1
|
Pu F, Guo H, Shi D, Chen F, Peng Y, Huang X, Liu J, Zhang Z, Shao Z. The generation and use of animal models of osteosarcoma in cancer research. Genes Dis 2024; 11:664-674. [PMID: 37692517 PMCID: PMC10491873 DOI: 10.1016/j.gendis.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 12/16/2022] [Indexed: 09/12/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumor affecting children and adolescents. Currently, the most common treatment is surgery combined with neoadjuvant chemotherapy. Although the survival rate of patients with osteosarcoma has improved in recent years, it remains poor when the tumor(s) progress and distant metastases develop. Therefore, better animal models that more accurately replicate the natural progression of the disease are needed to develop improved prognostic and diagnostic markers, as well as targeted therapies for both primary and metastatic osteosarcoma. The present review described animal models currently being used in research investigating osteosarcoma, and their characteristics, advantages, and disadvantages. These models may help elucidate the pathogenic mechanism(s) of osteosarcoma and provide evidence to support and develop clinical treatment strategies.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Haoyu Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xin Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
2
|
Yang M, Chen Y, Huang X, Shen F, Meng Y. Lysine demethylase KDM3A alleviates hyperoxia-induced bronchopulmonary dysplasia in mice by promoting ETS1 expression. Exp Cell Res 2024; 435:113945. [PMID: 38286256 DOI: 10.1016/j.yexcr.2024.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease among neonates, with increasing morbidity and mortality. This study aims to investigate the effect and mechanism of lysine demethylase 3A (KDM3A) on hyperoxia-induced BPD. Hyperoxia-induced BPD mouse and alveolar epithelial cell models were constructed. The effects of hyperoxia on lung development were evaluated by histological and morphological analysis. The levels of KDM3A, E26 transformation specific-1 (ETS1), H3 lysine 9 dimethylation (H3K9me2), and endoplasmic reticulum (ER) stress-related indexes were quantified by RT-qPCR, Western blot, and IF staining. Cell apoptosis was assessed by flow cytometry and TUNEL staining. Transfection of oe-ETS1, oe-KDM3A, and sh-ETS1 was applied in hyperoxia-induced alveolar epithelial cells to explore the mechanism of the KDM3A/ETS1 axis in hyperoxia-induced apoptosis. KDM3A inhibitor IOX1 was applied to validate the in vivo effect of KDM3A in hyperoxia-induced BPD mice. The results displayed that hyperoxia-induced BPD mice showed reduced body weight, severe destruction of alveolar structure, decreased radial alveolar count (RAC), and increased mean linear intercept (MLI) and mean alveolar diameter (MAD). Further, hyperoxia induction down-regulated ETS1 expression, raised ER stress levels, and increased apoptosis rate in BPD mice and alveolar epithelial cells. However, transfection of oe-ETS1 improved the above changes in hyperoxia-induced alveolar epithelial cells. Moreover, transfection of oe-KDM3A up-regulated ETS1 expression, down-regulated H3K9me2 expression, inhibited ER stress, and reduced apoptosis rate in hyperoxia-induced alveolar epithelial cells. In addition, transfection of sh-ETS1 reversed the inhibitory effect of KDM3A on hyperoxia-induced apoptosis by regulating ER stress. In vivo experiments, KDM3A inhibitor IOX1 intervention further aggravated BPD in newborn mice. In a word, KDM3A alleviated hyperoxia-induced BPD in mice by promoting ETS1 expression.
Collapse
Affiliation(s)
- Min Yang
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China.
