1
|
Domingo-Sabugo C, Willis-Owen SA, Mandal A, Nastase A, Dwyer S, Brambilla C, Gálvez JH, Zhuang Q, Popat S, Eveleigh R, Munter M, Lim E, Nicholson AG, Lathrop GM, Cookson WO, Moffatt MF. Genomic analysis defines distinct pancreatic and neuronal subtypes of lung carcinoid. J Pathol 2024; 264:332-343. [PMID: 39329437 DOI: 10.1002/path.6352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Lung carcinoids (L-CDs) are rare, poorly characterised neuroendocrine tumours (NETs). L-CDs are more common in women and are not the consequence of cigarette smoking. They are classified histologically as typical carcinoids (TCs) or atypical carcinoids (ACs). ACs confer a worse survival. Histological classification is imperfect, and there is increasing interest in molecular markers. We therefore investigated global transcriptomic and epigenomic profiles of 15 L-CDs resected with curative intent at Royal Brompton Hospital. We identified underlying mutations and structural abnormalities through whole-exome sequencing (WES) and single nucleotide polymorphism (SNP) genotyping. Transcriptomic clustering algorithms identified two distinct L-CD subtypes. These showed similarities either to pancreatic or neuroendocrine tumours at other sites and so were named respectively L-CD-PanC and L-CD-NeU. L-CD-PanC tumours featured upregulation of pancreatic and metabolic pathway genes matched by promoter hypomethylation of genes for beta cells and insulin secretion (p < 1 × 10-6). These tumours were centrally located and showed mutational signatures of activation-induced deaminase/apolipoprotein B editing complex activity, together with genome-wide DNA methylation loss enriched in repetitive elements (p = 2.2 × 10-16). By contrast, the L-CD-NeU group exhibited upregulation of neuronal markers (adjusted p < 0.01) and was characterised by focal spindle cell morphology (p = 0.04), peripheral location (p = 0.01), high mutational load (p = 2.17 × 10-4), recurrent copy number alterations, and enrichment for ACs. Mutations affected chromatin remodelling and SWI/SNF complex pathways. L-CD-NeU tumours carried a mutational signature attributable to aflatoxin and aristolochic acid (p = 0.05), suggesting a possible environmental exposure in their pathogenesis. Immunologically, myeloid and T-cell markers were enriched in L-CD-PanC and B-cell markers in L-CD-NeU tumours. The substantial epigenetic and non-coding differences between L-CD-PanC and L-CD-NeU open new possibilities for biomarker selection and targeted treatment of L-CD. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Amit Mandal
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anca Nastase
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah Dwyer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Cecilia Brambilla
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Histopathology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - José Héctor Gálvez
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Qinwei Zhuang
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Sanjay Popat
- Royal Marsden Hospital NHS Foundation Trust, London and Surrey, UK
- The Institute of Cancer Research, London, UK
| | - Robert Eveleigh
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Markus Munter
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Eric Lim
- Department of Thoracic Surgery, Royal Brompton Hospital, London, UK
| | - Andrew G Nicholson
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Histopathology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - G Mark Lathrop
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | | | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
2
|
Mendoza RP, Symes E, Wang P, Miller C, Thompson SC, Antic T, Biernacka A. Cytomorphologic and molecular characterization of spindle cell carcinoid tumors of the lung. Cancer Cytopathol 2024; 132:656-665. [PMID: 39024046 DOI: 10.1002/cncy.22886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Spindle cell carcinoid tumor (SCCT) is a rare variant of lung carcinoid tumor consisting predominantly or exclusively of spindle cells. To the authors' knowledge, this is the first study to date investigating the molecular characteristics of SCCTs. METHODS Eighty-five carcinoid tumors initially diagnosed by fine-needle aspiration over a period of 10 years were reviewed. The final diagnostic classification was based on resection specimens. Six SCCTs were identified and characterized based on cytomorphology, and immunohistochemical and molecular features. RESULTS Most patients with SCCT were Caucasian (100.0%), women (83.3%), asymptomatic (66.7%), and nonsmokers (83.3%). The median age at diagnosis was 78.0 years (range, 58.2-80.3 years). A higher proportion of patients who had SCCT were diagnosed with distant metastasis. The smears were cellular and demonstrated clean backgrounds without necrosis or mitotic activity. SCCTs comprised of bipolar-to-elongated cells with finely granular chromatin, inconspicuous nucleoli, scant cytoplasm, and minimal atypia or pleomorphism. The tumor cells sometimes appeared boomerang-shaped and might mimic granulomas or blood vessels. SCCTs showed strong expression for pan-cytokeratin, synaptophysin, chromogranin, and CD56, with weak TTF-1 and a very low Ki-67 proliferation index. All SCCTs had low tumor mutational burden and were microsatellite-stable. One case showed multiple whole-gene losses in chromosome 11, whereas another harbored duplication in ARID1A. Two cases demonstrated gains in chromosomes 17, one of which also showed gains in chromosome 18. None had a single nucleotide mutation. CONCLUSIONS SCCT is a rare subset of lung carcinoid tumors. These tumors harbor unique cytologic, prognostic, and molecular features that may have significant diagnostic and clinical implications.
Collapse
Affiliation(s)
- Rachelle P Mendoza
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, USA
| | - Emily Symes
- Department of Pathology, The University of Chicago Medicine, Chicago, Illinois, USA
| | - Peng Wang
- Department of Pathology, The University of Chicago Medicine, Chicago, Illinois, USA
| | - Cole Miller
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, USA
| | - Stephanie C Thompson
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, USA
| | - Tatjana Antic
- Department of Pathology, The University of Chicago Medicine, Chicago, Illinois, USA
| | - Anna Biernacka
- Department of Pathology, The University of Chicago Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Pelosi G, Travis WD. Head-to-head: Should Ki67 proliferation index be included in the formal classification of pulmonary neuroendocrine neoplasms? Histopathology 2024; 85:535-548. [PMID: 38728050 DOI: 10.1111/his.15206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 08/31/2024]
Abstract
The reporting of lung neuroendocrine neoplasms (NENs) according to the 2021 World Health Organisation (WHO) is based on mitotic count per 2 mm2, necrosis assessment and a constellation of cytological and immunohistochemical details. Accordingly, typical carcinoid and atypical carcinoid are low- to intermediate-grade neuroendocrine tumours (NETs), while large-cell neuroendocrine carcinoma (NEC) and small-cell lung carcinoma are high-grade NECs. In small-sized diagnostic material (cytology and biopsy), the noncommittal term of carcinoid tumour/NET not otherwise specified (NOS) and metastatic carcinoid NOS have been introduced with regard to primary and metastatic diagnostic settings, respectively. Ki-67 antigen, a well-known marker of cell proliferation, has been included in the WHO classification as a non-essential but desirable criterion, especially to distinguish NETs from high-grade NECs and to delineate the provisional category of carcinoid tumours/NETs with elevated mitotic counts (> 10 mitoses per mm2) and/or Ki-67 proliferation index (≥ 30%). However, a wider use of this marker in the spectrum of lung NENs continues to be highly reported and debated, thus witnessing a never-subsided attention. Therefore, the arguments for and against incorporating Ki-67 in the classification and clinical practice of these neoplasms are discussed herein in detail.
Collapse
Affiliation(s)
- Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Inter-Hospital Pathology Division, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - William D Travis
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York City, NY, USA
| |
Collapse
|
4
|
Werr L, Bartenhagen C, Rosswog C, Cartolano M, Voegele C, Sexton-Oates A, Di Genova A, Ernst A, Kahlert Y, Hemstedt N, Höppner S, Mansuet Lupo A, Pelosi G, Brcic L, Papotti M, George J, Bosco G, Quaas A, Tang LH, Robzyk K, Kadota K, Roh MS, Fanaroff RE, Falcon CJ, Büttner R, Lantuejoul S, Rekhtman N, Rudin CM, Travis WD, Alcala N, Fernandez-Cuesta L, Foll M, Peifer M, Thomas RK, Fischer M. TERT Expression and Clinical Outcome in Pulmonary Carcinoids. J Clin Oncol 2024:JCO2302708. [PMID: 39348606 DOI: 10.1200/jco.23.02708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/30/2024] [Accepted: 07/16/2024] [Indexed: 10/02/2024] Open
Abstract
PURPOSE The clinical course of pulmonary carcinoids ranges from indolent to fatal disease, suggesting that specific molecular alterations drive progression toward the fully malignant state. A similar spectrum of clinical phenotypes occurs in pediatric neuroblastoma, in which activation of telomerase reverse transcriptase (TERT) is decisive in determining the course of disease. We therefore investigated whether TERT expression defines the clinical fate of patients with pulmonary carcinoid. METHODS TERT expression was examined by RNA sequencing in a test cohort and a validation cohort of pulmonary carcinoids (n = 88 and n = 105, respectively). A natural TERT expression cutoff was determined in the test cohort on the basis of the distribution of TERT expression, and its prognostic value was assessed by Kaplan-Meier survival estimates and multivariable analyses. Telomerase activity was validated by telomere repeat amplification protocol assay. RESULTS Similar to neuroblastoma, TERT expression exhibited a bimodal distribution in pulmonary carcinoids, separating tumors into TERT-high and TERT-low subgroups. A natural TERT cutoff discriminated unfavorable from favorable clinical courses with high accuracy both in the test cohort (5-year overall survival [OS], 0.547 ± 0.132 v 1.0; P < .001) and the validation cohort (5-year OS, 0.788 ± 0.063 v 0.913 ± 0.048; P < .001). In line with these findings, telomerase activity was largely absent in TERT-low tumors, whereas it was readily detectable in TERT-high carcinoids. In multivariable analysis considering TERT expression, histology (typical v atypical carcinoid), and stage (≤IIA v ≥IIB), high TERT expression was an independent prognostic marker for poor survival, with a hazard ratio of 5.243 (95% CI, 1.943 to 14.148; P = .001). CONCLUSION Our data demonstrate that high TERT expression defines clinically aggressive pulmonary carcinoids with fatal outcome, similar to neuroblastoma, indicating that activation of TERT may be a defining feature of lethal cancers.
Collapse
Affiliation(s)
- Lisa Werr
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Carolina Rosswog
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
- Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, Cologne, Germany
| | - Maria Cartolano
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Catherine Voegele
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), Lyon, France
| | - Alexandra Sexton-Oates
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), Lyon, France
| | - Alex Di Genova
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), Lyon, France
| | - Angela Ernst
- Institute of Medical Statistics and Computational Biology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Yvonne Kahlert
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Cologne, Germany
| | - Nadine Hemstedt
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Cologne, Germany
| | - Stefanie Höppner
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Cologne, Germany
| | - Audrey Mansuet Lupo
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Paris Cité University, Paris, France
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Mauro Papotti
- Department of Oncology, University of Turin, Torino, Italy
| | - Julie George
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Cologne, Cologne, Germany
| | - Graziella Bosco
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Laura H Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kenneth Robzyk
- Sloan Kettering Institue, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kyuichi Kadota
- Molecular Oncologic Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Mee Sook Roh
- Department of Pathology, Dong-A University College of Medicine, Busan, South Korea
| | | | - Christina J Falcon
- Sloan Kettering Institue, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Reinhard Büttner
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sylvie Lantuejoul
- Department of Biopathology, Centre de Lutte Contre le Cancer UNICANCER Léon Bérard, Grenoble Alpes University, Lyon, France
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Charles M Rudin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), Lyon, France
| | - Lynnette Fernandez-Cuesta
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), Lyon, France
| | - Matthieu Foll
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), Lyon, France
| | - Martin Peifer
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roman K Thomas
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Pokhriyal SC, Shukla A, Gupta U, Al-Ghuraibawi MMH, Yadav R, Panigrahi K. Application of Artificial Intelligence in Neuroendocrine Lung Cancer Diagnosis and Treatment: A Systematic Review. Cureus 2024; 16:e61012. [PMID: 38910787 PMCID: PMC11194033 DOI: 10.7759/cureus.61012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Neuroendocrine tumors (NETs) represent a heterogeneous group of neoplasms with diverse clinical presentations and prognoses. Accurate and timely diagnosis of these tumors is crucial for appropriate management and improved patient outcomes. In recent years, exciting advancements in artificial intelligence (AI) technologies have been revolutionizing medical diagnostics, particularly in the realm of detecting and characterizing pulmonary NETs, offering promising avenues for improved patient care. This article aims to provide a comprehensive overview of the role of AI in diagnosing lung NETs. We discuss the current challenges associated with conventional diagnostic approaches, including histopathological examination and imaging modalities. Despite advancements in these techniques, accurate diagnosis remains challenging due to the overlapping features with other pulmonary lesions and the subjective interpretation of imaging findings. AI-based approaches, including machine learning and deep learning algorithms, have demonstrated remarkable potential in addressing these challenges. By leveraging large datasets of radiological images, histopathological samples, and clinical data, AI models can extract complex patterns and features that may not be readily discernible to human observers. Moreover, AI algorithms can continuously learn and improve from new data, leading to enhanced diagnostic accuracy and efficiency over time. Specific AI applications in the diagnosis of lung NETs include computer-aided detection and classification of pulmonary nodules on CT scans, quantitative analysis of PET imaging for tumor characterization, and integration of multi-modal data for comprehensive diagnostic assessments. These AI-driven tools hold promise for facilitating early detection, risk stratification, and personalized treatment planning in patients with lung NETs.
