of malignant transformation of OSMF such as hypoxia, areca nut as a carcinogen or epithelial-mesenchymal transitions. Many recent molecular advances have also highlighted few biomarkers and genes that play a pivotal role in transformation of OSMF to OSCC. The purpose of this systematic review is to discuss all the possible mechanisms of malignant transformation of OSMF. Further research is still needed to establish the exact mechanism responsible for transformation of OSMF to OSCC and to reduce the mortality by newer interventions.
Collapse
Affiliation(s)
- Rashmi G S Phulari
- Department of Oral and Maxillofacial Pathology and Microbiology, Manubhai Patel Dental College and Hospital, Vadodara, Gujarat, India
| | | |
Collapse
|
24
|
Jian X, Jian Y, Wu X, Guo F, Hu Y, Gao X, Jiang C, Li N, Wu Y, Liu D. Oral submucous fibrosis transforming into squamous cell carcinoma: a prospective study over 31 years in mainland China. Clin Oral Investig 2020; 25:2249-2256. [PMID: 32844258 DOI: 10.1007/s00784-020-03541-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Oral submucous fibrosis (OSF) is an oral mucous disease caused by betel quid chewing. It is controversial whether OSF can transform into oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS In this prospective study, a group of 567 patients with OSF were enrolled from 1986 to 2017 and followed-up until 2019. The cancerous information was collected and analyzed. RESULTS OSF transformed into OSCC in 32 cases (32/567, 5.6%). The patient's age ranged from 20 to 69 years, and the average age was 52 years. The time taken for transformation ranged from 2 to 24 years, the average being 8.6 years. The cancerous transformation occurred in 18 patients (56%) from years 2 to 9, in 13 patients (41%) from years 10-19 and in 1 patient (3%) from 24 years. We analyzed the betel quid chewing habits and found all 32 patients with OSCC-chewed betel quid. Betel quid chewing was most prevalent in patients aged 40-69 years. Sixteen patients had chewed betel quid for 10-19 years (16/32, 50%) and 19 patients (60%) chewed 10-19 slices each day. The OSCC was located in the left or right buccal regions in 23 patients (23/32; 72%) and in the left or right lingual regions in 4 patients (4/32; 12%). Well, moderately and poorly differentiated squamous cell carcinoma was present in 23 patients (23/32; 72%), 4 patients (3/32; 9%), and 5 patients (5/32; 16%), respectively. CONCLUSION Our findings supported that OSF is a real oral premalignant disorder. CLINICAL RELEVANCE The long duration of the transformation from the OSF to OSCC suggests more frequent examinations and corresponding treatments are necessary for OSF patients.
Collapse
Affiliation(s)
- Xinchun Jian
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Yu Jian
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xiaoshan Wu
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Feng Guo
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yanjia Hu
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Xing Gao
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yingfang Wu
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hainan, 410008, People's Republic of China
| | - Deyu Liu
- Department of Oral and Maxillofacial Surgery, People's Hospital of Haikou City, Central South University, Haikou, Hainan, 507208, People's Republic of China
| |
Collapse
|
25
|
Shetty SS, Sharma M, Fonseca FP, Jayaram P, Tanwar AS, Kabekkodu SP, Kapaettu S, Radhakrishnan R. Signaling pathways promoting epithelial mesenchymal transition in oral submucous fibrosis and oral squamous cell carcinoma. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:97-108. [PMID: 32874377 PMCID: PMC7452314 DOI: 10.1016/j.jdsr.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process that occurs during the embryonic development, wound healing, organ fibrosis and the onset of malignancy. Emerging evidence suggests that the EMT is involved in the invasion and metastasis of cancers. The inflammatory reaction antecedent to fibrosis in the onset of oral submucous fibrosis (OSF) and the role of EMT in its malignant transformation indicates a hitherto unexplored involvement of EMT. This review focuses on the role of EMT markers which are regulators of the EMT mediated complex network of molecular mechanisms involved in the pathogenesis of OSF and OSCC. Further the gene enrichment analysis and pathway analysis supports the association of the upregulated and downregulated genes in various EMT regulating pathways.
Collapse
Affiliation(s)
- Smitha Sammith Shetty
- Department of Oral Pathology, Faculty of Dentistry, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohit Sharma
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences and Research, Faridabad 121004, India
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ankit Singh Tanwar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Satyamoorthy Kapaettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
- Corresponding author.
| |
Collapse
|
26
|
Positive Feedback Loop of SNAIL-IL-6 Mediates Myofibroblastic Differentiation Activity in Precancerous Oral Submucous Fibrosis. Cancers (Basel) 2020; 12:cancers12061611. [PMID: 32570756 PMCID: PMC7352888 DOI: 10.3390/cancers12061611] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Oral submucosal fibrosis (OSF) is a premalignant disorder of the oral cavity, and areca nut chewing is known to be a major etiological factor that could induce epithelial to mesenchymal transition (EMT) and activate buccal mucosal fibroblasts (BMFs). However, this detailed mechanism is not fully understood. In this study, we showed that the upregulation of Snail in OSF samples and fibrotic BMFs (fBMFs) may result from constant irritation by arecoline, a major alkaloid of the areca nut. The elevation of Snail triggered myofibroblast transdifferentiation and was crucial to the persistent activation of fBMFs. Meanwhile, Snail increased the expression of numerous fibrosis factors (e.g., α-SMA and collagen I) as well as IL-6. Results from bioinformatics software and a luciferase-based reporter assay revealed that IL-6 was a direct target of Snail. Moreover, IL-6 in BMFs was found to further increase the expression of Snail and mediate Snail-induced myofibroblast activation. These findings suggested that there was a positive loop between Snail and IL-6 to regulate the areca nut-associated myofibroblast transdifferentiation, which implied that the blockage of Snail may serve as a favorable therapeutic strategy for OSF treatment.