| | - Yanping Chen
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China
| | | | - Fang Shen
- Research Institute of Children, Hunan Children's Hospital, Changsha, 410007, China
| | - Yanni Meng
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China
| |
Collapse
|
3
|
Yang M, Chen Y, Huang X, Shen F, Meng Y. ETS1 Ameliorates Hyperoxia-Induced Bronchopulmonary Dysplasia in Mice by Activating Nrf2/HO-1 Mediated Ferroptosis. Lung 2023; 201:425-441. [PMID: 37490064 PMCID: PMC10444662 DOI: 10.1007/s00408-023-00639-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE Bronchopulmonary dysplasia (BPD) is associated with hyperoxia-induced oxidative stress-associated ferroptosis. This study examined the effect of E26 oncogene homolog 1 (ETS1) on oxidative stress-associated ferroptosis in BPD. METHODS Hyperoxia-induced A549 cells and neonatal mice were used to establish BPD models. The effects of ETS1 on hyperoxia-induced ferroptosis-like changes in A549 cells were investigated by overexpression of ETS1 plasmid transfection and erastin treatment. Glucose consumption, lactate production, and NADPH levels were assessed by the glucose, lactate, and NADP+/NADPH assay kits, respectively. The potential regulatory relationship between ETS1 and Nrf2/HO-1 was examined by treating hyperoxia-induced A549 cells with the Nrf2 inhibitor ML385. ETS1 effect on the Nrf2 promoter was explored by dual-luciferase reporter and chromatin immunoprecipitation assay. The effect of ETS1 on the symptoms of BPD mice was examined by injecting an adenovirus overexpressing ETS1. RESULTS ETS1 overexpression increased hyperoxia-induced cell viability, glucose consumption, lactate production, and NADPH levels and reduced inflammation and apoptosis in A549 cells. In animal experiments, ETS1 overexpression prevented weight loss, airway enlargement, and reductions in radial alveolar counts in BPD mice, while reducing the mean linear intercept, mean alveolar diameter and inflammation. ETS1 overexpression suppressed PTGS2 and CHAC1 expression, reduced ROS, MDA and ferrous iron (Fe2+) production and increased GSH levels in hyperoxia-induced A549 cells and BPD mice. In addition, ETS1 can bind to the Nrf2 promoter region and thus promote Nrf2 transcription. ETS1 overexpression increased the mRNA and protein levels of Nrf2, HO-1, xCT, and GPX4 in hyperoxia-induced A549 cells and BPD mice. In hyperoxia-induced A549 cells, erastin and ML385 treatment abolished the effect of ETS1 overexpression. CONCLUSION ETS1 is important in oxidative stress-related ferroptosis in a hyperoxia-induced BPD model, and the effect is partially mediated by the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Min Yang
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China.
| | - Yanping Chen
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China
| | | | - Fang Shen
- Research Institute of Children, Hunan Children's Hospital, Changsha, 410007, China
| | - Yanni Meng
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China
| |
Collapse
|
4
|
Wu X, Ma S, Wu Z, Zhao Q. Global scientific trends on matrix metalloproteinase and osteosarcoma: A bibliometric and visualized analysis. Front Oncol 2023; 13:1064815. [PMID: 36814819 PMCID: PMC9939641 DOI: 10.3389/fonc.2023.1064815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/02/2023] [Indexed: 02/08/2023] Open
Abstract
Objective This study aimed to identify author, country, institutional, and journal collaborations and their impacts, assess the knowledge base, identify existing trends, and uncover emerging topics related to the role of Metalloproteinase in osteosarcoma. Methods 945 Articles and reviews associated with the role of Metalloproteinase in osteosarcoma were obtained from the WoSCC and analyzed by Citespace and Vosviewer. Results The main aspects of research on the role of MMP in OS are invasion and metastasis. The latest hotspots were found to be the mechanism of MMP promoting invasion and metastasis, lung metastasis, and antitumor activity. Notably, invasion, metastasis, and antitumor activity were potentially turning points in the MMP-OS field. In the future, the primary research hotspot in the field of MMP-OS may be to study the mechanism, explore their role in the OS lung metastasis, and determine their role in the cancer therapy process. Conclusion This study thus offers a comprehensive overview of the MMP-OS-related field using bibliometrics and visual methods, which will provide a valuable reference for researchers interested in the field of MMP-OS.
Collapse
Affiliation(s)
- Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shiwei Ma
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhongguang Wu
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China,*Correspondence: Qiangqiang Zhao, ; Zhongguang Wu,
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People’s Hospital, Xining, China,*Correspondence: Qiangqiang Zhao, ; Zhongguang Wu,
| |
Collapse
|
5
|
Beck J, Ren L, Huang S, Berger E, Bardales K, Mannheimer J, Mazcko C, LeBlanc A. Canine and murine models of osteosarcoma. Vet Pathol 2022; 59:399-414. [PMID: 35341404 PMCID: PMC9290378 DOI: 10.1177/03009858221083038] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children. Despite efforts to develop and implement new therapies, patient outcomes have not measurably improved since the 1980s. Metastasis continues to be the main source of patient mortality, with 30% of cases developing metastatic disease within 5 years of diagnosis. Research models are critical in the advancement of cancer research and include a variety of species. For example, xenograft and patient-derived xenograft (PDX) mouse models provide opportunities to study human tumor cells in vivo while transgenic models have offered significant insight into the molecular mechanisms underlying OS development. A growing recognition of naturally occurring cancers in companion species has led to new insights into how veterinary patients can contribute to studies of cancer biology and drug development. The study of canine cases, including the use of diagnostic tissue archives and clinical trials, offers a potential mechanism to further canine and human cancer research. Advancement in the field of OS research requires continued development and appropriate use of animal models. In this review, animal models of OS are described with a focus on the mouse and tumor-bearing pet dog as parallel and complementary models of human OS.