Collapse
Affiliation(s)
- Sindhu C Pokhriyal
- Internal Medicine, One Brooklyn Health - Interfaith Medical Center, Brooklyn, USA
| | - Abhishek Shukla
- School of Information Studies, Syracuse University, Syracuse, USA
| | - Uma Gupta
- Internal Medicine, One Brooklyn Health - Interfaith Medical Center, Brooklyn, USA
| | | | - Ruchi Yadav
- Hematology and Oncology, Brookdale University Hospital Medical Center, Brooklyn, USA
| | - Kalpana Panigrahi
- Internal Medicine, One Brooklyn Health - Interfaith Medical Center, Brooklyn, USA
| |
Collapse
|
6
|
Domvri K, Yaremenko AV, Apostolopoulos A, Petanidis S, Karachrysafi S, Pastelli N, Papamitsou T, Papaemmanouil S, Lampaki S, Porpodis K. Expression patterns and clinical implications of PDL1 and DLL3 biomarkers in small cell lung cancer retrospectively studied: Insights for therapeutic strategies and survival prediction. Heliyon 2024; 10:e27208. [PMID: 38468968 PMCID: PMC10926129 DOI: 10.1016/j.heliyon.2024.e27208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths globally, includes small cell lung cancer (SCLC), characterized by its aggressive nature and advanced disease at diagnosis. However, the identification of reliable biomarkers for SCLC has proven challenging, as no consistent predictive biomarker has been established. Nonetheless, certain tumor-associated antigens, including programmed death-ligand 1 (PDL1) and Delta-Like Ligand 3 (DLL3), show promise for targeted antibody-based immunotherapy. To ensure optimal patient selection, it remains crucial to comprehend the relationship between PDL1 and DLL3 expression and clinicopathological characteristics in SCLC. In this study, we investigated the expression patterns of PDL1 and DLL3 biomarkers in endobronchial samples from 44 SCLC patients, examining their association with clinical characteristics and survival. High PDL1 expression (>1%) was observed in 14% of patients, while the majority the SCLC patients (73%) exhibited high DLL3 expression (>75%). Notably, we found a positive correlation between high PDL1 expression (>1%) and overall survival. However, we did not observe any significant differences in the biomarkers expression concerning age, sex, disease status, smoking status, or distant metastases. Further subgroup analysis revealed that a high co-expression of both PDL1 (>1%) and DLL3 (100%) antigens was associated with improved overall survival. This suggests that SCLC expressing PDL1 and DLL3 antigens may exhibit increased sensitivity to therapy, indicating their potential as therapeutic targets. Thus, our findings provide novel insights into the simultaneous evaluation of PDL1 and DLL3 biomarkers in SCLC patients. These insights have significant clinical implications for therapeutic strategies, survival prediction, and development of combination immunotherapies.
Collapse
Affiliation(s)
- Kalliopi Domvri
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexey V. Yaremenko
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Pulmonary Department, Oncology Unit, George Papanikolaou Hospital, School of MedicineAristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Apostolopoulos
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Savvas Petanidis
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Karachrysafi
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikoleta Pastelli
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Styliani Papaemmanouil
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Lampaki
- Pulmonary Department, Oncology Unit, George Papanikolaou Hospital, School of MedicineAristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Porpodis
- Pulmonary Department, Oncology Unit, George Papanikolaou Hospital, School of MedicineAristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Burns L, Tukachinsky H, Raskina K, Huang RSP, Schrock AB, Sands J, Kulke MH, Oxnard GR, Tapan U. Real-World comprehensive genomic profiling data for diagnostic clarity in pulmonary Large-Cell neuroendocrine carcinoma. Lung Cancer 2024; 188:107454. [PMID: 38159439 DOI: 10.1016/j.lungcan.2023.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/18/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Pulmonary large-cell neuroendocrine carcinoma (LCNEC) is an uncommon subtype of lung cancer believed to represent a spectrum of tumors sharing characteristics of both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Other groups have proposed genomic LCNEC subtypes, including small cell-like, non-small cell-like, and carcinoid-like subtypes. The primary goal of this study was to better define the NSCLC-like subtype with comprehensive genomic profiling (CGP). METHODS An institutional database was queried to identify tissue specimens (TBx, N = 1,426) and liquid biopsies (LBx, N = 39) submitted for CGP during routine clinical care (8/2014 - 7/2023) with a disease ontology of LCNEC. TBx were profiled with FoundationOne® (F1) or F1CDx, using hybrid-capture technology to detect genomic alterations (GAs). RESULTS 1,426 LCNEC samples were genomically profiled. The presence of RB1 and TP53 genomic alterations (GAs) were used to define a SCLC-like subtype (n = 557). A carcinoid-like group was defined by the presence of MEN1 mutation in the absence of TP53 GAs (n = 25). The remaining 844 samples were compared to the SCLC-like group and GAs enriched relative to the SCLC-like samples with a false discovery rate (FDR) < 0.0001 were used to define a NSCLC-like group. These NSCLC-like subtype-defining GAs included SMARCA4, KRAS, FGF3/4/19, STK11, CDKN2A/B, MTAP, and CCND1. Under this schema, 530 samples were classified as NSCLC-like and 314 remained unclassified. CONCLUSIONS Large-scale CGP can better characterize biologically distinct molecular subtypes in LCNEC. Further studies to define how these molecular subtypes may help inform treatment decisions in this complex and challenging malignancy are warranted.
Collapse
Affiliation(s)
- Laura Burns
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, and Boston Medical Center, One Boston Medical Center Pl, Boston, MA 02118, United States
| | - Hanna Tukachinsky
- Foundation Medicine, 150 Second St, Cambridge, MA 02141, United States
| | - Kira Raskina
- Foundation Medicine, 150 Second St, Cambridge, MA 02141, United States
| | - Richard S P Huang
- Foundation Medicine, 150 Second St, Cambridge, MA 02141, United States
| | - Alexa B Schrock
- Foundation Medicine, 150 Second St, Cambridge, MA 02141, United States
| | - Jacob Sands
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, United States
| | - Matthew H Kulke
- Section of Hematology & Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, and Boston Medical Center, 830 Harrison Ave, Boston, MA 02118, United States
| | - Geoffrey R Oxnard
- Section of Hematology & Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, and Boston Medical Center, 830 Harrison Ave, Boston, MA 02118, United States
| | - Umit Tapan
- Section of Hematology & Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, and Boston Medical Center, 830 Harrison Ave, Boston, MA 02118, United States.
| |
Collapse
|
8
|
Vocino Trucco G, Righi L, Volante M, Papotti M. Updates on lung neuroendocrine neoplasm classification. Histopathology 2024; 84:67-85. [PMID: 37794655 DOI: 10.1111/his.15058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Lung neuroendocrine neoplasms (NENs) are a heterogeneous group of pulmonary neoplasms showing different morphological patterns and clinical and biological characteristics. The World Health Organisation (WHO) classification of lung NENs has been recently updated as part of the broader attempt to uniform the classification of NENs. This much-needed update has come at a time when insights from seminal molecular characterisation studies revolutionised our understanding of the biological and pathological architecture of lung NENs, paving the way for the development of novel diagnostic techniques, prognostic factors and therapeutic approaches. In this challenging and rapidly evolving landscape, the relevance of the 2021 WHO classification has been recently questioned, particularly in terms of its morphology-orientated approach and its prognostic implications. Here, we provide a state-of-the-art review on the contemporary understanding of pulmonary NEN morphology and the potential contribution of artificial intelligence, the advances in NEN molecular profiling with their impact on the classification system and, finally, the key current and upcoming prognostic factors.
Collapse
Affiliation(s)
| | - Luisella Righi
- Department of Oncology, University of Turin, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, Turin, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Dayton TL, Alcala N, Moonen L, den Hartigh L, Geurts V, Mangiante L, Lap L, Dost AFM, Beumer J, Levy S, van Leeuwaarde RS, Hackeng WM, Samsom K, Voegele C, Sexton-Oates A, Begthel H, Korving J, Hillen L, Brosens LAA, Lantuejoul S, Jaksani S, Kok NFM, Hartemink KJ, Klomp HM, Borel Rinkes IHM, Dingemans AM, Valk GD, Vriens MR, Buikhuisen W, van den Berg J, Tesselaar M, Derks J, Speel EJ, Foll M, Fernández-Cuesta L, Clevers H. Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites. Cancer Cell 2023; 41:2083-2099.e9. [PMID: 38086335 DOI: 10.1016/j.ccell.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.
Collapse
Affiliation(s)
- Talya L Dayton
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| | - Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Laura Moonen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lisanne den Hartigh
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Veerle Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lise Mangiante
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lisa Lap
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Antonella F M Dost
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Sonja Levy
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Rachel S van Leeuwaarde
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Kris Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Catherine Voegele
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Alexandra Sexton-Oates
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lisa Hillen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Sylvie Lantuejoul
- Department of Biopathology, Pathology Research Platform- Synergie Lyon Cancer- CRCL, Centre Léon Bérard Unicancer, 69008 Lyon, France; Université Grenoble Alpes, Grenoble, France
| | - Sridevi Jaksani
- Hubrecht Organoid Technology, Utrecht 3584 CM, the Netherlands
| | - Niels F M Kok
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Koen J Hartemink
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Houke M Klomp
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Inne H M Borel Rinkes
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Anne-Marie Dingemans
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Menno R Vriens
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Wieneke Buikhuisen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - José van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Margot Tesselaar
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jules Derks
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ernst Jan Speel
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Matthieu Foll
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lynnette Fernández-Cuesta
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France.
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
10
|
Blázquez-Encinas R, García-Vioque V, Caro-Cuenca T, Moreno-Montilla MT, Mangili F, Alors-Pérez E, Ventura S, Herrera-Martínez AD, Moreno-Casado P, Calzado MA, Salvatierra Á, Gálvez-Moreno MA, Fernandez-Cuesta L, Foll M, Luque RM, Alcala N, Pedraza-Arevalo S, Ibáñez-Costa A, Castaño JP. Altered splicing machinery in lung carcinoids unveils NOVA1, PRPF8 and SRSF10 as novel candidates to understand tumor biology and expand biomarker discovery. J Transl Med 2023; 21:879. [PMID: 38049848 PMCID: PMC10696873 DOI: 10.1186/s12967-023-04754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Lung neuroendocrine neoplasms (LungNENs) comprise a heterogeneous group of tumors ranging from indolent lesions with good prognosis to highly aggressive cancers. Carcinoids are the rarest LungNENs, display low to intermediate malignancy and may be surgically managed, but show resistance to radiotherapy/chemotherapy in case of metastasis. Molecular profiling is providing new information to understand lung carcinoids, but its clinical value is still limited. Altered alternative splicing is emerging as a novel cancer hallmark unveiling a highly informative layer. METHODS We primarily examined the status of the splicing machinery in lung carcinoids, by assessing the expression profile of the core spliceosome components and selected splicing factors in a cohort of 25 carcinoids using a microfluidic array. Results were validated in an external set of 51 samples. Dysregulation of splicing variants was further explored in silico in a separate set of 18 atypical carcinoids. Selected altered factors were tested by immunohistochemistry, their associations with clinical features were assessed and their putative functional roles were evaluated in vitro in two lung carcinoid-derived cell lines. RESULTS The expression profile of the splicing machinery was profoundly dysregulated. Clustering and classification analyses highlighted five splicing factors: NOVA1, SRSF1, SRSF10, SRSF9 and PRPF8. Anatomopathological analysis showed protein differences in the presence of NOVA1, PRPF8 and SRSF10 in tumor versus non-tumor tissue. Expression levels of each of these factors were differentially related to distinct number and profiles of splicing events, and were associated to both common and disparate functional pathways. Accordingly, modulating the expression of NOVA1, PRPF8 and SRSF10 in vitro predictably influenced cell proliferation and colony formation, supporting their functional relevance and potential as actionable targets. CONCLUSIONS These results provide primary evidence for dysregulation of the splicing machinery in lung carcinoids and suggest a plausible functional role and therapeutic targetability of NOVA1, PRPF8 and SRSF10.