Collapse
|
27
|
Rai A, Ahmad T, Parveen S, Parveen S, Faizan MI, Ali S. Expression of transforming growth factor beta in oral submucous fibrosis. J Oral Biol Craniofac Res 2020; 10:166-170. [PMID: 32489816 DOI: 10.1016/j.jobcr.2020.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 02/02/2023] Open
Abstract
Background Oral submucous fibrosis (OSMF) is a premalignant condition mainly caused by areca nut chewing and is characterized by progressive fibrosis of submucosal tissues and epithelial atrophy. Activation of transforming growth factor beta (TGF-β) signaling is considered main causative event for increased collagen production and fibrosis. In this study, molecular pathogenesis of OSMF was investigated based on the expression of the TGF-β genes in OSMF tissues compared to normal controls. Methods A total of 33 OSMF and 10 normal tissues were collected from patients and their clinic-epidemiological data was recorded. The expression of TGF-β isoform genes- TGF β1, TGF β2, TGF β3 and its receptor TGF βR1, TGF βR2 was studied by real time polymerase chain reaction (PCR). Comparison of the expression of these genes among normal controls and OSMF patients was done. The PCR results were confirmed by histopathological and immunohistochemical staining. Results The histological changes included atrophic epithelium, loss of rete ridges, presence of inflammatory cells and dense collagen bundles in connective tissue. PCR showed statistically significant upregulation of TGF-β isoforms in OSMF as compared to normal tissues. Of the three isoforms, maximum fold change was observed in TGF-β1. Similarly, both TGF-βR1 and TGF-βR2 were found to be elevated in OSMF tissues compared to normal. The semi-quantitative analysis by immunohistochemical staining revealed statistically significant difference between normal and OSMF tissues. Conclusion TGF-β signaling plays a major role in the molecular pathogenesis of OSMF as shown by increased mRNA expression of all the three TGF-β isotypes and their receptors.
Collapse
Affiliation(s)
- Arpita Rai
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.,Department of Oral Medicine and Radiology, Dental Institute, Rajendra Institute of Medical Sciences, Ranchi, India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advance Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saba Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imam Faizan
- Multidisciplinary Centre for Advance Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
28
|
Guo J, Xie H, Mao S, Liang M, Wu H. Efficacy of hyaluronidase combined with corticosteroids in treatment of oral submucous fibrosis: A meta-analysis of randomized controlled clinical trials. J Oral Pathol Med 2020; 49:311-319. [PMID: 32145110 DOI: 10.1111/jop.13009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This meta-analysis was performed to systematically evaluate the efficacy of hyaluronidase combined with corticosteroids compared with other drugs in improving maximum mouth opening and alleviating the burning sensation in patients with oral submucous fibrosis (OSF). METHODS PubMed, Embase, Web of Science and the Cochrane Library were searched. RevMan 5.3 software was used for the meta-analysis. RESULTS Six studies involving 244 patients with OSF were analysed. No significant difference in improvement of maximum mouth opening was found between the hyaluronidase and control groups (lycopene, pentoxifylline, aloe vera, dexamethasone, Turmix [curcumin + piperine] and isoxsuprine) at 1 month (mean difference [MD]: 0.32, 95% confidence interval [CI]: -0.92-1.56, P = .61, I2 = 57%), 2 months (MD: 0.49, 95% CI: -0.14-1.12, P = .12, I2 = 41%) or 3 months (MD: 0.40, 95% CI: -1.08-1.87, P = .60, I2 = 92%). Additionally, no statistically significant difference was found in alleviation of the burning sensation between the two groups at 1 month (MD: 0.54, 95% CI: -0.62-1.71, P = .36, I2 = 0%), 2 months (MD: 0.53, 95% CI: -0.85-1.91, P = .45, I2 = 0%) or 3 months (MD: 0.64, 95% CI: -1.07 to 2.35, P = .46, I2 = 0%). CONCLUSIONS According to this meta-analysis, weak evidence indicates that hyaluronidase combined with corticosteroids has no additional clinical benefit over control drugs (lycopene, pentoxifylline, aloe vera, dexamethasone, Turmix and isoxsuprine) in improving maximum mouth opening and alleviating the burning sensation in patients with OSF. Therefore, more high-quality, multi-centre randomized controlled trials with larger samples are needed to further assess the efficacy of hyaluronidase combined with corticosteroids in the treatment of OSF.
Collapse
Affiliation(s)
- Jincai Guo
- Changsha Stomatological Hospital, Changsha, China
| | - Hui Xie
- Changsha Stomatological Hospital, Changsha, China
| | - Shun Mao
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Mining Liang
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hao Wu
- Changsha Stomatological Hospital, Changsha, China
| |
Collapse
|
29
|
Zagabathina S, Ramadoss R, Ah HP, Krishnan R. Comparative Evaluation of SMAD-2 Expression in Oral Submucous Fibrosis and Reactive Oral Lesions. Asian Pac J Cancer Prev 2020; 21:399-403. [PMID: 32102517 PMCID: PMC7332118 DOI: 10.31557/apjcp.2020.21.2.399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The event of fibrosis encompasses involvement of definite immunological and molecular mechanisms. As quite a lot of pro-fibrotic pathways are concerned, a multipronged approach is obligatory to cognize the fibrotic events. SMAD signaling pathway hasn't been studied oral fibrotic events.In the progression of cramming the SMAD signaling pathway in OSMF, the first initiator protein of the pathway was considered for evaluation in the present study. MATERIALS AND METHODS A total of 100 subjects consisting of 20 controls, 40 patients with reactive lesions such as Traumatic Fibroma, Epulis Fissuratum and Gingival Hyperplasia and 40 patients with Oral Submucous Fibrosis were recruited for the study. Tissue homogenates were assayed by quantitative sandwich enzyme immunoassay technique using Human Mothers Against Decapentaplegic Homolog 2 (Smad2). RESULTS SMAD 2 expression values showed significant difference between control and OSMF group. However, the difference between reactive lesions with control and OSMF were not statistically significant. CONCLUSION Graded increase of SMAD 2 expression from control,reactive lesions and OSMF were observed accentuating the role of SMAD signalling pathway in fibro genesis. Further this can be validated to generate effective antifibrotic targets.