Collapse
Affiliation(s)
| | - Ling Ren
- National Cancer Institute, Bethesda, MD
| | | | | | - Kathleen Bardales
- National Cancer Institute, Bethesda, MD
- University of Pennsylvania, Philadelphia, PA
| | | | | | | |
Collapse
|
6
|
Long non-coding RNA PVT1 encapsulated in bone marrow mesenchymal stem cell-derived exosomes promotes osteosarcoma growth and metastasis by stabilizing ERG and sponging miR-183-5p. Aging (Albany NY) 2019; 11:9581-9596. [PMID: 31699956 PMCID: PMC6874467 DOI: 10.18632/aging.102406] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/26/2019] [Indexed: 12/21/2022]
Abstract
Exosomes secreted by bone marrow mesenchymal stem cells (BMSCs) promote osteosarcoma cell proliferation and migration, while the underlying mechanism remains unknown. Since the long non-coding RNA PVT1 has been reported to be upregulated in osteosarcoma cells and contributes to its growth and metastasis, we aim to investigate whether BMSC-derived exosomes promote osteosarcoma growth and metastasis via transporting PVT1 into osteosarcoma cells. The PVT1 expression in BMSC-derived exosomes was markedly higher than that in osteosarcoma cell-derived exosomes. The co-culturing of BMSC-derived exosomes and osteosarcoma cells (Saos-2, MG-63, and MNNG/HOS cell lines) significantly raised PVT1 expression of osteosarcoma cells. The direct binding between PVT1 and the oncogenic protein ERG was confirmed using RNA immunoprecipitation and RNA pull-down assays, and the transported PVT1 promotes osteosarcoma cell proliferation and migration via inhibiting degradation and ubiquitination of ERG. PVT1 also increased ERG expression through sponging miR-183-5p. In summary, our findings indicated that BMSC-derived exosomes encapsulate PVTl and transport it into osteosarcoma cells, and the transported PVT1 promotes tumor growth and metastasis by inhibiting ubiquitination and promoting expression of ERG in osteosarcoma cells. These data provide a novel insight into the mechanism of BMSC-derived exosomes in affecting osteosarcoma progression.
Collapse
|
7
|
Zheng Y, Wang G, Chen R, Hua Y, Cai Z. Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications. Stem Cell Res Ther 2018; 9:22. [PMID: 29386041 PMCID: PMC5793392 DOI: 10.1186/s13287-018-0780-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During tumorigenesis and development, participation of the tumor microenvironment is not negligible. As an important component in the tumor microenvironment, mesenchymal stem cells (MSCs) have been corroborated to mediate proliferation, metastasis, and drug resistance in many cancers, including osteosarcoma. What’s more, because of tumor site tropism, MSCs can be engineered to be loaded with therapeutic agents so that drugs can be precisely delivered to tumor lesions. In this review, we mainly discuss recent advances concerning the functions of MSCs in osteosarcoma and their possible clinical applications in the future.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road Shanghai, Shanghai, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road Shanghai, Shanghai, China.
| | - Ruiling Chen
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road Shanghai, Shanghai, China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road Shanghai, Shanghai, China.
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road Shanghai, Shanghai, China.
| |
Collapse
|
8
|
Dong B, Wang G, Yao J, Yuan P, Kang W, Zhi L, He X. Predicting novel genes and pathways associated with osteosarcoma by using bioinformatics analysis. Gene 2017; 628:32-37. [PMID: 28687333 DOI: 10.1016/j.gene.2017.06.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/27/2017] [Accepted: 06/30/2017] [Indexed: 12/24/2022]
Abstract
This aim of this study was to explore novel biomarkers related to osteosarcoma. The mRNA expression profile GSE41293 dataset was downloaded from the Gene Expression Omnibus (GEO) database, which included seven osteosarcoma and six control samples. After preprocessing, the FASTQ format reads of 13 samples were mapped to the reference sequences to screen for unique mapping reads. Differentially expressed genes (DEGs) were selected, which were then used for pathway and protein-protein interaction (PPI) network analyses. Moreover, the microarray data GSE63631 were downloaded from GEO database to verify our results. The percentages of unique mapping reads for osteosarcomas and control samples were both >85%. A total of 6157 DEGs were identified between the two groups. DEGs that were upregulated were significantly enriched in 19 pathways, and those that were downregulated were enriched in 14 pathways. In the PPI network, DEGs such as SRC, ERBB2, and CAV3 in cluster 1 were enriched in the pathway responsible for focal adhesions. The DEGs in cluster 2, such as CDK4 and CDK6, were enriched in the cell cycle pathway. In GSE63631, DEGs were significantly enriched in focal adhesion pathway, which was in accordance with the result in GSE41293. Thus, the focal adhesion and cell cycle pathways may play important roles in osteosarcoma progression, and SRC, ERBB2, CAV3, CDK4, and CDK6 may be used as critical biomarkers of osteosarcoma.
