1
|
Zhu S, Xuan J, Shentu Y, Kida K, Kobayashi M, Wang W, Ono M, Chang D. Effect of chitin-architected spatiotemporal three-dimensional culture microenvironments on human umbilical cord-derived mesenchymal stem cells. Bioact Mater 2024; 35:291-305. [PMID: 38370866 PMCID: PMC10869358 DOI: 10.1016/j.bioactmat.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has been explored for the clinical treatment of various diseases. However, the current two-dimensional (2D) culture method lacks a natural spatial microenvironment in vitro. This limitation restricts the stable establishment and adaptive maintenance of MSC stemness. Using natural polymers with biocompatibility for constructing stereoscopic MSC microenvironments may have significant application potential. This study used chitin-based nanoscaffolds to establish a novel MSC three-dimensional (3D) culture. We compared 2D and 3D cultured human umbilical cord-derived MSCs (UCMSCs), including differentiation assays, cell markers, proliferation, and angiogenesis. When UCMSCs are in 3D culture, they can differentiate into bone, cartilage, and fat. In 3D culture condition, cell proliferation is enhanced, accompanied by an elevation in the secretion of paracrine factors, including vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), Interleukin-6 (IL-6), and Interleukin-8 (IL-8) by UCMSCs. Additionally, a 3D culture environment promotes angiogenesis and duct formation with HUVECs (Human Umbilical Vein Endothelial Cells), showing greater luminal area, total length, and branching points of tubule formation than a 2D culture. MSCs cultured in a 3D environment exhibit enhanced undifferentiated, as well as higher cell activity, making them a promising candidate for regenerative medicine and therapeutic applications.
Collapse
Affiliation(s)
- Shuoji Zhu
- Department of Cardiac Surgery, University of Tokyo, Tokyo, 113-8655, Japan
| | - Junfeng Xuan
- Department of Cell Therapy in Regenerative Medicine, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Yunchao Shentu
- Department of Cell Therapy in Regenerative Medicine, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | | | | | - Wei Wang
- Winhealth Pharma, 999077, Hong Kong
| | - Minoru Ono
- Department of Cardiac Surgery, University of Tokyo, Tokyo, 113-8655, Japan
| | - Dehua Chang
- Department of Cell Therapy in Regenerative Medicine, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| |
Collapse
|
2
|
Tempest N, Hill CJ, Maclean A, Marston K, Powell SG, Al-Lamee H, Hapangama DK. Novel microarchitecture of human endometrial glands: implications in endometrial regeneration and pathologies. Hum Reprod Update 2021; 28:153-171. [PMID: 34875046 PMCID: PMC8888994 DOI: 10.1093/humupd/dmab039] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Human endometrium remains a poorly understood tissue of the female reproductive tract. The superficial endometrial functionalis, the site of embryo implantation, is repeatedly shed with menstruation, and the stem cell-rich deeper basalis is postulated to be responsible for the regeneration of the functionalis. Two recent manuscripts have demonstrated the 3D architecture of endometrial glands. These manuscripts have challenged and replaced the prevailing concept that these glands end in blind pouches in the basalis layer that contain stem cells in crypts, as in the intestinal mucosa, providing a new paradigm for endometrial glandular anatomy. This necessitates re-evaluation of the available evidence on human endometrial regeneration in both health and disease in the context of this previously unknown endometrial glandular arrangement. OBJECTIVE AND RATIONALE The aim of this review is to determine if the recently discovered glandular arrangement provides plausible explanations for previously unanswered questions related to human endometrial biology. Specifically, it will focus on re-appraising the theories related to endometrial regeneration, location of stem/progenitor cells and endometrial pathologies in the context of this recently unravelled endometrial glandular organization. SEARCH METHODS An extensive literature search was conducted from inception to April 2021 using multiple databases, including PubMed/Web of Science/EMBASE/Scopus, to select studies using keywords applied to endometrial glandular anatomy and regeneration, and the references included in selected publications were also screened. All relevant publications were included. OUTCOMES The human endometrial glands have a unique and complex architecture; branched basalis glands proceed in a horizontal course adjacent to the myometrium, as opposed to the non-branching, vertically coiled functionalis glands, which run parallel to each other as is observed in intestinal crypts. This complex network of mycelium-like, interconnected basalis glands is demonstrated to contain endometrial epithelial stem cells giving rise to single, non-branching functionalis glands. Several previous studies that have tried to confirm the existence of epithelial stem cells have used methodologies that prevent sampling of the stem cell-rich basalis. More recent findings have provided insight into the efficient regeneration of the human endometrium, which is preferentially evolved in humans and menstruating upper-order primates. WIDER IMPLICATIONS The unique physiological organization of the human endometrial glandular element, its relevance to stem cell activity and scarless endometrial regeneration will inform reproductive biologists and clinicians to direct their future research to determine disease-specific alterations in glandular anatomy in a variety of endometrial pathological conditions.