Collapse
Affiliation(s)
- Sravya Zagabathina
- Department of Oral Pathology and Microbiology, SRM Dental College, SRM University, Chennai, India
| | - Ramya Ramadoss
- Department of Oral Pathology and Microbiology, SRM Dental College, SRM University, Chennai, India
| | - Harini Priya Ah
- Department of Oral Pathology, Chettinad Dental College and Research Institute, Chennai, India
| | - Rajkumar Krishnan
- Department of Oral Pathology and Microbiology, SRM Dental College, SRM University, Chennai, India
| |
Collapse
|
30
|
Chang MC, Pan YH, Wu HL, Lu YJ, Liao WC, Yeh CY, Lee JJ, Jeng JH. Stimulation of MMP-9 of oral epithelial cells by areca nut extract is related to TGF-β/Smad2-dependent and -independent pathways and prevented by betel leaf extract, hydroxychavicol and melatonin. Aging (Albany NY) 2019; 11:11624-11639. [PMID: 31831717 PMCID: PMC6932916 DOI: 10.18632/aging.102565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/20/2019] [Indexed: 04/13/2023]
Abstract
BACKGROUND There are 200-600 million betel quid (BQ) chewers in the world. BQ increases oral cancer risk. Matrix metalloproteinase-9 (MMP-9) is responsible for matrix degradation, cancer invasion and metastasis. Whether areca nut extract (ANE), a BQ component, stimulates MMP-9 secretion, and the related signaling pathways awaits investigation. RESULTS ANE (but not arecoline) stimulated MMP-9 production of gingival keratinocytes and SAS cancer epithelial cells. ANE stimulated TGF-β1, p-Smad2, and p-TAK1 protein expression. ANE-induced MMP-9 production/expression in SAS cells can be attenuated by SB431542 (ALK5/Smad2 inhibitor), 5Z-7-Oxozeaenol (TAK1 inhibitor), catalase, PD153035 (EGFR tyrosine kinase inhibitor), AG490 (JAK inhibitor), U0126 (MEK/ERK inhibitor), LY294002 (PI3K/Akt inhibitor), betel leaf (PBL) extract, and hydroxychavicol (HC, a PBL component), and melatonin, but not by aspirin. CONCLUSIONS AN components contribute to oral carcinogenesis by stimulating MMP-9 secretion, thus enhancing tumor invasion/metastasis. These events are related to reactive oxygen species, TGF-β1, Smad2-dependent and -independent signaling, but not COX. These signaling molecules can be biomarkers of BQ carcinogenesis. PBL, HC and melatonin and other targeting therapy can be used for oral cancer treatment. METHODS ANE-induced MMP-9 expression/secretion of oral epithelial cells and related TGF-β1, Smad-dependent and -independent signaling were studied by MTT assay, RT-PCR, western blotting, immunofluorescent staining, and ELISA.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Chang-Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Yi-Jie Lu
- Graduate Institute of Oral Biology, National Taiwan University Medical College, Taipei, Taiwan
| | - Wan-Chuen Liao
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Yang Yeh
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jang-Jaer Lee
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Chemistry, metabolism and pharmacology of carcinogenic alkaloids present in areca nut and factors affecting their concentration. Regul Toxicol Pharmacol 2019; 110:104548. [PMID: 31805361 DOI: 10.1016/j.yrtph.2019.104548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/28/2022]
Abstract
Areca Nut (AN), the seed of tropical palm tree Areca catechu, is a widely chewed natural product with estimated 600 million users across the world. Various AN products, thriving in the market, portray 'Areca nut' or 'Supari' as mouth freshener and safe alternative to smokeless tobacco. Unfortunately, AN is identified as a Group 1 human carcinogen by International Agency for Research on Cancer (IARC). Wide variation in the level of alkaloids, broadly ranging from 2 to 10 mg/gm dry weight, is observed in diverse variety of AN sold worldwide. For the first time, various factors influencing the formation of carcinogenic alkaloids in AN at various stages, including during the growth, processing, and storage of the nut, are discussed. Current review illustrates the mechanism of cancer induction by areca alkaloids in humans and also compiles dose-dependent pharmacology and toxicology data of arecoline, the most potent carcinogenic alkaloid in AN. Careful monitoring of the arecoline content in AN can potentially be used as a tool in product surveillance studies to identify the variations in characteristics of various AN sample sold worldwide. The article will help to generate public awareness and sensitize the government bodies to initiate campaigns against AN use and addiction.
Collapse
|
32
|
Li YC, Cheng AJ, Lee LY, Huang YC, Chang JTC. Multifaceted Mechanisms of Areca Nuts in Oral Carcinogenesis: the Molecular Pathology from Precancerous Condition to Malignant Transformation. J Cancer 2019; 10:4054-4062. [PMID: 31417650 PMCID: PMC6692602 DOI: 10.7150/jca.29765] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Oral cancer is one of the most frequent malignant diseases worldwide, and areca nut is a primary carcinogen causing this cancer in Southeast Asia. It has been widely reported that areca nut induced several cytotoxic effects in oral cells, including ROS generation, inflammation, tissue hypoxia, DNA damage, and cell invasion. Recently, through chronic exposure model, more extensive pathological effects due to areca nut have been found. These include the induction of autophagy, promotion of epithelial- mesenchymal transition, and facilitation of cancer stemness conversion. Clinical findings support these adverse effects. Oral submucosal fibrosis, a premalignant condition, is prevalent in the area with habitual chewing of areca nuts. Consistently, oral cancer patients with habitual chewing areca nut exhibit more aggressive phenotypes, including resistance to chemo-radiotherapy. In this review, we comprehensively discuss and concisely summarize the up-to-date molecular and cellular mechanisms by which areca nuts contribute to malignant transformation. This review may provide critical information regarding clinical applications in risk assessment, disease prevention, diagnosis, and personalized therapeutics for areca nut-induced oral malignancy.