Collapse
Affiliation(s)
- Ricardo Blázquez-Encinas
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Víctor García-Vioque
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Teresa Caro-Cuenca
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Pathology Service, Reina Sofía University Hospital, Córdoba, Spain
| | - María Trinidad Moreno-Montilla
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Federica Mangili
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Emilia Alors-Pérez
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Sebastian Ventura
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Computer Sciences, University of Córdoba, Córdoba, Spain
| | - Aura D Herrera-Martínez
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Paula Moreno-Casado
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Thoracic Surgery and Lung Transplantation Unit, Reina Sofa University Hospital, Córdoba, Spain
| | - Marco A Calzado
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Ángel Salvatierra
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Thoracic Surgery and Lung Transplantation Unit, Reina Sofa University Hospital, Córdoba, Spain
| | - María A Gálvez-Moreno
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Lynnette Fernandez-Cuesta
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research On Cancer (IARC/WHO), Lyon, France
| | - Matthieu Foll
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research On Cancer (IARC/WHO), Lyon, France
| | - Raúl M Luque
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research On Cancer (IARC/WHO), Lyon, France
| | - Sergio Pedraza-Arevalo
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Reina Sofia University Hospital, Córdoba, Spain.
| | - Justo P Castaño
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Reina Sofia University Hospital, Córdoba, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBERobn), Córdoba, Spain.
| |
Collapse
|
11
|
Brik A, Wichert K, Weber DG, Szafranski K, Rozynek P, Meier S, Ko YD, Büttner R, Gerwert K, Behrens T, Brüning T, Johnen G. Assessment of MYC and TERT copy number variations in lung cancer using digital PCR. BMC Res Notes 2023; 16:279. [PMID: 37858127 PMCID: PMC10585721 DOI: 10.1186/s13104-023-06566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
OBJECTIVE Lung cancer is the second most frequent cancer type and the most common cause of cancer-related deaths worldwide. Alteration of gene copy numbers are associated with lung cancer and the determination of copy number variations (CNV) is appropriate for the discrimination between tumor and non-tumor tissue in lung cancer. As telomerase reverse transcriptase (TERT) and v-myc avian myelocytomatosis viral oncogene homolog (MYC) play a role in lung cancer the aims of this study were the verification of our recent results analyzing MYC CNV in tumor and non-tumor tissue of lung cancer patients using an independent study group and the assessment of TERT CNV as an additional marker. RESULTS TERT and MYC status was analyzed using digital PCR (dPCR) in tumor and adjacent non-tumor tissue samples of 114 lung cancer patients. The difference between tumor and non-tumor samples were statistically significant (p < 0.0001) for TERT and MYC. Using a predefined specificity of 99% a sensitivity of 41% and 51% was observed for TERT and MYC, respectively. For the combination of TERT and MYC the overall sensitivity increased to 60% at 99% specificity. We demonstrated that a combination of markers increases the performance in comparison to individual markers. Additionally, the determination of CNV using dPCR might be an appropriate tool in precision medicine.
Collapse
Affiliation(s)
- Alexander Brik
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany.
| | - Katharina Wichert
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Daniel G Weber
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Katja Szafranski
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Peter Rozynek
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Swetlana Meier
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Yon-Dschun Ko
- Department of Internal Medicine, Johanniter-Kliniken Bonn GmbH, Bonn, Germany
| | - Reinhard Büttner
- Institute of Pathology, Medical Faculty and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Klaus Gerwert
- Center for Protein Diagnostics (PRODI), Department of Biophysics, Ruhr University Bochum, Bochum, Germany
| | - Thomas Behrens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Georg Johnen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| |
Collapse
|
12
|
Lyu SI, Popp FC, Simon AG, Schultheis AM, Zander T, Fretter C, Schröder W, Bruns CJ, Schmidt T, Quaas A, Knipper K. Copy-number-gain of telomerase reverse transcriptase (hTERT) is associated with an unfavorable prognosis in esophageal adenocarcinoma. Sci Rep 2023; 13:17699. [PMID: 37848472 PMCID: PMC10582081 DOI: 10.1038/s41598-023-44844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Esophageal adenocarcinoma exhibits one of the highest mortality rates among all cancer entities. Multimodal therapy strategies have improved patients' survival significantly. However, patients in early stages are currently limited to receiving only local therapies, even though some patients within this group showcase short survival periods. Until now, there has been no widely established clinically used biomarker to detect these high-risk patients. Telomerase reverse transcriptase (TERT), a gene encoding a crucial subunit of the telomerase enzyme, plays a significant role in establishing cancer cell immortality and is under suspicion for its potential contribution to tumor progression. Therefore, we aimed to evaluate the clinical relevance of the TERT amplification status. We included 643 patients with esophageal adenocarcinoma, who underwent Ivor-Lewis esophagectomy at the University Hospital of Cologne. The TERT amplification status was characterized using fluorescence in situ hybridization. Clinicopathological values and patients' overall survival were compared between patients with and without TERT amplification. Further sub-cohort analyses were conducted for patients with pT1N0-3 tumor stage. Eighty-One patients (12.6%) exhibited TERT amplification. Patients with amplified TERT showed significantly worse overall survival (median OS: 22.6 vs. 36.8 months, p = 0.009). Interestingly, TERT amplification could be characterized as an independent risk factor for worse overall survival in multivariate analysis in patients with pT1N0-3 tumor stage (HR = 2.440, 95% CI 1.095-5.440, p = 0.029). In this study, we describe the TERT amplification status as an independent risk factor for worse survival in patients diagnosed with esophageal adenocarcinoma at pT1N0-3 tumor stage, encompassing cases involving tumor infiltration of the lamina propria, muscularis mucosae, and/or submucosa. Based on our findings, we put forth the proposition that evaluating the TERT amplification status may serve as a valuable tool in identifying a specific subgroup of patients, namely those with TERT amplification and pT1N0-3 tumor-stage esophageal adenocarcinoma. The patients of this subgroup could potentially benefit from enhanced follow-up protocols, more aggressive treatment approaches, or possible targeted TERT inhibition therapies, all aimed at improving their overall clinical outcomes.
Collapse
Affiliation(s)
- Su Ir Lyu
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Felix C Popp
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Adrian Georg Simon
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Anne Maria Schultheis
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Thomas Zander
- Faculty of Medicine and University Hospital of Cologne, Department of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, Cologne, Germany
| | - Caroline Fretter
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Wolfgang Schröder
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Christiane J Bruns
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Thomas Schmidt
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Karl Knipper
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Abele M, Kunstreich M, Lessel L, Seitz G, Vokuhl C, Lapa C, Schneider DT, Brecht IB, Redlich A, Kuhlen M. Bronchial carcinoid tumors in children and adolescents - A report and management considerations from the German MET studies. Lung Cancer 2023; 183:107320. [PMID: 37549472 DOI: 10.1016/j.lungcan.2023.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVES Bronchial carcinoid tumors (BC) are exceptionally rare in childhood, with an incidence of <0.2/1,000,000 per year. Typical low-grade BCs are distinguished from atypical, intermediate-grade BCs. Little is known about BCs in pediatric patients and management guidelines are missing. In this study, we explored characteristics and outcome of pediatric patients with BC prospectively registered with the Malignant Endocrine Tumor studies. MATERIAL AND METHODS We performed a retrospective multicenter study in children, adolescents, and young adults (aged 0-20 years) with BC reported to the German MET registry between January 1997 and December 2022. Data were last updated on 28 of February 2023. RESULTS Thirty-two patients were diagnosed at a median age of 15.0 years (range, 9.8-19.2). Atypical BCs (23.3%) were less frequent than typical, but more common than in adulthood. Lymph node metastases were present in 14.3% of cases (atypical BC: 28.6%, typical BC: 10.5%), distant metastases in one (3.1%) patient with atypical BC. 92.6% of patients were in complete remission after surgical resection (median follow-up: 2.7 years). The patient with metastatic spread and one patient with atypical BC and multiple recurrences were on treatment at last follow-up. 5-year event-free survival of typical BC was 100% and 83.3% in atypical BC. CONCLUSIONS Completely resected localized BCs in pediatric patients have a favorable outcome also with lung tissue sparing surgery. Atypical BC with risk of metastatic spread and recurrence occurred more frequently compared to adults. Interdisciplinary management and collaborative efforts are needed to improve our understanding and the management of pediatric BC.
Collapse
Affiliation(s)
- Michael Abele
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany.
| | - Marina Kunstreich
- Department of Pediatrics, Pediatric Hematology/Oncology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Lienhard Lessel
- Department of Pediatrics, Pediatric Hematology/Oncology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Guido Seitz
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Dominik T Schneider
- Clinic of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund, Germany
| | - Ines B Brecht
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Antje Redlich
- Department of Pediatrics, Pediatric Hematology/Oncology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Michaela Kuhlen
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
14
|
Jin F, Yang Z, Shao J, Tao J, Reißfelder C, Loges S, Zhu L, Schölch S. ARID1A mutations in lung cancer: biology, prognostic role, and therapeutic implications. Trends Mol Med 2023; 29:646-658. [PMID: 37179132 DOI: 10.1016/j.molmed.2023.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Mutations in the AT-interacting domain-rich protein 1A (ARID1A) gene, a critical component of the switch/sucrose nonfermentable (SWI/SNF) complex, are frequently found in most human cancers. Approximately 5-10% of lung cancers carry ARID1A mutations. ARID1A loss in lung cancer correlates with clinicopathological features and poor prognosis. Co-mutation of ARID1A and epidermal growth factor receptor (EGFR) results in the limited efficacy of EGFR tyrosine kinase inhibitors (EGFR-TKIs) but increases the clinical benefit of immune checkpoint inhibitors (ICIs). ARID1A gene mutation plays a role in cell cycle regulation, metabolic reprogramming, and epithelial-mesenchymal transition. We present the first comprehensive review of the relationship between ARID1A gene mutations and lung cancer and discuss the potential of ARID1A as a new molecular target.
Collapse
Affiliation(s)
- Fukang Jin
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Zhiguang Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Jingbo Shao
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jianxin Tao
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reißfelder
- DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Personalized Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lei Zhu
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Sebastian Schölch
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
15
|
Kiesewetter B, Melhorn P, Macheiner S, Wolff L, Kretschmer-Chott E, Haug A, Mazal P, Raderer M. Does the dose matter? Antiproliferative efficacy and toxicity of everolimus in patients with neuroendocrine tumors - Experiences from a tertiary referral center. J Neuroendocrinol 2023; 35:e13319. [PMID: 37485760 DOI: 10.1111/jne.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/12/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
The mTOR-inhibitor everolimus has been approved for the treatment of advanced neuroendocrine tumors (NETs) but is associated with relevant toxicities in clinical practice. Hence, optimal treatment sequencing and the impact of dose reductions have yet to be clarified. This retrospective analysis assessed patients with advanced, well-differentiated NET treated with everolimus at the Medical University of Vienna. The primary objective was to evaluate the efficacy of everolimus in a real-world cohort. A total of 52 patients treated with everolimus for advanced NET grade 1 (G1) or G2 (or typical or atypical carcinoid) 2010-2021 were included in this analysis. The most common sites of origin were pancreas (44%) and lung (29%). The initial dose was decided by the treating physician based on clinical assessment and 25 patients (48%) each were started at 10 mg/day and 5 mg/day. Median progression-free survival (PFS) following everolimus in the overall cohort was 9.8 months (95% CI: 4.3-15.3), with a statistically significant PFS difference (p = .03) between NET G1/typical carcinoids (42.9 months) and NET G2/atypical carcinoids (8.9 months). PFS was numerically but not significantly shorter in patients treated with a reduced dose (7.5 months vs. 12.4 months, p = .359). Even in this mixed full/half dose cohort, 93% developed treatment-related side effects (mostly grade I, no grade IV), 63% had dose reductions or interruptions, and five stopped due to toxicity. Median survival following treatment was 40.9 months (95% CI: 21.5-60.3) and no difference with regard to dosing was observed (p = .517). These data from an unselected patient cohort show long-term outcomes similar to those reported in the pivotal studies. Comparing everolimus starting dose, median PFS did not significantly differ for patients treated at a lower dose. While this finding is limited by the sample size and warrants prospective verification, initiating therapy at a reduced dose might be practicable and safe in a distinct subset of patients.