Collapse
Affiliation(s)
- Nicola Tempest
- Department of Women's and Children's Health, Centre for Women's Health Research, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool, UK.,Liverpool Women's NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK.,Hewitt Centre for Reproductive Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Christopher J Hill
- Department of Women's and Children's Health, Centre for Women's Health Research, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool, UK
| | - Alison Maclean
- Department of Women's and Children's Health, Centre for Women's Health Research, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool, UK.,Liverpool Women's NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Kathleen Marston
- Department of Women's and Children's Health, Centre for Women's Health Research, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool, UK
| | - Simon G Powell
- Department of Women's and Children's Health, Centre for Women's Health Research, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool, UK
| | - Hannan Al-Lamee
- Department of Women's and Children's Health, Centre for Women's Health Research, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool, UK.,Liverpool Women's NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK.,Hewitt Centre for Reproductive Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Dharani K Hapangama
- Department of Women's and Children's Health, Centre for Women's Health Research, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool, UK.,Liverpool Women's NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
3
|
Tempest N, Jansen M, Baker AM, Hill CJ, Hale M, Magee D, Treanor D, Wright NA, Hapangama DK. Histological 3D reconstruction and in vivo lineage tracing of the human endometrium. J Pathol 2020; 251:440-451. [PMID: 32476144 DOI: 10.1002/path.5478] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Regular menstrual shedding and repair of the endometrial functionalis is unique to humans and higher-order primates. The current consensus postulates endometrial glands to have a single-tubular architecture, where multi-potential stem cells reside in the blind-ending glandular-bases. Utilising fixed samples from patients, we have studied the three-dimensional (3D) micro-architecture of the human endometrium. We demonstrate that some non-branching, single, vertical functionalis glands originate from a complex horizontally interconnecting network of basalis glands. The existence of a multipotent endometrial epithelial stem cell capable of regenerating the entire complement of glandular lineages was demonstrated by in vivo lineage tracing, using naturally occurring somatic mitochondrial DNA mutations as clonal markers. Vertical tracking of mutated clones showed that at least one stem-cell population resides in the basalis glands. These novel findings provide insight into the efficient and scar-less regenerative potential of the human endometrium. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nicola Tempest
- Liverpool Women's Hospital NHS Foundation Trust, member of the Liverpool Health partnership, Liverpool, UK
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, member of the Liverpool Health partnership, Liverpool, UK
| | - Marnix Jansen
- UCL Cancer Institute, University College London, London, UK
| | - Ann-Marie Baker
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christopher J Hill
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, member of the Liverpool Health partnership, Liverpool, UK
| | - Mike Hale
- Pathology and Tumour Biology, University of Leeds, Leeds, UK
| | - Derek Magee
- School of Computing, University of Leeds, Leeds, UK
- Heterogenius Ltd, Leeds, UK
| | - Darren Treanor
- Pathology and Tumour Biology, University of Leeds, Leeds, UK
- Pathology department, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Pathology department, Linköping University, Linköping, Sweden
| | - Nicholas A Wright
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dharani K Hapangama
- Liverpool Women's Hospital NHS Foundation Trust, member of the Liverpool Health partnership, Liverpool, UK
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, member of the Liverpool Health partnership, Liverpool, UK
| |
Collapse
|
4
|
Fernandes G, Yang S. Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering. Bone Res 2016; 4:16036. [PMID: 28018706 PMCID: PMC5153571 DOI: 10.1038/boneres.2016.36] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022] Open
Abstract
Presently, there is a high paucity of bone grafts in the United States and worldwide. Regenerating bone is of prime concern due to the current demand of bone grafts and the increasing number of diseases causing bone loss. Autogenous bone is the present gold standard of bone regeneration. However, disadvantages like donor site morbidity and its decreased availability limit its use. Even allografts and synthetic grafting materials have their own limitations. As certain specific stem cells can be directed to differentiate into an osteoblastic lineage in the presence of growth factors (GFs), it makes stem cells the ideal agents for bone regeneration. Furthermore, platelet-rich plasma (PRP), which can be easily isolated from whole blood, is often used for bone regeneration, wound healing and bone defect repair. When stem cells are combined with PRP in the presence of GFs, they are able to promote osteogenesis. This review provides in-depth knowledge regarding the use of stem cells and PRP in vitro, in vivo and their application in clinical studies in the future.