Collapse
Affiliation(s)
- Bo Dong
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710004, Shaanxi, China; Department of Qrthopedics, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi, China
| | - Guozhu Wang
- Department of Orthopedics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712083, Shaanxi, China
| | - Jie Yao
- Nursing School, Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi, China
| | - Puwei Yuan
- Department of Qrthopedics, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi, China
| | - Wulin Kang
- Department of Qrthopedics, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi, China
| | - Liqiang Zhi
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, Shaanxi, China
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710004, Shaanxi, China.
| |
Collapse
|
9
|
Alfranca A, Martinez-Cruzado L, Tornin J, Abarrategi A, Amaral T, de Alava E, Menendez P, Garcia-Castro J, Rodriguez R. Bone microenvironment signals in osteosarcoma development. Cell Mol Life Sci 2015; 72:3097-113. [PMID: 25935149 PMCID: PMC11113487 DOI: 10.1007/s00018-015-1918-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 02/06/2023]
Abstract
The bone is a complex connective tissue composed of many different cell types such as osteoblasts, osteoclasts, chondrocytes, mesenchymal stem/progenitor cells, hematopoietic cells and endothelial cells, among others. The interaction between them is finely balanced through the processes of bone formation and bone remodeling, which regulates the production and biological activity of many soluble factors and extracellular matrix components needed to maintain the bone homeostasis in terms of cell proliferation, differentiation and apoptosis. Osteosarcoma (OS) emerges in this complex environment as a result of poorly defined oncogenic events arising in osteogenic lineage precursors. Increasing evidence supports that similar to normal development, the bone microenvironment (BME) underlies OS initiation and progression. Here, we recapitulate the physiological processes that regulate bone homeostasis and review the current knowledge about how OS cells and BME communicate and interact, describing how these interactions affect OS cell growth, metastasis, cancer stem cell fate and therapy outcome.
Collapse
Affiliation(s)
- Arantzazu Alfranca
- Unidad de Biotecnología Celular, Área de Genética Humana, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Lucia Martinez-Cruzado
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Juan Tornin
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Ander Abarrategi
- Unidad de Biotecnología Celular, Área de Genética Humana, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Teresa Amaral
- Molecular Pathology Program, Institute of Biomedical Research of Salamanca-Centro de Investigación del Cáncer, Centro de Investigación del Cáncer (IBSAL-CIC), Salamanca, Spain
- Department of Pathology and Biobank, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), CSIC-Universidad de Sevilla, Seville, Spain
| | - Enrique de Alava
- Molecular Pathology Program, Institute of Biomedical Research of Salamanca-Centro de Investigación del Cáncer, Centro de Investigación del Cáncer (IBSAL-CIC), Salamanca, Spain
- Department of Pathology and Biobank, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), CSIC-Universidad de Sevilla, Seville, Spain
| | - Pablo Menendez
- Cell Therapy Program, School of Medicine, Josep Carreras Leukemia Research Institute, University of Barcelona, Barcelona, Spain
- Instituciò Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Javier Garcia-Castro
- Unidad de Biotecnología Celular, Área de Genética Humana, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rene Rodriguez
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| |
Collapse
|
10
|
Dirscherl H, McConnell SC, Yoder JA, de Jong JLO. The MHC class I genes of zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:11-23. [PMID: 24631581 PMCID: PMC4031684 DOI: 10.1016/j.dci.2014.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 05/17/2023]
Abstract
Major histocompatibility complex (MHC) molecules play a central role in the immune response and in the recognition of non-self. Found in all jawed vertebrate species, including zebrafish and other teleosts, MHC genes are considered the most polymorphic of all genes. In this review we focus on the multi-faceted diversity of zebrafish MHC class I genes, which are classified into three sequence lineages: U, Z, and L. We examine the polygenic, polymorphic, and haplotypic diversity of the zebrafish MHC class I genes, discussing known and postulated functional differences between the different class I lineages. In addition, we provide the first comprehensive nomenclature for the L lineage genes in zebrafish, encompassing at least 15 genes, and characterize their sequence properties. Finally, we discuss how recent findings have shed new light on the remarkably diverse MHC loci of this species.