Collapse
Affiliation(s)
- Barbara Kiesewetter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Philipp Melhorn
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Simon Macheiner
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Ladislaia Wolff
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Kretschmer-Chott
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Haug
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter Mazal
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Markus Raderer
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Krpina K, Vranić S, Tomić K, Samaržija M, Batičić L. Small Cell Lung Carcinoma: Current Diagnosis, Biomarkers, and Treatment Options with Future Perspectives. Biomedicines 2023; 11:1982. [PMID: 37509621 PMCID: PMC10377361 DOI: 10.3390/biomedicines11071982] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy characterized by rapid proliferation, early dissemination, acquired therapy resistance, and poor prognosis. Early diagnosis of SCLC is crucial since most patients present with advanced/metastatic disease, limiting the potential for curative treatment. While SCLC exhibits initial responsiveness to chemotherapy and radiotherapy, treatment resistance commonly emerges, leading to a five-year overall survival rate of up to 10%. New effective biomarkers, early detection, and advancements in therapeutic strategies are crucial for improving survival rates and reducing the impact of this devastating disease. This review aims to comprehensively summarize current knowledge on diagnostic options, well-known and emerging biomarkers, and SCLC treatment strategies and discuss future perspectives on this aggressive malignancy.
Collapse
Affiliation(s)
- Kristina Krpina
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Semir Vranić
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Krešimir Tomić
- Department of Oncology, University Clinical Hospital Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Miroslav Samaržija
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
17
|
Smith J, Barnett E, Rodger EJ, Chatterjee A, Subramaniam RM. Neuroendocrine Neoplasms: Genetics and Epigenetics. PET Clin 2023; 18:169-187. [PMID: 36858744 DOI: 10.1016/j.cpet.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Neuroendocrine neoplasms (NENs) are a group of rare, heterogeneous tumors of neuroendocrine cell origin, affecting a range of different organs. The clinical management of NENs poses significant challenges, as tumors are often diagnosed at an advanced stage where overall survival remains poor with current treatment regimens. In addition, a host of complex and often unique molecular changes underpin the pathobiology of each NEN subtype. Exploitation of the unique genetic and epigenetic signatures driving each NEN subtype provides an opportunity to enhance the diagnosis, treatment, and monitoring of NEN in an emerging era of individualized medicine.
Collapse
Affiliation(s)
- Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Te Whatu Ora - Southern, Dunedin Public Hospital, 270 Great King Street, PO Box 913, Dunedin, New Zealand.
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Otago Medical School, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Radiology, Duke University, 2301 Erwin Rd, BOX 3808, Durham, NC 27705, USA
| |
Collapse
|
18
|
Araujo-Castro M. Indications for genetic study in gastro-entero-pancreatic and thoracic neuroendocrine tumors. ENDOCRINOL DIAB NUTR 2023; 70 Suppl 1:63-73. [PMID: 36396595 DOI: 10.1016/j.endien.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/03/2022] [Indexed: 11/16/2022]
Abstract
Gastro-entero-pancreatic (GEP-NET) and thoracic neuroendocrine tumours (NETs) are one of the most heritable groups of neoplasms in the body, being multiple endocrine neoplasia syndrome type 1 (MEN1), the genetic syndrome most frequently associated with this type of tumours. Moreover, Von Hippel Lindau syndrome, tuberous sclerosis, type 4 multiple neoplasia syndrome, and type 1 neurofibromatosis are associated with an increased risk of developing GEP-NETs. Another important aspect in GEP-NETs and thoracic NETs is the knowledge of the molecular background since the molecular profile of these tumours may have implications in the prognosis and in the response to specific treatments. This review summarizes the main indications for performing a genetic study in patients with GEP-NETs and thoracic NETs, and the methods used to carry it out. Moreover, it offers a description of the main hereditary syndromes associated with these NETs and their molecular background, as well as the clinical implications of the molecular profile.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Unidad de Neuroendocrinología, Departamento de Endocrinología y Nutrición, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Invesitigación Sanitaria (IRYCIS), Madrid, Spain; Departamento de Medicina, Universidad de Alcalá, Madrid, Spain.
| |
Collapse
|
19
|
Boilève A, Faron M, Fodil-Cherif S, Bayle A, Lamartina L, Planchard D, Tselikas L, Kanaan C, Scoazec JY, Ducreux M, Italiano A, Baudin E, Hadoux J. Molecular profiling and target actionability for precision medicine in neuroendocrine neoplasms: real-world data. Eur J Cancer 2023; 186:122-132. [PMID: 37062210 DOI: 10.1016/j.ejca.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Key molecular alterations (MA) of neuroendocrine neoplasm (NEN) of various grade/primaries have been described but the applicability of molecular profiling (MP) for precision medicine in NEN remains to be demonstrated. METHODS We conducted a retrospective study of all patients with metastatic NEN who had MP on tumour tissue at Gustave Roussy. The primary objective was to assess the clinical applicability of MP by evaluating the growth modulator index (GMI) as the primary end-point. RESULTS MPs were obtained in 114 out of 156 eligible patients, including 12% NET-G1, 42% NET-G2, 13% NET-G3 and 35% neuroendocrine carcinoma (NEC). Primary sites were lung/thymus (40%), pancreas (19%), gastro-intestinal (16%), head&neck (10%), unknown (10%) and others (10%) with synchronous metastases in 61% of the patients. Most frequent MA were: MEN1 (25%), PTEN (13%), TP53 (11%) and TSC2 (9%), in neuroendocrine tumour (NET), and TP53 (50%) and RB1 (18%) in NEC. ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT) classification of these MA were: I(5%), III(20%), IV(23%), X(27%); a putative actionable MA was identified in 48% patients. Median TMB was 5.7 Mut/Mb, with 3 TMB > 10 and 1 MSI NET. No MA was found in 26% patients. Molecularly matched treatment was administered to 19 patients (4 NEC, 15 NET): immunotherapy (n = 3), tipifarnib (n = 1), NOTCHi (n = 1), EGFRi (n = 2), HER2i (n = 1) and everolimus (n = 11). Overall, 67% of patients had a clinical benefit defined as a GMI over 1.3 with a 78% disease control rate. CONCLUSION We report 48% of NEN with a putative actionable MA of which 35% received molecularly matched treatment, with a clinical benefit in 67% of the cases.
Collapse
|
20
|
Jafari P, Husain AN, Setia N. All Together Now: Standardization of Nomenclature for Neuroendocrine Neoplasms across Multiple Organs. Surg Pathol Clin 2023; 16:131-150. [PMID: 36739160 DOI: 10.1016/j.path.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuroendocrine neoplasms (NENs) span virtually all organ systems and exhibit a broad spectrum of behavior, from indolent to highly aggressive. Historically, nomenclature and grading practices have varied widely across, and even within, organ systems. However, certain core features are recapitulated across anatomic sites, including characteristic morphology and the crucial role of proliferative activity in prognostication. A recent emphasis on unifying themes has driven an increasingly standardized approach to NEN classification, as delineated in the World Health Organization's Classification of Tumours series. Here, we review recent developments in NEN classification, with a focus on NENs of the pancreas and lungs.
Collapse
Affiliation(s)
- Pari Jafari
- Department of Pathology, The University of Chicago Medicine, 5841 South Maryland Avenue, MC 6101, Room S-638, Chicago, IL 60637, USA.
| | - Aliya N Husain
- Department of Pathology, The University of Chicago Medicine, 5841 South Maryland Avenue, MC 6101, Room S-638, Chicago, IL 60637, USA
| | - Namrata Setia
- Department of Pathology, The University of Chicago Medicine, 5841 South Maryland Avenue, MC 6101, Room S-638, Chicago, IL 60637, USA
| |
Collapse
|
21
|
Chen X, Huang Y, Chen F, She H, Chen X. Risk factors and prognostic factors for pulmonary large cell neuroendocrine carcinoma with brain metastasis. Cancer Med 2023; 12:4087-4099. [PMID: 36125491 PMCID: PMC9972106 DOI: 10.1002/cam4.5267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND As the studies regarding the brain metastasis (BM) of pulmonary large cell neuroendocrine carcinoma (LCNEC) are insufficient, the present research aims to describe the risk factors and prognostic factors that are related to cancer-specific survival (CSS) for LCNEC patients with BM. METHODS The data of LCNEC patients between January 2010 and October 2018 were obtained from the SEER database. Binary logistic regression analyses were utilized to screen the possible risk factors related to BM. Prognostic factors for LCNEC patients with BM were indentified by Cox regression analyses. Moreover, a nomogram was established to predict the 6-, 12-, and 18-month CSS rates. The concordance index (C-index), receiver operating characteristic (ROC) curves and calibration curves were utilized to assess the discrimination and reliability of the model. Clinical decision curves (DCAs) were used to evaluate the clinical benefits and utility of our model. RESULTS Totally, 1875 patients were enrolled, with 294 (15.7%) of them having BM at diagnosis. Multivariate logistic regression analyses revealed that patients with age < 65 (odds ratio, OR = 1.564) and N2 staging (OR = 1.775) had a greater chance of developing BM. Age (≥ 65 vs. < 65: hazard ratio, HR = 1.409), T staging (T1 vs. T0: HR = 4.580; T2 vs. T0: HR = 6.008; T3 vs. T0: HR = 7.065; T4 vs. T0: HR = 6.821), N staging (N2 vs. N0: HR = 1.592; N3 vs. N0: HR = 1.654), liver metastasis (HR = 1.410), primary site surgery (HR = 0.581) and chemotherapy (HR = 0.452) were independent prognostic factors for LCNEC patients with BM. A nomogram prediction model was constructed by incorporating these factors. Using the C-index, calibration curves, ROC curves, and DCAs, we found that the clinical prediction model performed well. CONCLUSION We described the risk factors and prognostic factors that were associated with CSS for LCNEC patients with BM. The related nomogram was established and validated to help clinicians formulate more rational and effective treatment strategies.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Respiratory and Critical Care Medicine, Fuzhou Second Hospital, Fuzhou, People's Republic of China.,The Third Clinical Medical College, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yedong Huang
- Department of Gynecology Oncology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Fangrong Chen
- Department of Respiratory and Critical Care Medicine, Fuzhou Second Hospital, Fuzhou, People's Republic of China
| | - Hui She
- Department of Respiratory and Critical Care Medicine, Fuzhou Second Hospital, Fuzhou, People's Republic of China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases (Fujian Medical University Union Hospital), Fuzhou, People's Republic of China
| |
Collapse
|
22
|
Prieto TG, Baldavira CM, Machado-Rugolo J, Olivieri EHR, da Silva ECA, Ab’ Saber AM, Takagaki TY, Capelozzi VL. Proposing Specific Neuronal Epithelial-to-Mesenchymal Transition Genes as an Ancillary Tool for Differential Diagnosis among Pulmonary Neuroendocrine Neoplasms. Genes (Basel) 2022; 13:genes13122309. [PMID: 36553576 PMCID: PMC9777553 DOI: 10.3390/genes13122309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Pulmonary neuroendocrine neoplasms (PNENs) are currently classified into four major histotypes, including typical carcinoid (TC), atypical carcinoid (AC), large cell neuroendocrine carcinoma (LCNEC), and small cell lung carcinoma (SCLC). This classification was designed to be applied to surgical specimens mostly anchored in morphological parameters, resulting in considerable overlapping among PNENs, which may result in important challenges for clinicians' decisions in the case of small biopsies. Since PNENs originate from the neuroectodermic cells, epithelial-to-mesenchymal transition (EMT) gene expression shows promise as biomarkers involved in the genotypic transformation of neuroectodermic cells, including mutation burden with the involvement of chromatin remodeling genes, apoptosis, and mitosis rate, leading to modification in final cellular phenotype. In this situation, additional markers also applicable to biopsy specimens, which correlate PNENs subtypes with systemic treatment response, are much needed, and current potential candidates are neurogenic EMT genes. This study investigated EMT genes expression and its association with PNENs histotypes in tumor tissues from 24 patients with PNENs. PCR Array System for 84 EMT-related genes selected 15 differentially expressed genes among the PNENs, allowing to discriminate TC from AC, LCNEC from AC, and SCLC from AC. Functional enrichment analysis of the EMT genes differentially expressed among PNENs subtypes showed that they are involved in cellular proliferation, extracellular matrix degradation, regulation of cell apoptosis, oncogenesis, and tumor cell invasion. Interestingly, four EMT genes (MAP1B, SNAI2, MMP2, WNT5A) are also involved in neurological diseases, in brain metastasis, and interact with platinum-based chemotherapy and tyrosine-kinase inhibitors. Collectively, these findings emerge as an important ancillary tool to improve the strategies of histologic diagnosis in PNENs and unveil the four EMT genes that can play an important role in driving chemical response in PNENs.