Collapse
Affiliation(s)
- Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Yu-Chen Huang
- Department of Oral Maxillofacial Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Joseph Tung-Chieh Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan.,Department of Radiation Oncology, Xiamen Chang Gung Memorial Hospital, Xiamen, Fujian, China
| |
Collapse
|
33
|
Gu L, Xie C, Peng Q, Zhang J, Li J, Tang Z. Arecoline suppresses epithelial cell viability through the Akt/mTOR signaling pathway via upregulation of PHLPP2. Toxicology 2019; 419:32-39. [PMID: 30910432 DOI: 10.1016/j.tox.2019.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/19/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022]
Abstract
Arecoline, the major active ingredient of the betel nut, is involved in the pathogenesis of oral submucous fibrosis. However, the underlying mechanism of this pathogenesis remains unclear. In this study, we found that arecoline suppresses the cell proliferation of the HaCaT epithelial cell and induces cell cycle arrest at the G1/S phase with an IC50 of 50 μg/mL. Furthermore, we found that arecoline reduces the protein level of cyclin D1, but it has no effect on its mRNA level and protein stability, implying that arecoline may modulate the translation of cyclin D1. We also observed the downregulation of the Akt/mTOR signaling pathway after treatment with arecoline, which may be related to the translation of cyclin D1. RNA-seq analysis identified that PHLPP2, the direct upstream target of Akt, is significantly upregulated after arecoline treatment. siRNA-mediated knockdown of PHLPP2 recovered the phosphorylation state of Akt, as well as attenuated the effect of arecoline on cell viability. Thus, our study revealed the crucial role of PHLPP2 in arecoline-induced cell viability suppression.
Collapse
Affiliation(s)
- Liqun Gu
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| | - Changqing Xie
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Qian Peng
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Jiaming Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| | - Jiada Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| | - Zhangui Tang
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
34
|
Wadhwan V, Venkatesh A, Reddy V, Malik S. The role of myofibroblasts in the progression of oral submucous fibrosis: A systematic review. J Oral Maxillofac Pathol 2019; 23:257-266. [PMID: 31516233 PMCID: PMC6714277 DOI: 10.4103/jomfp.jomfp_238_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Oral Submucous Fibrosis (OSMF) is a chronic progressive scarring oral disease predominantly affecting people of South Asian origin. It is characterized by juxtaepithelial inflammatory cell infiltration followed by fibrosis in the lamina propria and submucosa of the oral mucosa. The pathogenesis of the disease is not well established and a number of mechanisms have been proposed regarding the pathogenesis. A renewed interest has been shown in myofibrobasts which have been implicated to play a significant role in the pathogenesis of OSMF. The myofibroblast were initially identified by means of electron microscopy in granulation tissue of healing wounds as a modulated fibroblast exhibiting features of smooth muscle cells, with prominent bundles of microfilaments, dense bodies scattered in between, and gap junctions. The presence of myofibroblasts has successively been described in practically all fibrotic situations characterized by tissue retraction and remodeling. This review paper is an attempt to identify all the studies involving myofibroblasts and explaining the pathogenesis in a simplified manner.
Collapse
Affiliation(s)
- Vijay Wadhwan
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Arvind Venkatesh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Smile Square Multispecialty Dental Centre, Karur, Tamil Nadu, India
| | - Vandana Reddy
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sangeeta Malik
- Department of Oral Medicine and Radiology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| |
Collapse
|
35
|
An Evaluation of Clinical and Histopathological Aspects of Patients with Oral Submucous Fibrosis in the Background of Oral Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4154165. [PMID: 30402477 PMCID: PMC6198553 DOI: 10.1155/2018/4154165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/06/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Background The behavior and prognosis of oral squamous cell carcinoma (OSCC) is presumably different in patients with oral submucous fibrosis (OSF). The objective of this study was to assess the effects of demographic features, habits, and histopathological features in the transformation of OSF to OSCC. Methods Data were extracted from the archives and histopathological evaluation and presence of nodal metastasis were recorded. Results OSF was detected in 130 (48%) out of 273 OSCC patients. The mean age of presentation among OSF-positive patients was 57.7 years, while patients diagnosed only with OSCC had a comparatively higher age, 59.5 years. In the below 50 years of age group, presence of OSF with OSCC was less (40%). In the OSF-positive group, male to female ratio was 3.2:1. The common primary sites were buccal mucosa and tongue in both groups. Betel quid chewing was present in more than 95% of the sample. Betel chewing, smoking, and alcohol consumption were present in 26.15% of OSF-positive patients. Degree of fibrosis was neither associated with the level of histological differentiation of the tumor (p= 0.195) nor associated with the malignant transformation (p =0.373). Lymph node metastasis was not seen in 76.63% and 68.54% of the patients with and without OSF, respectively. Conclusions High degree of prevalence of OSF was observed among the OSCC patients. There were also a male predilection and younger age at presentation in these patients. However, a significant association was not observed in the degree of fibrosis with malignant transformation or the level of histopathological differentiation of the tumor. Lymph node metastasis also failed to express a significant relationship with the presence of OSF.
Collapse
|
36
|
You Y, Huang Y, Wang D, Li Y, Wang G, Jin S, Zhu X, Wu B, Du X, Li X. Angiotensin (1-7) inhibits arecoline-induced migration and collagen synthesis in human oral myofibroblasts via inhibiting NLRP3 inflammasome activation. J Cell Physiol 2018; 234:4668-4680. [PMID: 30246378 DOI: 10.1002/jcp.27267] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
Abstract
Arecoline induces oral submucous fibrosis (OSF) via promoting the reactive oxygen species (ROS). Angiotensin (1-7) (Ang-(1-7)) protects against fibrosis by counteracting angiotensin II (Ang-II) via the Mas receptor. However, the effects of Ang-(1-7) on OSF remain unknown. NOD-like receptors (NLRs) family pyrin domain containing 3 (NLRP3) inflammasome is identified as the novel mechanism of fibrosis. Whereas the effects of arecoline on NLRP3 inflammasome remain unclear. We aimed to explore the effect of Ang-(1-7) on NLRP3 inflammasome in human oral myofibroblasts. In vivo, activation of NLRP3 inflammasomes with an increase of Ang-II type 1 receptor (AT1R) protein level and ROS production in human oral fibrosis tissues. Ang-(1-7) improved arecoline-induced rats OSF, reduced protein levels of NADPH oxidase 4 (NOX4) and the NLRP3 inflammasome. In vitro, arecoline increased ROS along with upregulation of the angiotensin-converting enzyme (ACE)/Ang-II/AT1R axis and NLRP3 inflammasome/interleukin-1β axis in human oral myofibroblasts, which were reduced by NOX4 inhibitor VAS2870, ROS scavenger N-acetylcysteine, and NOX4 small interfering RNA (siRNA). Furthermore, arecoline induced collagen synthesis or migration via the Smad or RhoA-ROCK pathway respectively, which could be inhibited by NLRP3 siRNA or caspase-1 blocker VX-765. Ang-(1-7) shifted the balance of RAS toward the ACE2/Ang-(1-7)/Mas axis, inhibited arecoline-induced ROS and NLRP3 inflammasome activation, leading to attenuation of migration or collagen synthesis. In summary, Ang-(1-7) attenuates arecoline-induced migration and collagen synthesis via inhibiting NLRP3 inflammasome in human oral myofibroblasts.