Collapse
Affiliation(s)
- Gabriela Fernandes
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Department of Anatomy & Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Sei Y, Feng J, Zhao X, Forbes J, Tang D, Nagashima K, Hanson J, Quezado MM, Hughes MS, Wank SA. Polyclonal Crypt Genesis and Development of Familial Small Intestinal Neuroendocrine Tumors. Gastroenterology 2016; 151:140-51. [PMID: 27003604 PMCID: PMC5578471 DOI: 10.1053/j.gastro.2016.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS Small intestinal neuroendocrine tumors (SI-NETs) are serotonin-secreting well-differentiated neuroendocrine tumors believed to originate from enterochromaffin (EC) cells. Intestinal stem cell (ISC) are believed to contribute to the formation of SI-NETs, although little is known about tumor formation or development. We investigated the relationship between EC cells, ISCs, and SI-NETs. METHODS We analyzed jejuno-ileal tissue specimens from 14 patients with familial SI-NETs enrolled in the Natural History of Familial Carcinoid Tumor study at the National Institutes of Health from January 2009 to December 2014. Frozen and paraffin-embedded tumor tissues of different stages and isolated crypts were analyzed by in situ hybridization and immunohistochemistry. Tumor clonality was assessed by analyses of mitochondrial DNA. RESULTS We identified multifocal aberrant crypt-containing endocrine cell clusters (ACECs) that contain crypt EC cell microtumors in patients with familial SI-NETs. RNA in situ hybridization revealed expression of the EC cell and reserve stem cell genes TPH1, BMI1, HOPX, and LGR5(low), in the ACECs and more advanced extraepithelial tumor nests. This expression pattern resembled that of reserve EC cells that express reserve ISC genes; most reside at the +4 position in normal crypts. The presence of multifocal ACECs from separate tumors and in the macroscopic tumor-free mucosa indicated widespread, independent, multifocal tumorigenesis. Analyses of mitochondrial DNA confirmed the independent origin of the ACECs. CONCLUSIONS Familial SI-NETs originate from a subset of EC cells (reserve EC cells that express reserve ISC genes) via multifocal and polyclonal processes. Increasing our understanding of the role of these reserve EC cells in the genesis of multifocal SI-NETs could improve diagnostic and therapeutic strategies for this otherwise intractable disease.