Collapse
Affiliation(s)
- Tabatha Gutierrez Prieto
- Laboratory of Genomics and Histomorphometry, Department of Pathology, University of São Paulo Medical School (USP), São Paulo 01246-903, SP, Brazil
| | - Camila Machado Baldavira
- Laboratory of Genomics and Histomorphometry, Department of Pathology, University of São Paulo Medical School (USP), São Paulo 01246-903, SP, Brazil
| | - Juliana Machado-Rugolo
- Laboratory of Genomics and Histomorphometry, Department of Pathology, University of São Paulo Medical School (USP), São Paulo 01246-903, SP, Brazil
- Health Technology Assessment Center (NATS), Clinical Hospital (HCFMB), Medical School of São Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil
| | | | | | - Alexandre Muxfeldt Ab’ Saber
- Laboratory of Genomics and Histomorphometry, Department of Pathology, University of São Paulo Medical School (USP), São Paulo 01246-903, SP, Brazil
- Fundação Oncocentro do Estado de São Paulo (FOSP), São Paulo 05409-012, SP, Brazil
| | - Teresa Yae Takagaki
- Division of Pneumology, Instituto do Coração (Incor), Medical School of University of São Paulo, São Paulo 01246-903, SP, Brazil
| | - Vera Luiza Capelozzi
- Laboratory of Genomics and Histomorphometry, Department of Pathology, University of São Paulo Medical School (USP), São Paulo 01246-903, SP, Brazil
- Correspondence:
| |
Collapse
|
23
|
Guan X, Bao G, Liang J, Yao Y, Xiang Y, Zhong X. Evolution of small cell lung cancer tumor mutation: from molecular mechanisms to novel viewpoints. Semin Cancer Biol 2022; 86:346-355. [PMID: 35367118 DOI: 10.1016/j.semcancer.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is a clinically common malignant tumor originating from the lung neuroendocrine stem cells, which has a poor prognosis and accounts for approximately 15% of all lung cancer cases. However, research on its treatment has been slow, and the 5-year survival rate of patients with SCLC has been < 5% for many years. In recent years, the development and popularization of gene sequencing technology have facilitated the understanding of the gene mutation landscape and tumor evolution of SCLC, thereby leading to a more accurate prediction of the prognosis of SCLC and the development of individualized treatment. In this review, we aimed to discuss the mutation evolution of SCLC from the perspective of a tumor evolution theory and described the sequence of mutation evolution in the occurrence and development of SCLC. In addition, we summarized the existing whole-exome sequencing (WES) data of SCLC cases at our center along with relevant publications on sequencing. Thereafter, we discuss the role of different mutated pathways in the occurrence of SCLC to predict its prognosis more accurately and summarized individualized treatment strategies.
Collapse
Affiliation(s)
- Xiaojiao Guan
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Guangyao Bao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jie Liang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yao Yao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yifan Xiang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
24
|
Metovic J, La Salvia A, Rapa I, Napoli F, Birocco N, Pia Bizzi M, Garcia-Carbonero R, Ciuffreda L, Scagliotti G, Papotti M, Volante M. Molecular Subtypes of Extra-pulmonary Neuroendocrine Carcinomas Identified by the Expression of Neuroendocrine Lineage-Specific Transcription Factors. Endocr Pathol 2022; 33:388-399. [PMID: 35608806 PMCID: PMC9420091 DOI: 10.1007/s12022-022-09722-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/17/2022]
Abstract
Extra-pulmonary neuroendocrine carcinomas (EPNEC) represent a group of rare and heterogenous neoplasms with adverse clinical outcome. Their molecular profile is largely unexplored. Our aim was to investigate if the major transcriptional drivers recently described in high-grade pulmonary neuroendocrine carcinomas characterize distinct molecular and clinical subgroups of EPNEC. Gene expression of ASCL1, NEUROD1, DLL3, NOTCH1, INSM1, MYCL1, POU2F3, and YAP1 was investigated in a series of 54 EPNEC (including 10 cases with mixed components analyzed separately) and in a group of 48 pulmonary large cell neuroendocrine carcinomas (P-LCNEC). Unsupervised hierarchical cluster analysis classified the whole series into four major clusters. P-LCNEC were classified into two major clusters, the first ASCL1/DLL3/INSM1-high and the second (including four EPNEC) ASCL1/DLL3-low but INSM1-high. The remaining EPNEC cases were sub-classified into two other clusters. The first showed INSM1-high and alternative ASCL1/DLL3 or NEUROD1 high expression. The second was characterized mainly by MYCL1 and YAP1 overexpression. In the ten cases with mixed histology, ASCL1, DLL3, INSM1, and NEUROD1 genes were significantly upregulated in the neuroendocrine component. Higher gene-expression levels of NOTCH1 and INSM1 were associated with lower pT stage and negative nodal status. Low INSM1 gene expression was associated with shorter overall survival in the entire case series (p = 0.0017) and with a trend towards significance in EPNEC, only (p = 0.06). In conclusion, our results show that EPNEC possess distinct neuroendocrine-lineage-specific transcriptional profiles; moreover, low INSM1 gene expression represents a novel potential unfavorable prognostic marker in high-grade NECs including those in extra-pulmonary location.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Oncology, University of Turin; Pathology Unit at Città della Salute e della Scienza Hospital, via Santena 7, Turin, Italy
| | - Anna La Salvia
- Division of Medical Oncology, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Ida Rapa
- Department of Oncology, University of Turin; Pathology Unit at San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Francesca Napoli
- Department of Oncology, University of Turin; Pathology Unit at San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Nadia Birocco
- Medical Oncology Unit, Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Maria Pia Bizzi
- Medical Oncology Unit, San Luigi Hospital, Orbassano, Turin, Italy
| | | | - Libero Ciuffreda
- Medical Oncology Unit, Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Giorgio Scagliotti
- Department of Oncology, University of Turin; Medical Oncology Unit at San Luigi Hospital, Orbassano, Turin, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin; Pathology Unit at Città della Salute e della Scienza Hospital, via Santena 7, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin; Pathology Unit at San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
25
|
Kasajima A, Klöppel G. Neuroendocrine tumor G3 of bronchopulmonary origin and its classification. Pathol Int 2022; 72:488-495. [PMID: 35983917 DOI: 10.1111/pin.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
Abstract
Neuroendocrine tumors (NET) with high proliferative activity (Ki-67 index >20% and/or mitotic counts >2 mm2 ) are defined as NET G3 in the 2019 World Health Organization (WHO) classification of digestive system neuroendocrine neoplasms (NENs). NETs G3 occur mostly in the pancreas, colon, rectum, and stomach and only rarely in the small intestine and the appendix. In the bronchopulmonary system, similar tumors have also been recognized and were mostly classified as atypical carcinoid (AC) or large cell neuroendocrine carcinoma. Bronchopulmonary NENs that were classified as NETs G3 are characterized by histological and immunohistochemical similarities with carcinoids/NETs, and a clinical course that is more aggressive than with ACs and similar to that of neuroendocrine carcinomas. The morphomolecular and clinical features of bronchopulmonary neoplasms with a high proliferative activity were reviewed and a future classification system that is applicable for both digestive and bronchopulmonary NETs is proposed.
Collapse
Affiliation(s)
- Atsuko Kasajima
- Department of Pathology, Technical University Munich, Munich, Germany
| | - Günter Klöppel
- Department of Pathology, Technical University Munich, Munich, Germany
| |
Collapse
|
26
|
Indicaciones de estudio genético en los tumores neuroendocrinos gastro-entero-pancreáticos y torácicos. ENDOCRINOL DIAB NUTR 2022. [DOI: 10.1016/j.endinu.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Williams JF, Vivero M. Diagnostic criteria and evolving molecular characterization of pulmonary neuroendocrine carcinomas. Histopathology 2022; 81:556-568. [PMID: 35758205 DOI: 10.1111/his.14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Neuroendocrine carcinomas of the lung are currently classified into two categories: small cell lung carcinoma and large cell neuroendocrine carcinoma. Diagnostic criteria for small cell- and large cell neuroendocrine carcinoma are based solely on tumor morphology; however, overlap in histologic and immunophenotypic features between the two types of carcinoma can potentially make their classification challenging. Accurate diagnosis of pulmonary neuroendocrine carcinomas is paramount for patient management, as clinical course and treatment differ between small cell and large cell neuroendocrine carcinoma. Molecular-genetic, transcriptomic, and proteomic data published over the past decade suggest that small cell and large cell neuroendocrine carcinomas are not homogeneous categories but rather comprise multiple groups of distinctive malignancies. Nuances in the susceptibility of small cell lung carcinoma subtypes to different chemotherapeutic regimens and the discovery of targetable mutations in large cell neuroendocrine carcinoma suggest that classification and treatment of neuroendocrine carcinomas may be informed by ancillary molecular and protein expression testing going forward. This review summarizes current diagnostic criteria, prognostic and predictive correlates of classification, and evidence of previously unrecognized subtypes of small cell and large cell neuroendocrine carcinoma.
Collapse
Affiliation(s)
- Jessica F Williams
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Marina Vivero
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Moonen L, Mangiante L, Leunissen DJG, Lap LMV, Gabriel A, Hillen LM, Roemen GM, Koch A, van Engeland M, Dingemans AC, Foll M, Alcala N, Fernandez‐Cuesta L, Derks JL, Speel EM. Differential Orthopedia Homeobox expression in pulmonary carcinoids is associated with changes in DNA methylation. Int J Cancer 2022; 150:1987-1997. [PMID: 35076935 PMCID: PMC9303689 DOI: 10.1002/ijc.33939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
Abstract
Limited number of tumor types have been examined for Orthopedia Homeobox (OTP) expression. In pulmonary carcinoids, loss of expression is a strong indicator of poor prognosis. Here, we investigated OTP expression in 37 different tumor types, and the association between OTP expression and DNA methylation levels in lung neuroendocrine neoplasms. We analyzed publicly available multi-omics data (whole-exome-, whole-genome-, RNA sequencing and Epic 850K-methylation array) of 58 typical carcinoids, 27 atypical carcinoids, 69 large cell neuroendocrine carcinoma and 51 small cell lung cancer patients and TCGA (The Cancer Genome Atlas) data of 33 tumor types. 850K-methylation analysis was cross-validated using targeted pyrosequencing on 35 carcinoids. We report bimodality of OTP expression in carcinoids (OTPhigh vs OTPlow group, likelihood-ratio test P = 1.5 × 10-2 ), with the OTPhigh group specific to pulmonary carcinoids while absent from all other cohorts analyzed. Significantly different DNA methylation levels were observed between OTPhigh and OTPlow carcinoids in 12/34 OTP infinium probes (FDR < 0.05 and β-value effect size > .2). OTPlow carcinoids harbor high DNA methylation levels as compared to OTPhigh carcinoids. OTPlow carcinoids showed a significantly worse overall survival (log-rank test P = .0052). Gene set enrichment analysis for somatically mutated genes associated with hallmarks of cancer showed robust enrichment of three hallmarks in the OTPlow group, that is, sustaining proliferative signaling, evading growth suppressor and genome instability and mutation. Together our data suggest that high OTP expression is a unique feature of pulmonary carcinoids with a favorable prognosis and that in poor prognostic patients, OTP expression is lost, most likely due to changes in DNA methylation levels.