Collapse
Affiliation(s)
- Hayley Dirscherl
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; The Joint Biomedical Engineering Graduate Program, University of North Carolina-North Carolina State University, Raleigh, NC, USA
| | - Sean C McConnell
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, KCBD 5120, Chicago, IL 60637, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Jill L O de Jong
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, KCBD 5120, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Mohseny AB, Hogendoorn PCW. Zebrafish as a model for human osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:221-36. [PMID: 24924177 DOI: 10.1007/978-3-319-04843-7_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For various reasons involving biological comparativeness, expansive technological possibilities, accelerated experimental speed, and competitive costs, zebrafish has become a comprehensive model for cancer research. Hence, zebrafish embryos and full-grown fish have been instrumental for studies of leukemia, melanoma, pancreatic cancer, bone tumors, and other malignancies. Although because of its similarities to human osteogenesis zebrafish appears to be an appealing model to investigate osteosarcoma, only a few osteosarcoma specific studies have been accomplished yet. Here, we review interesting related and unrelated reports of which the findings might be extrapolated to osteosarcoma. More importantly, rational but yet unexplored applications of zebrafish are debated to expand the window of opportunities for future establishment of osteosarcoma models. Accordingly technological advances of zebrafish based cancer research, such as robotic high-throughput multicolor injection systems and advanced imaging methods are discussed. Furthermore, various use of zebrafish embryos for screening drug regimens by combinations of chemotherapy, novel drug deliverers, and immune system modulators are suggested. Concerning the etiology, the high degree of genetic similarity between zebrafish and human cancers indicates that affected regions are evolutionarily conserved. Therefore, zebrafish as a swift model system that allows for the investigation of multiple candidate gene-defects is presented.
Collapse
Affiliation(s)
- A B Mohseny
- Department of Pathology, Leiden University Medical Center, 9600, H1-Q, Leiden, The Netherlands
| | | |
Collapse
|
12
|
He JP, Hao Y, Wang XL, Yang XJ, Shao JF, Guo FJ, Feng JX. Review of the molecular pathogenesis of osteosarcoma. Asian Pac J Cancer Prev 2014; 15:5967-5976. [PMID: 25124559 DOI: 10.7314/apjcp.2014.15.15.5967] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Treating the osteosarcoma (OSA) remains a challenge. Current strategies focus on the primary tumor and have limited efficacy for metastatic OSA. A better understanding of the OSA pathogenesis may provide a rational basis for innovative treatment strategies especially for metastases. The aim of this review is to give an overview of the molecular mechanisms of OSA tumorigenesis, OSA cell proliferation, apoptosis, migration, and chemotherapy resistance, and how improved understanding might contribute to designing a better treatment target for OSA.
Collapse
Affiliation(s)
- Jin-Peng He
- Pediatric Surgery Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China E-mail : ,
| | | | | | | | | | | | | |
Collapse
|
13
|
Characterization of the Z lineage Major histocompatability complex class I genes in zebrafish. Immunogenetics 2013; 66:185-98. [PMID: 24287892 DOI: 10.1007/s00251-013-0748-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 11/11/2013] [Indexed: 02/01/2023]
Abstract
Zebrafish (Danio rerio) are a valuable model for studying immunity, infection, and hematopoietic disease and have recently been employed for transplantation assays. However, the lack of syngeneic zebrafish creates challenges with identifying immune-matched individuals. The MHC class I genes, which mediate allogeneic recognition in mammals, have been grouped into three broad lineages in zebrafish: the classical U genes on chromosome 19, the Z genes which have been reported to map to chromosome 1, and the L genes that map to multiple loci. Transplantations between individual zebrafish that are matched at the U locus fail to consistently engraft suggesting that additional loci contribute to allogeneic recognition. Although two full-length zebrafish Z transcripts have been described, the genomic organization and diversity of these genes have not been reported. Herein we define ten Z genes on chromosomes 1 and 3 and on an unplaced genomic scaffold. We report that neither of the Z transcripts previously described match the current genome assembly and classify these transcripts as additional gene loci. We characterize full-length transcripts for 9 of these 12 genes. We demonstrate a high level of expression variation of the Z genes between individual zebrafish suggestive of haplotypic variation. We report low level sequence variation for individual Z genes between individual zebrafish reflecting a possible nonclassical function, although these molecules may still contribute to allogeneic recognition. Finally, we present a gene nomenclature system for the Z genes consistent with MHC nomenclature in other species and with the zebrafish gene nomenclature guidelines.