Collapse
Affiliation(s)
- Yoshitatsu Sei
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Jianying Feng
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Xilin Zhao
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Joanne Forbes
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Derek Tang
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701
| | - Jeffrey Hanson
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health
| | - Martha M. Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health
| | - Marybeth S. Hughes
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Stephen A. Wank
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804,To whom correspondence should be addressed. Stephen A. Wank, M.D., Address: DDB/NIDDK/NIH, 10/9C-101, Bethesda, MD 20892, , Phone: (301) 402-3704
| |
Collapse
|
6
|
Henning SJ, von Furstenberg RJ. GI stem cells - new insights into roles in physiology and pathophysiology. J Physiol 2016; 594:4769-79. [PMID: 27107928 DOI: 10.1113/jp271663] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022] Open
Abstract
This overview gives a brief historical summary of key discoveries regarding stem cells of the small intestine. The current concept is that there are two pools of intestinal stem cells (ISCs): an actively cycling pool that is marked by Lgr5, is relatively homogeneous and is responsible for daily turnover of the epithelium; and a slowly cycling or quiescent pool that functions as reserve ISCs. The latter pool appears to be quite heterogeneous and may include partially differentiated epithelial lineages that can reacquire stem cell characteristics following injury to the intestine. Markers and methods of isolation for active and quiescent ISC populations are described as well as the numerous important advances that have been made in approaches to the in vitro culture of ISCs and crypts. Factors regulating ISC biology are briefly summarized and both known and unknown aspects of the ISC niche are discussed. Although most of our current knowledge regarding ISC physiology and pathophysiology has come from studies with mice, recent work with human tissue highlights the potential translational applications arising from this field of research. Many of these topics are further elaborated in the following articles.
Collapse
Affiliation(s)
- Susan J Henning
- Department of Medicine - Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7555, USA
| | | |
Collapse
|
7
|
van Neerven SM, Tieken M, Vermeulen L, Bijlsma MF. Bidirectional interconversion of stem and non-stem cancer cell populations: A reassessment of theoretical models for tumor heterogeneity. Mol Cell Oncol 2015; 3:e1098791. [PMID: 27308617 PMCID: PMC4905404 DOI: 10.1080/23723556.2015.1098791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023]
Abstract
Resolving the origin of intratumor heterogeneity has proven to be one of the central challenges in cancer research during recent years. Two theoretical models explaining the emergence of intratumor heterogeneity have come to dominate cancer biology literature: the clonal evolution model and the hierarchical/cancer stem cell model. Recently, a plastic model that combines elements of both the clonal and the hierarchical model has gained traction. Basically, this model proposes that cancer stem cells engage in bidirectional interconversion with non-stem cells, thereby providing the missing link between the 2 conventional models. Confirming bidirectional interconversion as a hallmark of cancer is a crucial step in understanding tumor heterogeneity and has important therapeutic implications. In this review, current methodologies and theoretical and empirical evidence regarding bidirectional interconversion will be discussed.
Collapse
Affiliation(s)
- Sanne M van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center , Amsterdam, The Netherlands
| | - Mathijs Tieken
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center , Amsterdam, The Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center , Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center , Amsterdam, The Netherlands
| |
Collapse
|
8
|
Abstract
It is proposed that most papillary thyroid cancers originate in infancy and childhood, based on the early rise in sporadic thyroid carcinoma incidence, the pattern of radiation-induced risk (highest in those exposed as infants), and the high prevalence of sporadic papillary thyroid cancers in children and adolescents (ultrasound screening after the Fukushima accident). The early origin can be linked to the growth pattern of follicular cells, with a high mitotic rate in infancy falling to very low replacement levels in adult life. The cell of origin of thyroid cancers, the differentiated follicular cell, has a limited growth potential. Unlike cancers originating in stem cells, loss of the usually tight link between differentiation and replicative senescence is required for immortalisation. It is suggested that this loss distinguishes larger clinically significant papillary thyroid cancers from micro-papillary thyroid cancers of little clinical significance. Papillary carcinogenesis can then be divided into 3 stages: (1) initiation, the first mutation in the carcinogenic cascade, for radiation-induced papillary thyroid cancers usually a RET rearrangement, (2) progression, acquisition of the additional mutations needed for low-grade malignancy, and (3) escape, further mutations giving immortality and a higher net growth rate. Most papillary thyroid cancers will not have achieved full immortality by adulthood, and remain as so-called micro-carcinomas with a very low growth rate. The use of the term 'cancer' to describe micro-papillary thyroid cancers in older patients encourages overtreatment and alarms patients. Invasive papillary thyroid tumours show a spectrum of malignancy, which at its lowest poses no threat to life. The treatment protocols and nomenclature for small papillary carcinomas need to be reconsidered in the light of the new evidence available, the continuing discovery of smaller lesions, and the model of thyroid carcinogenesis proposed.