Collapse
Affiliation(s)
- Laura Moonen
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Lise Mangiante
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM)International Agency for Research on Cancer/World Health Organisation (IARC/WHO)LyonFrance
| | - Daphne J. G. Leunissen
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Lisa M. V. Lap
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Aurelie Gabriel
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM)International Agency for Research on Cancer/World Health Organisation (IARC/WHO)LyonFrance
| | - Lisa M. Hillen
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Guido M. Roemen
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Alexander Koch
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
- Epify BVMaastrichtThe Netherlands
| | - Manon van Engeland
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Anne‐Marie C. Dingemans
- Department of Pulmonary DiseasesGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
- Department of Pulmonary MedicineErasmus MC Cancer Institute, University Medical CenterRotterdamThe Netherlands
| | - Matthieu Foll
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM)International Agency for Research on Cancer/World Health Organisation (IARC/WHO)LyonFrance
| | - Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM)International Agency for Research on Cancer/World Health Organisation (IARC/WHO)LyonFrance
| | - Lynnette Fernandez‐Cuesta
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM)International Agency for Research on Cancer/World Health Organisation (IARC/WHO)LyonFrance
| | - Jules L. Derks
- Department of Pulmonary DiseasesGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Ernst‐Jan M. Speel
- Department of PathologyGROW School for Oncology and Developmental Biology, Maastricht University Medical CentreMaastrichtThe Netherlands
| |
Collapse
|
29
|
La Salvia A, Persano I, Siciliani A, Verrico M, Bassi M, Modica R, Audisio A, Zanata I, Trabalza Marinucci B, Trevisi E, Puliani G, Rinzivillo M, Parlagreco E, Baldelli R, Feola T, Sesti F, Razzore P, Mazzilli R, Mancini M, Panzuto F, Volante M, Giannetta E, Romero C, Appetecchia M, Isidori A, Venuta F, Ambrosio MR, Zatelli MC, Ibrahim M, Colao A, Brizzi MP, García-Carbonero R, Faggiano A. Prognostic significance of laterality in lung neuroendocrine tumors. Endocrine 2022; 76:733-746. [PMID: 35301675 PMCID: PMC9156515 DOI: 10.1007/s12020-022-03015-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/06/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Well-differentiated lung neuroendocrine tumors (Lu-NET) are classified as typical (TC) and atypical (AC) carcinoids, based on mitotic counts and necrosis. However, prognostic factors, other than tumor node metastasis (TNM) stage and the histopathological diagnosis, are still lacking. The current study is aimed to identify potential prognostic factors to better stratify lung NET, thus, improving patients' treatment strategy and follow-up. METHODS A multicentric retrospective study, including 300 Lung NET, all surgically removed, from Italian and Spanish Institutions. RESULTS Median age 61 years (13-86), 37.7% were males, 25.0% were AC, 42.0% were located in the lung left parenchyma, 80.3% presented a TNM stage I-II. Mitotic count was ≥2 per 10 high-power field (HPF) in 24.7%, necrosis in 13.0%. Median overall survival (OS) was 46.1 months (0.6-323), median progression-free survival (PFS) was 36.0 months (0.3-323). Female sex correlated with a more indolent disease (T1; N0; lower Ki67; lower mitotic count and the absence of necrosis). Left-sided primary tumors were associated with higher mitotic count and necrosis. At Cox-multivariate regression model, age, left-sided tumors, nodal (N) positive status and the diagnosis of AC resulted independent negative prognostic factors for PFS and OS. CONCLUSIONS This study highlights that laterality is an independent prognostic factors in Lu-NETs, with left tumors being less frequent but showing a worse prognosis than right ones. A wider spectrum of clinical and pathological prognostic factors, including TNM stage, age and laterality is suggested. These parameters could help clinicians to personalize the management of Lu-NET.
Collapse
Affiliation(s)
- Anna La Salvia
- Department of Oncology, 12 de Octubre University Hospital, Madrid, Spain
| | - Irene Persano
- Department of Oncology, San Luigi Gonzaga Hospital, Orbassano, Italy
| | | | - Monica Verrico
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Massimiliano Bassi
- Department of Thoracic Surgery, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Roberta Modica
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Isabella Zanata
- Department of Medical Sciences, Section of Endocrinology and Internal Medicine, University of Ferrara, Ferrara, Italy
| | | | - Elena Trevisi
- Department of Oncology, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Giulia Puliani
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute, Rome, Italy
- Department of Experimental Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Maria Rinzivillo
- Digestive Disease Unit, ENETS Center of Excellence, Sant'Andrea University Hospital, Rome, Italy
| | - Elena Parlagreco
- Department of Oncology, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Roberto Baldelli
- Endocrinology Unit, Department of Oncology and Medical Specialities, A.O. San Camillo-Forlanini, Rome, Italy
| | - Tiziana Feola
- Department of Experimental Medicine, "Sapienza" University of Roma, Rome, Italy
- Neuroendocrinology, Neuromed Institute, IRCCS, Pozzilli, Italy
| | - Franz Sesti
- Department of Experimental Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Paola Razzore
- Endocrinology Unit, Mauriziano Hospital, Turin, Italy
| | - Rossella Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, ENETS Center of Excellence, Rome, Italy
| | | | - Francesco Panzuto
- Digestive Disease Unit, ENETS Center of Excellence, Sant'Andrea University Hospital, Rome, Italy
| | - Marco Volante
- Department of Oncology, Pathology Unit of San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Elisa Giannetta
- Department of Experimental Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Carmen Romero
- Scientific Support, 12 de Octubre University Hospital, Madrid, Spain
| | | | - Andrea Isidori
- Department of Experimental Medicine, "Sapienza" University of Roma, Rome, Italy
| | - Federico Venuta
- Department of Thoracic Surgery, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Maria Rosaria Ambrosio
- Department of Medical Sciences, Section of Endocrinology and Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Maria Chiara Zatelli
- Department of Medical Sciences, Section of Endocrinology and Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Mohsen Ibrahim
- Department of Thoracic Surgery, Sant'Andrea University Hospital, Rome, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Pia Brizzi
- Department of Oncology, San Luigi Gonzaga Hospital, Orbassano, Italy
| | | | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, ENETS Center of Excellence, Rome, Italy.
| |
Collapse
|
30
|
Diagnosis in Neuroendocrine Neoplasms: From Molecular Biology to Molecular Imaging. Cancers (Basel) 2022; 14:cancers14102514. [PMID: 35626118 PMCID: PMC9139608 DOI: 10.3390/cancers14102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Neuroendocrine neoplasms are a small group of malignancies with a diverse prognosis and behaviour. In order to offer an adequate treatment, physicians need to perform a proper diagnosis, staging and stratification. This review aims to help to integrate the information from pathology, immunohistochemistry, molecular biology and imaging to guide this process. Abstract Neuroendocrine neoplasms (NENs) are a heterogeneous group of tumours with a diverse behaviour, biology and prognosis, whose incidence is gradually increasing. Their diagnosis is challenging and a multidisciplinary approach is often required. The combination of pathology, molecular biomarkers, and the use of novel imaging techniques leads to an accurate diagnosis and a better treatment approach. To determine the functionality of the tumour, somatostatin receptor expression, differentiation, and primary tumour origin are the main determining tumour-dependent factors to guide treatment, both in local and metastatic stages. Until recently, little was known about the biological behaviour of these tumours. However, in recent years, many advances have been achieved in the molecular characterization and diagnosis of NENs. The incorporation of novel radiotracer-based imaging techniques, such as 68Gallium-DOTATATE PET-CT, has significantly increased diagnostic sensitivity, while introducing the theragnosis concept, offering new treatment strategies. Here, we will review current knowledge and novelties in the diagnosis of NENs, including molecular biology, pathology, and new radiotracers.
Collapse
|
31
|
Frizziero M, Kilgour E, Simpson KL, Rothwell DG, Moore DA, Frese KK, Galvin M, Lamarca A, Hubner RA, Valle JW, McNamara MG, Dive C. Expanding Therapeutic Opportunities for Extrapulmonary Neuroendocrine Carcinoma. Clin Cancer Res 2022; 28:1999-2019. [PMID: 35091446 PMCID: PMC7612728 DOI: 10.1158/1078-0432.ccr-21-3058] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
Poorly differentiated neuroendocrine carcinomas (PD-NEC) are rare cancers garnering interest as they become more commonly encountered in the clinic. This is due to improved diagnostic methods and the increasingly observed phenomenon of "NE lineage plasticity," whereby nonneuroendocrine (non-NE) epithelial cancers transition to aggressive NE phenotypes after targeted treatment. Effective treatment options for patients with PD-NEC are challenging for several reasons. This includes a lack of targetable, recurrent molecular drivers, a paucity of patient-relevant preclinical models to study biology and test novel therapeutics, and the absence of validated biomarkers to guide clinical management. Although advances have been made pertaining to molecular subtyping of small cell lung cancer (SCLC), a PD-NEC of lung origin, extrapulmonary (EP)-PD-NECs remain understudied. This review will address emerging SCLC-like, same-organ non-NE cancer-like and tumor-type-agnostic biological vulnerabilities of EP-PD-NECs, with the potential for therapeutic exploitation. The hypotheses surrounding the origin of these cancers and how "NE lineage plasticity" can be leveraged for therapeutic purposes are discussed. SCLC is herein proposed as a paradigm for supporting progress toward precision medicine in EP-PD-NECs. The aim of this review is to provide a thorough portrait of the current knowledge of EP-PD-NEC biology, with a view to informing new avenues for research and future therapeutic opportunities in these cancers of unmet need.