Collapse
|
14
|
Xiao W, Mohseny AB, Hogendoorn PCW, Cleton-Jansen AM. Mesenchymal stem cell transformation and sarcoma genesis. Clin Sarcoma Res 2013; 3:10. [PMID: 23880362 PMCID: PMC3724575 DOI: 10.1186/2045-3329-3-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/01/2013] [Indexed: 01/27/2023] Open
Abstract
MSCs are hypothesized to potentially give rise to sarcomas after transformation and therefore serve as a good model to study sarcomagenesis. Both spontaneous and induced transformation of MSCs have been reported, however, spontaneous transformation has only been convincingly shown in mouse MSCs while induced transformation has been demonstrated in both mouse and human MSCs. Transformed MSCs of both species can give rise to pleomorphic sarcomas after transplantation into mice, indicating the potential MSC origin of so-called non-translocation induced sarcomas. Comparison of expression profiles and differentiation capacities between MSCs and sarcoma cells further supports this. Deregulation of P53- Retinoblastoma-, PI3K-AKT-and MAPK pathways has been implicated in transformation of MSCs. MSCs have also been indicated as cell of origin in several types of chromosomal translocation associated sarcomas. In mouse models the generated sarcoma type depends on amongst others the tissue origin of the MSCs, the targeted pathways and genes and the differentiation commitment status of MSCs. While some insights are glowing, it is clear that more studies are needed to thoroughly understand the molecular mechanism of sarcomagenesis from MSCs and mechanisms determining the sarcoma type, which will potentially give directions for targeted therapies.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, the Netherlands.
| | | | | | | |
Collapse
|
15
|
Spaink HP, Cui C, Wiweger MI, Jansen HJ, Veneman WJ, Marín-Juez R, de Sonneville J, Ordas A, Torraca V, van der Ent W, Leenders WP, Meijer AH, Snaar-Jagalska BE, Dirks RP. Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods 2013; 62:246-54. [PMID: 23769806 DOI: 10.1016/j.ymeth.2013.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022] Open
Abstract
The increasing use of zebrafish larvae for biomedical research applications is resulting in versatile models for a variety of human diseases. These models exploit the optical transparency of zebrafish larvae and the availability of a large genetic tool box. Here we present detailed protocols for the robotic injection of zebrafish embryos at very high accuracy with a speed of up to 2000 embryos per hour. These protocols are benchmarked for several applications: (1) the injection of DNA for obtaining transgenic animals, (2) the injection of antisense morpholinos that can be used for gene knock-down, (3) the injection of microbes for studying infectious disease, and (4) the injection of human cancer cells as a model for tumor progression. We show examples of how the injected embryos can be screened at high-throughput level using fluorescence analysis. Our methods open up new avenues for the use of zebrafish larvae for large compound screens in the search for new medicines.
Collapse
Affiliation(s)
- Herman P Spaink
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kuijjer ML, Hogendoorn PCW, Cleton-Jansen AM. Genome-wide analyses on high-grade osteosarcoma: making sense of a genomically most unstable tumor. Int J Cancer 2013; 133:2512-21. [PMID: 23436697 DOI: 10.1002/ijc.28124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/13/2013] [Indexed: 12/16/2022]
Abstract
High-grade osteosarcoma is an extremely genomically unstable tumor. This, together with other challenges, such as the heterogeneity within and between tumor samples, and the rarity of the disease, renders it difficult to study this tumor on a genome-wide level. Now that most laboratories change from genome-wide microarray experiments to Next-Generation Sequencing it is important to discuss the lessons we have learned from microarray studies. In this review, we discuss the challenges of high-grade osteosarcoma data analysis. We give an overview of microarray studies that have been conducted so far on both osteosarcoma tissue samples and cell lines. We discuss recent findings from integration of different data types, which is particularly relevant in a tumor with such a complex genomic profile. Finally, we elaborate on the translation of results obtained with bioinformatics into functional studies, which has lead to valuable findings, especially when keeping in mind that no new therapies with a significant impact on survival have been developed in the past decades.
Collapse
Affiliation(s)
- Marieke L Kuijjer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|