Collapse
Affiliation(s)
- Dillwyn Williams
- Department of Public Health, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Walther V, Alison MR. Cell lineage tracing in human epithelial tissues using mitochondrial DNA mutations as clonal markers. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:103-17. [PMID: 26302049 DOI: 10.1002/wdev.203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/20/2015] [Accepted: 07/01/2015] [Indexed: 12/29/2022]
Abstract
The study of cell lineages through heritable genetic lineage tracing is well established in experimental animals, particularly mice. While such techniques are not feasible in humans, we have taken advantage of the fact that the mitochondrial genome is highly prone to nonpathogenic mutations and such mutations can be used as clonal markers to identify stem cell derived clonal populations in human tissue sections. A mitochondrial DNA (mtDNA) mutation can spread by a stochastic process through the several copies of the circular genome in a single mitochondrion, and then through the many mitochondria in a single cell, a process called 'genetic drift.' This process takes many years and so is likely to occur only in stem cells, but once established, the fate of stem cell progeny can be followed. A cell having at least 80% of its mtDNA genomes bearing the mutation results in a demonstrable deficiency in mtDNA-encoded cytochrome c oxidase (CCO), optimally detected in frozen tissue sections by dual-color histochemistry, whereby CCO activity stains brown and CCO deficiency is highlighted by subsequent succinate dehydrogenase activity, staining the CCO-deficient areas blue. Cells with CCO deficiency can be laser captured and subsequent mtDNA sequencing can ascertain the nature of the mutation. If all cells in a CCO-deficient area have an identical mutation, then a clonal population has been identified; the chances of the same mutation initially arising in separate cells are highly improbable. The technique lends itself to the study of both normal epithelia and can answer several questions in tumor biology. WIREs Dev Biol 2016, 5:103-117. doi: 10.1002/wdev.203 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Viola Walther
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Malcolm R Alison
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Stiehl T, Baran N, Ho AD, Marciniak-Czochra A. Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival. Cancer Res 2015; 75:940-9. [PMID: 25614516 DOI: 10.1158/0008-5472.can-14-2508] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease in which a variety of distinct genetic alterations might occur. Recent attempts to identify the leukemia stem-like cells (LSC) have also indicated heterogeneity of these cells. On the basis of mathematical modeling and computer simulations, we have provided evidence that proliferation and self-renewal rates of the LSC population have greater impact on the course of disease than proliferation and self-renewal rates of leukemia blast populations, that is, leukemia progenitor cells. The modeling approach has enabled us to estimate the LSC properties of 31 individuals with relapsed AML and to link them to patient survival. On the basis of the estimated LSC properties, the patients can be divided into two prognostic groups that differ significantly with respect to overall survival after first relapse. The results suggest that high LSC self-renewal and proliferation rates are indicators of poor prognosis. Nevertheless, high LSC self-renewal rate may partially compensate for slow LSC proliferation and vice versa. Thus, model-based interpretation of clinical data allows estimation of prognostic factors that cannot be measured directly. This may have clinical implications for designing treatment strategies.
Collapse
Affiliation(s)
- Thomas Stiehl
- Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany. Bioquant Center, University of Heidelberg, Heidelberg, Germany. Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany.
| | - Natalia Baran
- Department of Medicine V, Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Anthony D Ho
- Department of Medicine V, Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany. Bioquant Center, University of Heidelberg, Heidelberg, Germany. Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Jawad N, Graham TA, McDonald SAC, Wright NA. Re: Mitochondria and tumor progression in ulcerative colitis. J Natl Cancer Inst 2014; 106:djt436. [PMID: 24402499 DOI: 10.1093/jnci/djt436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Noor Jawad
- Affiliations of authors: Centre for Tumour Biology, Bart's Cancer Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary, University of London, London, UK (NJ, TAG, SACM, NAW)
| | | | | | | |
Collapse
|
12
|
Baker AM, Graham TA, Wright NA. Pre-tumour clones, periodic selection and clonal interference in the origin and progression of gastrointestinal cancer: potential for biomarker development. J Pathol 2013; 229:502-14. [PMID: 23288692 DOI: 10.1002/path.4157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/18/2022]
Abstract
Classically, the risk of cancer progression in premalignant conditions of the gastrointestinal tract is assessed by examining the degree of histological dysplasia. However, there are many putative pro-cancer genetic changes that have occurred in histologically normal tissue well before the onset of dysplasia. Here we summarize the evidence for such pre-tumour clones and the existing technology that can be used to locate these clones and characterize them at the genetic level. We also discuss the mechanisms by which pre-tumour clones may spread through large areas of normal tissue, and highlight emerging theories on how multiple clones compete and interact within the gastrointestinal mucosa. It is important to gain an understanding of these processes, as it is envisaged that certain pre-tumour changes may be powerful predictive markers, with the potential to identify patients at high risk of developing cancer at a much earlier stage.