Collapse
Affiliation(s)
- Yuehua You
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Stomatology, The People's Hospital of Longhua, Shenzhen, China
| | - Yun Huang
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Cadre's Ward, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Dan Wang
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Li
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhen Wang
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyi Jin
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xintao Zhu
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bin Wu
- Department of Stomatology, The People's Hospital of Longhua, Shenzhen, China
| | - Xinya Du
- Department of Stomatology, The People's Hospital of Longhua, Shenzhen, China
| | - Xu Li
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Hsieh YP, Wu KJ, Chen HM, Deng YT. Arecoline activates latent transforming growth factor β1 via mitochondrial reactive oxygen species in buccal fibroblasts: Suppression by epigallocatechin-3-gallate. J Formos Med Assoc 2018; 117:527-534. [DOI: 10.1016/j.jfma.2017.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/29/2023] Open
|
38
|
Koivisto L, Bi J, Häkkinen L, Larjava H. Integrin αvβ6: Structure, function and role in health and disease. Int J Biochem Cell Biol 2018; 99:186-196. [PMID: 29678785 DOI: 10.1016/j.biocel.2018.04.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
Integrins are cell surface receptors that traditionally mediate cell-to-extracellular matrix and cell-to-cell adhesion. They can, however, also bind a large repertoire of other molecules. Integrin αvβ6 is exclusively expressed in epithelial cells where it can, for example, serve as a fibronectin receptor. However, its hallmark function is to activate transforming growth factor-β1 (TGF-β1) to modulate innate immune surveillance in lungs and skin and along the gastrointestinal tract, and to maintain epithelial stem cell quiescence. The loss of αvβ6 integrin function in mice and humans leads to an altered immune response in lungs and skin, amelogenesis imperfecta, periodontal disease and, in some cases, alopecia. Elevated αvβ6 integrin expression and aberrant TGF-β1 activation and function are associated with organ fibrosis and cancer. Therefore, αvβ6 integrin serves as an attractive target for cancer imaging and for fibrosis and cancer therapy.
Collapse
Affiliation(s)
- Leeni Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Jiarui Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Lari Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Hannu Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
39
|
Betel nut chewing and the risk of chronic kidney disease: evidence from a meta-analysis. Int Urol Nephrol 2018; 50:1097-1104. [PMID: 29441477 DOI: 10.1007/s11255-018-1819-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/04/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate and quantify the potential association between betel nut chewing and the risk of chronic kidney disease (CKD). METHODS We searched five online databases including PubMed, EMBASE, ISI Web of Science, Wanfang and CNKI to identify observational studies that published prior to May, 1, 2017. The primary outcome was the association between betel nut chewing and CKD expressed as odds ratio (OR) and the corresponding 95% confidence interval (95%CI) after adjustment for other covariates. Meta-analysis was performed using RevMan 5.3 software; the leave-one-out sensitivity analysis was used to confirm the stability of drawn conclusion. RESULTS Five studies comprising a total of 10,562 CKD patients and 34,038 subjects without CKD that analyzed the relationship between betel nut chewing and CKD were included in our study; all the included studies were performed in Taiwan. After the adjustment for covariates, the combined adjusted ORs showed that betel nut used had 1.44 times higher risk to develop CKD compared with non-chewers (OR 1.44, 95%CI 1.08-1.92). CONCLUSIONS Betel nut chewing could significantly increase the risk of CKD, indicating that betel nut chewing may exist as an independent risk factor for CKD. Further investigation should be warranted.
Collapse
|
40
|
Liu C, Yuan L, Zou Y, Yang M, Chen Y, Qu X, Liu H, Jiang J, Xiang Y, Qin X. ITGB4 is essential for containing HDM-induced airway inflammation and airway hyperresponsiveness. J Leukoc Biol 2018; 103:897-908. [PMID: 29393977 DOI: 10.1002/jlb.3a1017-411rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
Airway epithelial cells play a significant role in the pathogenesis of asthma. Although the structural and functional defects of airway epithelial cells have been postulated to increase asthma susceptibility and exacerbate asthma severity, the mechanism and implication of these defects remain uncertain. Integrin β4 (ITGB4) is a structural adhesion molecule that is downregulated in the airway epithelium of asthma patients. In this study, we demonstrated that ITGB4 deficiency leads to severe allergy-induced airway inflammation and airway hyper-responsiveness (AHR) in mice. After house dust mite (HDM) challenge, epithelial cell-specific ITGB4-deleted mice showed increased lymphocyte, eosinophil, and neutrophil infiltration into lung compared with that of the wild-type mice. ITGB4 deficiency also resulted in increased expression of the Th2 cytokine IL-4, IL-13, and the Th17 cytokine IL-17A in the lung tissue and in the T cells after HDM challenge. The aggravated inflammation in ITGB4 defect mice was partly caused by enhanced disrupted epithelial barrier integrity after HDM stress, which induced the increased thymic stromal lymphopoietin secretion from airway epithelial cells. This study therefore demonstrates that ITGB4 plays a pivotal role in containing allergen-mediated lung inflammation and airway hyper-responsiveness in allergic asthma.