Collapse
Affiliation(s)
- Melissa Frizziero
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Elaine Kilgour
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Kathryn L. Simpson
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Dominic G. Rothwell
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - David A. Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, 72 Huntley St, London WC1E 6DD, United Kingdom
- Department of Cellular Pathology, University College London Hospital NHS Foundation Trust, 235 Euston Rd, London NW1 2BU, United Kingdom
| | - Kristopher K. Frese
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Melanie Galvin
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Angela Lamarca
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Richard A. Hubner
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Juan W. Valle
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Mairéad G. McNamara
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| |
Collapse
|
32
|
Hackeng WM, Brosens LAA, Kim JY, O'Sullivan R, Sung YN, Liu TC, Cao D, Heayn M, Brosnan-Cashman J, An S, Morsink FHM, Heidsma CM, Valk GD, Vriens MR, Nieveen van Dijkum E, Offerhaus GJA, Dreijerink KMA, Zeh H, Zureikat AH, Hogg M, Lee K, Geller D, Marsh JW, Paniccia A, Ongchin M, Pingpank JF, Bahary N, Aijazi M, Brand R, Chennat J, Das R, Fasanella KE, Khalid A, McGrath K, Sarkaria S, Singh H, Slivka A, Nalesnik M, Han X, Nikiforova MN, Lawlor RT, Mafficini A, Rusev B, Corbo V, Luchini C, Bersani S, Pea A, Cingarlini S, Landoni L, Salvia R, Milione M, Milella M, Scarpa A, Hong SM, Heaphy CM, Singhi AD. Non-functional pancreatic neuroendocrine tumours: ATRX/DAXX and alternative lengthening of telomeres (ALT) are prognostically independent from ARX/PDX1 expression and tumour size. Gut 2022; 71:961-973. [PMID: 33849943 PMCID: PMC8511349 DOI: 10.1136/gutjnl-2020-322595] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Recent studies have found aristaless-related homeobox gene (ARX)/pancreatic and duodenal homeobox 1 (PDX1), alpha-thalassemia/mental retardation X-linked (ATRX)/death domain-associated protein (DAXX) and alternative lengthening of telomeres (ALT) to be promising prognostic biomarkers for non-functional pancreatic neuroendocrine tumours (NF-PanNETs). However, they have not been comprehensively evaluated, especially among small NF-PanNETs (≤2.0 cm). Moreover, their status in neuroendocrine tumours (NETs) from other sites remains unknown. DESIGN An international cohort of 1322 NETs was evaluated by immunolabelling for ARX/PDX1 and ATRX/DAXX, and telomere-specific fluorescence in situ hybridisation for ALT. This cohort included 561 primary NF-PanNETs, 107 NF-PanNET metastases and 654 primary, non-pancreatic non-functional NETs and NET metastases. The results were correlated with numerous clinicopathological features including relapse-free survival (RFS). RESULTS ATRX/DAXX loss and ALT were associated with several adverse prognostic findings and distant metastasis/recurrence (p<0.001). The 5-year RFS rates for patients with ATRX/DAXX-negative and ALT-positive NF-PanNETs were 40% and 42% as compared with 85% and 86% for wild-type NF-PanNETs (p<0.001 and p<0.001). Shorter 5-year RFS rates for ≤2.0 cm NF-PanNETs patients were also seen with ATRX/DAXX loss (65% vs 92%, p=0.003) and ALT (60% vs 93%, p<0.001). By multivariate analysis, ATRX/DAXX and ALT status were independent prognostic factors for RFS. Conversely, classifying NF-PanNETs by ARX/PDX1 expression did not independently correlate with RFS. Except for 4% of pulmonary carcinoids, ATRX/DAXX loss and ALT were only identified in primary (25% and 29%) and NF-PanNET metastases (62% and 71%). CONCLUSIONS ATRX/DAXX and ALT should be considered in the prognostic evaluation of NF-PanNETs including ≤2.0 cm tumours, and are highly specific for pancreatic origin among NET metastases of unknown primary.
Collapse
Affiliation(s)
- Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joo Young Kim
- Department of Pathology, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Roderick O'Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - You-Na Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St, Louis, MO, USA
| | - Dengfeng Cao
- Department of Pathology and Immunology, Washington University School of Medicine, St, Louis, MO, USA
| | - Michelle Heayn
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Soyeon An
- Department of Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Folkert H M Morsink
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Charlotte M Heidsma
- Department of Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Gerlof D Valk
- Department of Endocrinology and Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Menno R Vriens
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - G Johan A Offerhaus
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Koen M A Dreijerink
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Endocrinology and Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Herbert Zeh
- Department of Clinical Sciences, Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Amer H Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Melissa Hogg
- Department of Surgery, NorthShore University Health System, Evanston, IL, USA
| | - Kenneth Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David Geller
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - J Wallis Marsh
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Alessandro Paniccia
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Melanie Ongchin
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - James F Pingpank
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nathan Bahary
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Muaz Aijazi
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Randall Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jennifer Chennat
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rohit Das
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kenneth E Fasanella
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Asif Khalid
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kevin McGrath
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Savreet Sarkaria
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Harkirat Singh
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adam Slivka
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael Nalesnik
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xiaoli Han
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rita Teresa Lawlor
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Andrea Mafficini
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Boris Rusev
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Corbo
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy
| | - Samantha Bersani
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Antonio Pea
- The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Sara Cingarlini
- The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Landoni
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy
- The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Roberto Salvia
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy
- The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Milione
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Michele Milella
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Mc Leer A, Foll M, Brevet M, Antoine M, Novello S, Mondet J, Cadranel J, Girard N, Giaj Levra M, Demontrond P, Audigier-Valette C, Letouzé E, Lantuéjoul S, Fernandez-Cuesta L, Moro-Sibilot D. Detection of acquired TERT amplification in addition to predisposing p53 and Rb pathways alterations in EGFR-mutant lung adenocarcinomas transformed into small-cell lung cancers. Lung Cancer 2022; 167:98-106. [PMID: 35183375 DOI: 10.1016/j.lungcan.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Among the different mechanisms of acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) reported in EGFR-mutated lung adenocarcinoma (EGFR-LUAD) patients, histological transformation into small cell carcinoma (SCLC) occurs in 3-14% of resistant cases, regardless of the generation of EGFR-TKI. In recent studies, bi-allelic inactivation of TP53 and RB1 has been identified in a vast majority of transformed SCLCs. However, the molecular mechanisms driving this histologic transformation remain largely unknown, mainly due to the rarity of samples. PATIENTS AND METHODS Out of an initial cohort of 64 patients, tumor tissues of adequate quality and quantity for whole exome sequencing (WES) analysis were available for nine tumors for six patients: paired pre- and post-SCLC transformation samples for three Patients and post-SCLC transformation samples for three other patients. RESULTS Mutational analyses showed concurrent TP53 mutations and Rb pathway alterations in five of the six patients analyzed, confirming their suggested role as predisposing genetic alterations to SCLC transformation. In addition, TERT amplification was detected in four of the six patients and found to be an event acquired during SCLC transformation. Clonal history evolution analyses from the paired LUAD/SCLC samples showed different evolution patterns. In two patients, a large proportion of mutations were present in the most recent common ancestor cell of the initial LUAD and the transformed SCLC clones, whereas in the third patient, few clonal mutations were common between the LUAD and SCLC samples and the ancestor clone that lead to SCLC was present at low frequency in the initial LUAD. CONCLUSION Despite varied clinical presentations and clonal history evolution patterns, in addition to p53 and Rb pathways alterations, TERT amplification emerged as another common genetic mechanism of EGFR-LUAD to SCLC transformation in our cohort, and could represent a candidate therapeutic target in this subset of SCLC tumors.
Collapse
Affiliation(s)
- Anne Mc Leer
- Université Grenoble Alpes, Grenoble, France; Service d'Anatomie et Cytologie Pathologiques, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble, France; UGA/INSERM U1209/CNRS 5309-Institute for Advanced Biosciences - Université Grenoble Alpes, Grenoble, France.
| | - Matthieu Foll
- International Agency for Research on Cancer (IARC-WHO), Section of Genetics, Lyon, France
| | - Marie Brevet
- Hospices Civils de Lyon, Institut de pathologie Multisite, Site Est, Bron and Université Claude Bernard Lyon 1, Lyon, France
| | - Martine Antoine
- Service d'Anatomie et Cytologie Pathologique, APHP, Hôpital Tenon, 75020 Paris, France and Theranoscan CRC#4 and Curamus Sorbonne Université, Paris, France
| | - Silvia Novello
- Department of Oncology, AOU San Luigi-Orbassano, University of Turin, Italy
| | - Julie Mondet
- Université Grenoble Alpes, Grenoble, France; Service d'Anatomie et Cytologie Pathologiques, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble, France; UGA/INSERM U1209/CNRS 5309-Institute for Advanced Biosciences - Université Grenoble Alpes, Grenoble, France
| | - Jacques Cadranel
- Service de Pneumologie et Oncologie thoracique, APHP, Hôpital Tenon and GRC#4 Theranoscan and Curamus Sorbonne Université, Paris, France
| | | | - Matteo Giaj Levra
- Clinique Hospitalo-Universitaire de Pneumologie Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Grenoble, France
| | | | | | - Eric Letouzé
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le Cancer, F-75006 Paris, France
| | - Sylvie Lantuéjoul
- Université Grenoble Alpes, Grenoble, France; Cancer Research Center Lyon, Centre Léon Bérard, Lyon, France
| | | | - Denis Moro-Sibilot
- Université Grenoble Alpes, Grenoble, France; UGA/INSERM U1209/CNRS 5309-Institute for Advanced Biosciences - Université Grenoble Alpes, Grenoble, France; Clinique Hospitalo-Universitaire de Pneumologie Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
34
|
Abdel-Rahman O, Ghosh S, Fazio N. Sex-based differences in the outcomes of patients with lung carcinoids. J Comp Eff Res 2022; 11:523-531. [PMID: 35388711 DOI: 10.2217/cer-2021-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: To assess the impact of sex on the outcomes of patients with well-differentiated lung neuroendocrine neoplasms in a real-world setting. Methods: The Surveillance, Epidemiology and End Results Research Plus database (2000-2018) was accessed, and patients with a diagnosis of typical or atypical carcinoid of the lung were reviewed. Trends in age-standardized rates (per 100,000) of the incidence of lung carcinoid tumors were reviewed among male and female patients as well as the overall population, and annual percent change (APC) was determined for the three groups. Multivariate Cox regression analysis was then used to assess the factors associated with overall and cancer-specific survival. Results: Among all patients, APC (2000-2018) for lung carcinoid diagnosis was 2.9 (95% CI: 2.4-3.5). Among male patients, APC (2000-2018) for lung carcinoid diagnosis was 1.8 (95% CI: 1.2-2.5). By contrast, among female patients, APC (2000-2018) for lung carcinoid diagnosis was 3.4 (95% CI: 2.8-4.1). Based on Kaplan-Meier survival estimates, female sex was associated with better overall survival compared with male sex (p < 0.001). Based on multivariate Cox regression analysis, the following factors were associated with worse cancer-specific survival: older age (hazard ratio [HR]: 1.036; 95% CI: 1.031-1.041), atypical carcinoid histology (HR: 3.10; 95% CI: 2.71-3.56), stage (distant vs localized stage HR: 4.05; 95% CI: 3.48-4.71), sex (male vs female sex HR: 1.76; 95% CI: 1.56-1.99) and no surgical treatment (HR: 3.77; 95% CI: 3.22-4.42). Conclusion: Female patients with lung carcinoid tumors have better overall survival compared with male patients, particularly among patients with typical carcinoid tumors.
Collapse
Affiliation(s)
- Omar Abdel-Rahman
- Department of Oncology, Cross Cancer Institute and University of Alberta, Edmonton, Canada
| | - Sunita Ghosh
- Department of Oncology, Cross Cancer Institute and University of Alberta, Edmonton, Canada
| | - Nicola Fazio
- Department of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, Milan, Italy
| |
Collapse
|
35
|
Zhang Y, Wang W, Hu Q, Liang Z, Zhou P, Tang Y, Jiang L. Clinic and genetic similarity assessments of atypical carcinoid, neuroendocrine neoplasm with atypical carcinoid morphology and elevated mitotic count and large cell neuroendocrine carcinoma. BMC Cancer 2022; 22:321. [PMID: 35331190 PMCID: PMC8951721 DOI: 10.1186/s12885-022-09391-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
Background Pulmonary neuroendocrine neoplasms can be divided into typical carcinoid, atypical carcinoid, large cell neuroendocrine carcinoma, and small cell (lung) carcinoma. According to the World Health Organization, these four neoplasms have different characteristics and morphological traits, mitotic counts, and necrotic status. Importantly, “a grey-zone” neoplasm with an atypical carcinoid-like morphology, where the mitotic rate exceeds the criterion of 10 mitoses per 2 mm2, have still not been well classified. In clinical practice, the most controversial area is the limit of 11 mitoses to distinguish between atypical carcinoids and large cell neuroendocrine carcinomas. Methods Basic and clinical information was obtained from patient medical records. A series of grey-zone patients (n = 8) were selected for exploring their clinicopathological features. In addition, patients with atypical carcinoids (n = 9) and classical large cell neuroendocrine carcinomas (n = 14) were also included to compare their similarity to these neoplasms with respect to tumour morphology and immunohistochemical staining. Results We found that these grey-zone tumour sizes varied and affected mainly middle-aged and older men who smoked. Furthermore, similar gene mutations were found in the grey-zone neoplasms and large cell neuroendocrine carcinomas, for the mutated genes of these two are mainly involved in PI3K-Akt signal pathways and Pathways in cancer, including a biallelic alteration of TP53/RB1 and KEAP1. Conclusions Our findings indicate that neuroendocrine neoplasm with atypical carcinoid morphology and elevated mitotic counts is more similar to large cell neuroendocrine carcinoma than atypical carcinoid. Furthermore, this study may help improve diagnosing these special cases in clinical practice to avoid misdiagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09391-w.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Sichuan Province, Guoxuexiang 37, Chengdu, 610041, China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, Sichuan Province, Guoxuexiang 37, Chengdu, 610041, China
| | - Qianrong Hu
- West China School of Medicine, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Zuoyu Liang
- Department of Pathology, West China Hospital, Sichuan University, Sichuan Province, Guoxuexiang 37, Chengdu, 610041, China
| | - Ping Zhou
- Department of Pathology, West China Hospital, Sichuan University, Sichuan Province, Guoxuexiang 37, Chengdu, 610041, China
| | - Yuan Tang
- Department of Pathology, West China Hospital, Sichuan University, Sichuan Province, Guoxuexiang 37, Chengdu, 610041, China
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, Sichuan Province, Guoxuexiang 37, Chengdu, 610041, China.