Collapse
Affiliation(s)
- Ann-Marie Baker
- Centre for Tumour Biology, Barts and the London School of Medicine and Dentistry, London, UK.
| | | | | |
Collapse
|
13
|
Reply: A morpho-molecular prognostic model for hepatocellular carcinoma. Br J Cancer 2013; 108:741. [PMID: 23422790 PMCID: PMC3593532 DOI: 10.1038/bjc.2012.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
14
|
Abstract
The liver has an enormous potential to restore the parenchymal tissue loss due to injury. This is accomplished by the proliferation of either the hepatocytes or liver progenitor cells in cases where massive damage prohibits hepatocytes from entering the proliferative response. Under debate is still whether hepatic stem cells are involved in liver tissue maintenance and regeneration or even whether they exist at all. The definition of an adult tissue-resident stem cell comprises basic functional stem cell criteria like the potential of self-renewal, multipotent, i.e. at least bipotent differentiation capacity and serial transplantability featuring the ability of functional tissue repopulation. The relationship between a progenitor and its progeny should exemplify the lineage commitment from the putative stem cell to the differentiated cell. This is mainly assessed by lineage tracing and immunohistochemical identification of markers specific to progenitors and their descendants. Flow cytometry approaches revealed that the liver stem cell population in animals is likely to be heterogeneous giving rise to progeny with different molecular signatures, depending on the stimulus to activate the putative stem cell compartment. The stem cell criteria are met by a variety of cells identified in the fetal and adult liver both under normal and injury conditions. It is the purpose of this review to verify hepatic stem cell candidates in the light of the stem cell definition criteria mentioned. Also from this point of view adult stem cells from non-hepatic tissues such as bone marrow, umbilical cord blood or adipose tissue, have the potential to differentiate into cells featuring functional hepatocyte characteristics. This has great impact because it opens the possibility of generating hepatocyte-like cells from adult stem cells in a sufficient amount and quality for their therapeutical application to treat end-stage liver diseases by stem cell-based hepatocytes in place of whole organ transplantation.
Collapse
Affiliation(s)
- Bruno Christ
- Translational Centre for Regenerative Medicine-TRM, University of Leipzig, Philipp-Rosenthal-Straße 55, D-04103 Leipzig, Germany.
| | | |
Collapse
|
15
|
Wong VW, Sorkin M, Gurtner GC. Enabling stem cell therapies for tissue repair: current and future challenges. Biotechnol Adv 2012. [PMID: 23178704 DOI: 10.1016/j.biotechadv.2012.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Stem cells embody the tremendous potential of the human body to develop, grow, and repair throughout life. Understanding the biologic mechanisms that underlie stem cell-mediated tissue regeneration is key to harnessing this potential. Recent advances in molecular biology, genetic engineering, and material science have broadened our understanding of stem cells and helped bring them closer to widespread clinical application. Specifically, innovative approaches to optimize how stem cells are identified, isolated, grown, and utilized will help translate these advances into effective clinical therapies. Although there is growing interest in stem cells worldwide, this enthusiasm must be tempered by the fact that these treatments remain for the most part clinically unproven. Future challenges include refining the therapeutic manipulation of stem cells, validating these technologies in randomized clinical trials, and regulating the global expansion of regenerative stem cell therapies.
Collapse
Affiliation(s)
- Victor W Wong
- Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|