Collapse
Affiliation(s)
- Chi Liu
- Departments of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lin Yuan
- Departments of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Yu Chen
- Department of Examination, Medical College of Hunan Normal University, Changsha, Hunan, China
| | - Xiangping Qu
- Departments of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Huijun Liu
- Departments of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Surgery Research, Third Military Medical University, Chongqing, China
| | - Yang Xiang
- Departments of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoqun Qin
- Departments of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
41
|
Ning X, Zhang K, Wu Q, Liu M, Sun S. Emerging role of Twist1 in fibrotic diseases. J Cell Mol Med 2018; 22:1383-1391. [PMID: 29314610 PMCID: PMC5824384 DOI: 10.1111/jcmm.13465] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/20/2017] [Indexed: 01/04/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a pathological process that occurs in a variety of diseases, including organ fibrosis. Twist1, a basic helix–loop–helix transcription factor, is involved in EMT and plays significant roles in various fibrotic diseases. Suppression of the EMT process represents a promising approach for the treatment of fibrotic diseases. In this review, we discuss the roles and the underlying molecular mechanisms of Twist1 in fibrotic diseases, including those affecting kidney, lung, skin, oral submucosa and other tissues. We aim at providing new insight into the pathogenesis of various fibrotic diseases and facilitating the development of novel diagnostic and therapeutic methods for their treatment.
Collapse
Affiliation(s)
- Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qingfeng Wu
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Minna Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
42
|
Hanley CJ, Mellone M, Ford K, Thirdborough SM, Mellows T, Frampton SJ, Smith DM, Harden E, Szyndralewiez C, Bullock M, Noble F, Moutasim KA, King EV, Vijayanand P, Mirnezami AH, Underwood TJ, Ottensmeier CH, Thomas GJ. Targeting the Myofibroblastic Cancer-Associated Fibroblast Phenotype Through Inhibition of NOX4. J Natl Cancer Inst 2018; 110:4060751. [PMID: 28922779 PMCID: PMC5903651 DOI: 10.1093/jnci/djx121] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/08/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are tumor-promoting and correlate with poor survival in many cancers, which has led to their emergence as potential therapeutic targets. However, effective methods to manipulate these cells clinically have yet to be developed. Methods CAF accumulation and prognostic significance in head and neck cancer (oral, n = 260; oropharyngeal, n = 271), and colorectal cancer (n = 56) was analyzed using immunohistochemistry. Mechanisms regulating fibroblast-to-myofibroblast transdifferentiation were investigated in vitro using RNA interference/pharmacological inhibitors followed by polymerase chain reaction (PCR), immunoblotting, immunofluorescence, and functional assays. RNA sequencing/bioinformatics and immunohistochemistry were used to analyze NAD(P)H Oxidase-4 (NOX4) expression in different human tumors. NOX4's role in CAF-mediated tumor progression was assessed in vitro, using CAFs from multiple tissues in Transwell and organotypic culture assays, and in vivo, using xenograft (n = 9-15 per group) and isograft (n = 6 per group) tumor models. All statistical tests were two-sided. Results Patients with moderate/high levels of myofibroblastic-CAF had a statistically significant decrease in cancer-specific survival rates in each cancer type analyzed (hazard ratios [HRs] = 1.69-7.25, 95% confidence intervals [CIs] = 1.11 to 31.30, log-rank P ≤ .01). Fibroblast-to-myofibroblast transdifferentiation was dependent on a delayed phase of intracellular reactive oxygen species, generated by NOX4, across different anatomical sites and differentiation stimuli. A statistically significant upregulation of NOX4 expression was found in multiple human cancers (P < .001), strongly correlating with myofibroblastic-CAFs (r = 0.65-0.91, adjusted P < .001). Genetic/pharmacological inhibition of NOX4 was found to revert the myofibroblastic-CAF phenotype ex vivo (54.3% decrease in α-smooth muscle actin [α-SMA], 95% CI = 10.6% to 80.9%, P = .009), prevent myofibroblastic-CAF accumulation in vivo (53.2%-79.0% decrease in α-SMA across different models, P ≤ .02) and slow tumor growth (30.6%-64.0% decrease across different models, P ≤ .04). Conclusions These data suggest that pharmacological inhibition of NOX4 may have broad applicability for stromal targeting across cancer types.
Collapse
Affiliation(s)
- Christopher J Hanley
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Massimiliano Mellone
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Kirsty Ford
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Steve M Thirdborough
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Toby Mellows
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Steven J Frampton
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - David M Smith
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Elena Harden
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Marc Bullock
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Fergus Noble
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Karwan A Moutasim
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Emma V King
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Alex H Mirnezami
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Timothy J Underwood
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Gareth J Thomas
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| |
Collapse
|
43
|
Bhandarkar GP, Shetty KV, Kulkarni A. Thioctic acid in oral submucous fibrosis (India's disease) - A better tomorrow. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2017; 119:129-134. [PMID: 29246754 DOI: 10.1016/j.jormas.2017.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/24/2017] [Accepted: 12/06/2017] [Indexed: 11/28/2022]
Abstract
Oral submucous fibrosis (OSMF), because of its common occurrence in Indian population is known as India's disease. Regardless of diagnostic and therapeutic developments, oral potentially malignant disorders (PMD) and cancers are disseminating at a distressing rate. There is this prerequisite for unrelenting determination to find out apt treatment options so that malignant transformation may be prevented and more so the prevailing morbidity and mortality. Considering the frequency with which oral submucous fibrosis undergoes malignant transformation with free radicals playing a major part, the role of antioxidants in general and thioctic acid also known as alpha lipoic acid (ALA) in particular need to be studied in these individuals. Previous few studies indicated the use of alpha lipoic acid in oral submucous fibrosis patients leading to improvement in signs and symptoms. So, it led us to set forth and propose probable role of thioctic acid in improving symptoms in these patients. As oral submucous fibrosis poses as a threat with its various signs and symptoms and as a potentially malignant disorder as well as considering the role of free radicals in malignant transformation, we proposed the possible mechanisms behind the commonest signs and symptoms in oral submucous fibrosis and role of alpha lipoic acid in managing these signs and symptoms.
Collapse
Affiliation(s)
- G P Bhandarkar
- Department of oral medicine and radiology, A. J. Institute of Dental Sciences, Kuntikan, Mangalore, 575004 Karnataka, India.
| | - K V Shetty
- Department of Pedodontia, A. J. Institute of Dental Sciences, Mangalore, India.
| | - A Kulkarni
- Department of oral medicine and radiology, A. J. Institute of Dental Sciences, Mangalore, India.
| |
Collapse
|
44
|
Chen PH, Mahmood Q, Mariottini GL, Chiang TA, Lee KW. Adverse Health Effects of Betel Quid and the Risk of Oral and Pharyngeal Cancers. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3904098. [PMID: 29376073 PMCID: PMC5742426 DOI: 10.1155/2017/3904098] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/01/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023]
Abstract
Global reports estimate 600 million betel quid (BQ) chewers. BQ chewing has been demonstrated not only to be a risk factor for cancers of the oral cavity and pharynx and oral potentially malignant disorders (OPMD) but also to cause other cancers and adverse health effects. Herein, we summarized the international comparison data to aid in the understanding of the close relationship between the prevalence of BQ chewing, the occurrence of oral and pharyngeal cancers, and adverse health effects. Potential biomarkers of BQ carcinogens, such as areca nut, alkaloids, and 3-methylnitrosaminopropionitrile (MNPN), are closely associated with human health toxicology. Molecular mechanisms or pathways involving autophagy, hypoxia, COX-2, NF-κB activity, and stemness are known to be induced by BQ ingredients and are very closely related to the carcinogenesis of cancers of oral and pharynx. BQ abuse-related monoamine oxidase (MAO) gene was associated with the occurrence and progress of oral and pharyngeal cancers. In summary, our review article provides important insights into the potential roles of environmental BQ (specific alkaloid biomarkers and nitrosamine products MNPN) and genetic factors (MAO) and offers a basis for studies aiming to reduce or eliminate BQ-related OPMD and oral/pharyngeal cancer incidences in the future.
Collapse
Affiliation(s)
- Ping-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No. 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, No. 70 Lienhai Road, Kaohsiung 80424, Taiwan
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Tai-An Chiang
- College of Human Science and Technology, Chung Hwa University of Medical Technology, No. 89, Wenhwa 1st St., Rende Shiang, Tainan 71703, Taiwan
| | - Ka-Wo Lee
- Department of Otolaryngology, Kaohsiung Medical University Hospital, No. 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
- Department of Otolaryngology, College of Medicine, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
45
|
Association of Smoking, Alcohol Use, and Betel Quid Chewing with Epigenetic Aberrations in Cancers. Int J Mol Sci 2017; 18:ijms18061210. [PMID: 28587272 PMCID: PMC5486033 DOI: 10.3390/ijms18061210] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 12/16/2022] Open
Abstract
Numerous environmental factors such as diet, alcohol use, stress, and environmental chemicals are known to elicit epigenetic changes, leading to increased rates of cancers and other diseases. The incidence of head and neck cancer, one of the most common cancers in Taiwanese males, is increasing: oral cancer and nasopharyngeal carcinoma are ranked fourth and tenth respectively, among the top ten cancers in this group, and a major cause of cancer-related deaths in Taiwanese males. Previous studies have identified smoking, alcohol use, and betel quid chewing as the three major causes of head and neck cancers; these three social habits are commonly observed in Taiwanese males, resulting in an increasing morbidity rate of head and neck cancers in this population. In this literature review, we discuss the association between specific components of betel quid, alcohol, and tobacco, and the occurrence of head and neck cancers, lung cancer, gastrointestinal cancers, and urethral cancer. We focus on regulatory mechanisms at the epigenetic level and their oncogenic effects. The review further discusses the application of FDA-approved epigenetic drugs as therapeutic strategies against cancer.
Collapse
|
46
|
Arakeri G, Patil SG, Aljabab AS, Lin KC, Merkx MAW, Gao S, Brennan PA. Oral submucous fibrosis: An update on pathophysiology of malignant transformation. J Oral Pathol Med 2017; 46:413-417. [PMID: 28391621 DOI: 10.1111/jop.12582] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2017] [Indexed: 10/19/2022]
Abstract
Oral submucous fibrosis (OSMF) is a potentially malignant condition associated with areca nut chewing. Formerly confined to the Indian subcontinent, it is now often seen in Asian populations of the United Kingdom, USA and other developed countries, and is therefore a serious problem for global health. What makes it more sinister is the malignant transformation rate, which has been reported to be around 7.6% over a 17-year period. In this concise article, we review the current trends in the pathophysiology of malignant transformation of OSMF.
Collapse
Affiliation(s)
- Gururaj Arakeri
- Department of Oral and Maxillofacial Surgery, Navodaya Dental College and Hospital, Raichur, India
| | | | - Abdulsalam S Aljabab
- Department of Dentistry, Faculty of Dentistry, King Fahad Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Kuan-Chou Lin
- Department of Oral and Maxillofacial Surgery, Wan-Fang Hospital, Taipei, Taiwan
| | - M A W Merkx
- Department of Oral and Maxillofacial Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Shan Gao
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, China.,Xiangya Hospital and School of Stomatology, Central South University, Changsha, China
| | - Peter A Brennan
- Department of Oral & Maxillofacial Surgery, Queen Alexandra Hospital, Cosham, Portsmouth, UK
| |
Collapse
|
47
|
Chang JZC, Hsieh YP, Lin WH, Chen HM, Kuo MYP. Activation of transforming growth factor-β1 by thrombin via integrins αvβ1, αvβ3, and αvβ5 in buccal fibroblasts: Suppression by epigallocatechin-3-gallate. Head Neck 2017; 39:1436-1445. [DOI: 10.1002/hed.24791] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 10/27/2016] [Accepted: 02/15/2017] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jenny Zwei-Chieng Chang
- School of Dentistry; College of Medicine, National Taiwan University; Taipei Taiwan
- Department of Dentistry; National Taiwan University Hospital; Taipei Taiwan
| | - Yu-Ping Hsieh
- School of Dentistry; College of Medicine, National Taiwan University; Taipei Taiwan
| | - Wen-Hsin Lin
- School of Dentistry; College of Medicine, National Taiwan University; Taipei Taiwan
| | - Hsin-Ming Chen
- School of Dentistry; College of Medicine, National Taiwan University; Taipei Taiwan
- Department of Dentistry; National Taiwan University Hospital; Taipei Taiwan
| | - Mark Yen-Ping Kuo
- School of Dentistry; College of Medicine, National Taiwan University; Taipei Taiwan
- Department of Dentistry; National Taiwan University Hospital; Taipei Taiwan
| |
Collapse
|
48
|
Hernandez BY, Zhu X, Goodman MT, Gatewood R, Mendiola P, Quinata K, Paulino YC. Betel nut chewing, oral premalignant lesions, and the oral microbiome. PLoS One 2017; 12:e0172196. [PMID: 28225785 PMCID: PMC5321455 DOI: 10.1371/journal.pone.0172196] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/01/2017] [Indexed: 01/06/2023] Open
Abstract
Oral cancers are attributed to a number of causal agents including tobacco, alcohol, human papillomavirus (HPV), and areca (betel) nut. Although betel nut chewing has been established as an independent cause of oral cancer, the mechanisms of carcinogenesis are poorly understood. An investigation was undertaken to evaluate the influence of betel nut chewing on the oral microbiome and oral premalignant lesions. Study participants were recruited from a dental clinic in Guam. Structured interviews and oral examinations were performed. Oral swabbing and saliva samples were evaluated by 454 pyrosequencing of the V3- V5 region of the 16S rRNA bacterial gene and genotyped for HPV. One hundred twenty-two adults were enrolled including 64 current betel nut chewers, 37 former chewers, and 21 with no history of betel nut use. Oral premalignant lesions, including leukoplakia and submucous fibrosis, were observed in 10 chewers. Within-sample bacterial diversity was significantly lower in long-term (≥10 years) chewers vs. never chewers and in current chewers with oral lesions vs. individuals without lesions. Between-sample bacterial diversity based on Unifrac distances significantly differed by chewing status and oral lesion status. Current chewers had significantly elevated levels of Streptococcus infantis and higher and lower levels of distinct taxa of the Actinomyces and Streptococcus genera. Long-term chewers had reduced levels of Parascardovia and Streptococcus. Chewers with oral lesions had significantly elevated levels of Oribacterium, Actinomyces, and Streptococcus, including Streptococcus anginosus. In multivariate analyses, controlling for smoking, oral HPV, S.anginosus, and S. infantis levels, current betel nut chewing remained the only predictor of oral premalignant lesions. Our study provides evidence that betel nut chewing alters the oral bacterial microbiome including that of chewers who develop oral premalignant lesions. Nonetheless, whether microbial changes are involved in betel nut-induced oral carcinogenesis is only speculative. Further research is needed to discern the clinical significance of an altered oral microbiome and the mechanisms of oral cancer development in betel nut chewers.
Collapse
Affiliation(s)
- Brenda Y. Hernandez
- University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Xuemei Zhu
- University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Marc T. Goodman
- Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Robert Gatewood
- University of Guam Cancer Research Center, Mangilao, Guam, United States of America
| | - Paul Mendiola
- University of Guam Cancer Research Center, Mangilao, Guam, United States of America
| | - Katrina Quinata
- University of Guam Cancer Research Center, Mangilao, Guam, United States of America
| | - Yvette C. Paulino
- University of Guam Cancer Research Center, Mangilao, Guam, United States of America
| |
Collapse
|
49
|
Hsieh YP, Chen HM, Lin HY, Yang H, Chang JZC. Epigallocatechin-3-gallate inhibits transforming-growth-factor-β1-induced collagen synthesis by suppressing early growth response-1 in human buccal mucosal fibroblasts. J Formos Med Assoc 2017; 116:107-113. [DOI: 10.1016/j.jfma.2016.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/24/2016] [Accepted: 01/26/2016] [Indexed: 12/30/2022] Open
|
50
|
Agarwal K, Chauhan A, Prasad J, Mehra P, Kumar S, Pahuja BK, Ahirwar AK. Effect of Areca Nut Consumption on Hypoxia-inducible Factor-1 Alfa Expression in Patients with Oral Squamous Cell Carcinoma. ACTA ACUST UNITED AC 2017. [DOI: 10.5005/jp-journals-10054-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT
Introduction
Oral squamous cell carcinoma (OSCC) is a major health problem in Southeast Asia, including India. Areca nut chewing is a major health hazard in India, which has been implicated in the etiology of OSCC. Hypoxia-inducible factor-1 (HIF-1) is a major transcription factor involved in adaptation under hypoxic condition, a common finding in solid tumors. The present study was conducted to evaluate the effect of different habits including areca nut chewing on HIF-1 expression in patients with OSCC.
Materials and methods
It was a hospital-based observational case-control study. The study comprised 50 histologically proven cases of OSCC and 50 healthy controls. The HIF-1α level was measured by commercially available enzyme-linked immunosorbent assay (ELISA) in the blood samples. The data were analyzed using Statistical Package for the Social Sciences (SPSS) software version 20.
Results
The HIF-1α levels were found significantly higher in the patients with areca nut consumption in addition to other addictive habits. Isolated influence could not be discerned as there was only one patient who gave history of only areca nut chewing.
Conclusion
Our findings prove that HIF-1α expression is upregulated by areca nut chewing, which leads to worse prognosis. This calls for widespread awareness programs regarding the deleterious effects of areca nut chewing among the general population.
How to cite this article
Prasad J, Goswami B, Agarwal K, Mehra P, Kumar S, Pahuja BK, Chauhan A, Ahirwar AK. Effect of Areca Nut Consumption on Hypoxia-inducible Factor-1 Alfa Expression in Patients with Oral Squamous Cell Carcinoma. Indian J Med Biochem 2017;21(2):81-85.
Collapse
|