| |
Collapse
|
36
|
Sun TY, Hendifar A, Padda SK. Lung Neuroendocrine Tumors: How Does Molecular Profiling Help? Curr Oncol Rep 2022; 24:819-824. [PMID: 35305210 DOI: 10.1007/s11912-022-01253-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Lung neuroendocrine tumors (NETs)-typical carcinoids and atypical carcinoids-have unique molecular alterations that are distinct from neuroendocrine carcinomas of the lung and non-small cell lung cancers. Here, we review the role of molecular profiling in the prognosis and treatment of lung NETs. RECENT FINDINGS There have been no recently identified molecular prognostic factors for lung NETs and none that have been routinely used to guide management of patients with lung NETs. Previous findings suggest that patients with loss of chromosome 11q may have a worse prognosis along with upregulation of anti-apoptotic pathways (e.g., loss of CD44 and OTP protein expression). Lung NETs rarely harbor driver mutations commonly found in non-small cell lung cancer (NSCLC) or TP53/RB1 mutations found universally in small cell lung cancer. Lung NETs also have low tumor mutation burden and low PD-L1 expression. Everolimus, an mTOR inhibitor and the only FDA approved therapy for unresectable lung NETs, is an effective treatment but the presence of a molecular alteration in the PI3K/AKT/mTOR pathway is not known to predict treatment response. The predominant mutations in lung NETs occur in genes regulating chromatin remodeling and histone modification, with potential targeted therapies emerging in clinical trials. Lung NETs have recurring alterations in genes that regulate the epigenome. Future targeted therapy interfering with epigenetic pathways may hold promise.
Collapse
Affiliation(s)
- Thomas Yang Sun
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA, USA
| | - Andrew Hendifar
- Department of Medicine, Division of Oncology, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, 7th Floor, Los Angeles, CA, USA
| | - Sukhmani K Padda
- Department of Medicine, Division of Oncology, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, 7th Floor, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Andrini E, Marchese PV, De Biase D, Mosconi C, Siepe G, Panzuto F, Ardizzoni A, Campana D, Lamberti G. Large Cell Neuroendocrine Carcinoma of the Lung: Current Understanding and Challenges. J Clin Med 2022; 11:jcm11051461. [PMID: 35268551 PMCID: PMC8911276 DOI: 10.3390/jcm11051461] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Large cell neuroendocrine carcinoma of the lung (LCNEC) is a rare and highly aggressive type of lung cancer, with a complex biology that shares similarities with both small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). The prognosis of LCNEC is poor, with a median overall survival of 8-12 months. The diagnosis of LCNEC requires the identification of neuroendocrine morphology and the expression of at least one of the neuroendocrine markers (chromogranin A, synaptophysin or CD56). In the last few years, the introduction of next-generation sequencing allowed the identification of molecular subtypes of LCNEC, with prognostic and potential therapeutic implications: one subtype is similar to SCLC (SCLC-like), while the other is similar to NSCLC (NSCLC-like). Because of LCNEC rarity, most evidence comes from small retrospective studies and treatment strategies that are extrapolated from those adopted in patients with SCLC and NSCLC. Nevertheless, limited but promising data about targeted therapies and immune checkpoint inhibitors in patients with LCNEC are emerging. LCNEC clinical management is still controversial and standardized treatment strategies are currently lacking. The aim of this manuscript is to review clinical and molecular data about LCNEC to better understand the optimal management and the potential prognostic and therapeutic implications of molecular subtypes.
Collapse
Affiliation(s)
- Elisa Andrini
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi University Hospital, ENETS Center of Excellence, 40138 Bologna, Italy; (E.A.); (P.V.M.); (A.A.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Paola Valeria Marchese
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi University Hospital, ENETS Center of Excellence, 40138 Bologna, Italy; (E.A.); (P.V.M.); (A.A.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Dario De Biase
- Department of Pharmacy and Biotechnology, Molecular Diagnostic Unit, University of Bologna, Viale Ercolani 4/2, 40138 Bologna, Italy;
| | - Cristina Mosconi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy;
| | - Giambattista Siepe
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Francesco Panzuto
- Digestive Disease Unit, ENETS Center of Excellence of Rome, Sant’Andrea University Hospital, 00189 Rome, Italy;
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi University Hospital, ENETS Center of Excellence, 40138 Bologna, Italy; (E.A.); (P.V.M.); (A.A.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Davide Campana
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi University Hospital, ENETS Center of Excellence, 40138 Bologna, Italy; (E.A.); (P.V.M.); (A.A.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
- Correspondence:
| | - Giuseppe Lamberti
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi University Hospital, ENETS Center of Excellence, 40138 Bologna, Italy; (E.A.); (P.V.M.); (A.A.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| |
Collapse
|
38
|
Peng W, Cao L, Chen L, Lin G, Zhu B, Hu X, Lin Y, Zhang S, Jiang M, Wang J, Li J, Li C, Shao L, Du H, Hou T, Chen Z, Xiang J, Pu X, Li J, Xu F, Loong H, Wu L. Comprehensive Characterization of the Genomic Landscape in Chinese Pulmonary Neuroendocrine Tumors Reveals Prognostic and Therapeutic Markers (CSWOG-1901). Oncologist 2022; 27:e116-e125. [PMID: 35641209 PMCID: PMC8895731 DOI: 10.1093/oncolo/oyab044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/07/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pulmonary neuroendocrine tumors (pNETs) include typical carcinoid (TC), atypical carcinoid (AC), large cell neuroendocrine carcinoma (LCNEC), and small cell lung carcinoma (SCLC). The optimal treatment strategy for each subtype remains elusive, partly due to the lack of comprehensive understanding of their molecular features. We aimed to explore differential genomic signatures in pNET subtypes and identify potential prognostic and therapeutic biomarkers. METHODS We investigated genomic profiles of 57 LCNECs, 49 SCLCs, 18 TCs, and 24 ACs by sequencing tumor tissues with a 520-gene panel and explored the associations between genomic features and prognosis. RESULTS Both LCNEC and SCLC displayed higher mutation rates for TP53, PRKDC, SPTA1, NOTCH1, NOTCH2, and PTPRD than TC and AC. Small cell lung carcinoma harbored more frequent co-alterations in TP53-RB1, alterations in PIK3CA and SOX2, and mutations in HIF-1, VEGF and Notch pathways. Large cell neuroendocrine carcinoma (12.7 mutations/Mb) and SCLC (11.9 mutations/Mb) showed higher tumor mutational burdens than TC (2.4 mutations/Mb) and AC (7.1 mutations/Mb). 26.3% of LCNECs and 20.8% of ACs harbored alterations in classical non-small cell lung cancer driver genes. The presence of alterations in the homologous recombination pathway predicted longer progression-free survival in advanced LCNEC patients with systemic therapy (P = .005) and longer overall survival (OS) in SCLC patients with resection (P = .011). The presence of alterations in VEGF (P = .048) and estrogen (P = .018) signaling pathways both correlated with better OS in patients with resected SCLC. CONCLUSION We performed a comprehensive genomic investigation on 4 pNET subtypes in the Chinese population. Our data revealed distinctive genomic signatures in subtypes and provided new insights into the prognostic and therapeutic stratification of pNETs.
Collapse
Affiliation(s)
- Wenying Peng
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Liming Cao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Likun Chen
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Gen Lin
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Xiaohua Hu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yingcheng Lin
- Cancer Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Meilin Jiang
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Jingyi Wang
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Junjun Li
- Department of Pathology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Chao Li
- Department of Pathology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Lin Shao
- Burning Rock Biotech, Guangzhou, People’s Republic of China
| | - Haiwei Du
- Burning Rock Biotech, Guangzhou, People’s Republic of China
| | - Ting Hou
- Burning Rock Biotech, Guangzhou, People’s Republic of China
| | - Zhiqiu Chen
- Burning Rock Biotech, Guangzhou, People’s Republic of China
| | - Jianxing Xiang
- Burning Rock Biotech, Guangzhou, People’s Republic of China
| | - Xingxiang Pu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Jia Li
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Fang Xu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Herbert Loong
- Department of Clinical Oncology, Deputy Medical Director, Phase 1 Clinical Trials Centre, Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Lin Wu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
39
|
Lu M, Li J, Fan X, Xie F, Fan J, Xiong Y. Novel Immune-Related Ferroptosis Signature in Esophageal Cancer: An Informatics Exploration of Biological Processes Related to the TMEM161B-AS1/hsa-miR-27a-3p/GCH1 Regulatory Network. Front Genet 2022; 13:829384. [PMID: 35281840 PMCID: PMC8908453 DOI: 10.3389/fgene.2022.829384] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Considering the role of immunity and ferroptosis in the invasion, proliferation and treatment of cancer, it is of interest to construct a model of prognostic-related differential expressed immune-related ferroptosis genes (PR-DE-IRFeGs), and explore the ferroptosis-related biological processes in esophageal cancer (ESCA).Methods: Four ESCA datasets were used to identify three PR-DE-IRFeGs for constructing the prognostic model. Validation of our model was based on analyses of internal and external data sets, and comparisons with past models. With the biological-based enrichment analysis as a guide, exploration for ESCA-related biological processes was undertaken with respect to the immune microenvironment, mutations, competing endogenous RNAs (ceRNA), and copy number variation (CNV). The model’s clinical applicability was measured by nomogram and correlation analysis between risk score and gene expression, and also immune-based and chemotherapeutic sensitivity.Results: Three PR-DE-IRFeGs (DDIT3, SLC2A3, and GCH1), risk factors for prognosis of ESCA patients, were the basis for constructing the prognostic model. Validation of our model shows a meaningful capability for prognosis prediction. Furthermore, many biological functions and pathways related to immunity and ferroptosis were enriched in the high-risk group, and the role of the TMEM161B-AS1/hsa-miR-27a-3p/GCH1 network in ESCA is supported. Also, the KMT2D mutation is associated with our risk score and SLC2A3 expression. Overall, the prognostic model was associated with treatment sensitivity and levels of gene expression.Conclusion: A novel, prognostic model was shown to have high predictive value. Biological processes related to immune functions, KMT2D mutation, CNV and the TMEM161B-AS1/hsa-miR-27a-3p/GCH1 network were involved in ESCA progression.
Collapse
Affiliation(s)
- Min Lu
- Department of Emergency, Shangrao People’s Hospital, Shangrao Hospital Affiliated to Nanchang University, Shangrao, China
| | - Jiaqi Li
- School of Stomatology, Nanchang University, Nanchang, China
| | - Xin Fan
- School of Stomatology, Nanchang University, Nanchang, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xin Fan,
| | - Fei Xie
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Fan
- Shangrao Municipal Hospital, Shangrao, China
| | - Yuanping Xiong
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
40
|
Liang Z, Wang W, Hu Q, Zhou P, Zhang Y, Tang Y, Wu Q, Fu Y, Li X, Shao Y, Jiang L. Pulmonary large cell carcinoma with neuroendocrine morphology shows genetic similarity to large cell neuroendocrine carcinoma. Diagn Pathol 2022; 17:26. [PMID: 35144629 PMCID: PMC8832809 DOI: 10.1186/s13000-022-01204-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Background Large cell neuroendocrine carcinoma (LCNEC) is a high-grade malignant pulmonary neuroendocrine tumour. The distinction of pulmonary large cell carcinoma (LCC) and LCNEC is based on the presence of neuroendocrine morphology and the expression of at least one neuroendocrine marker in at least 10% of tumour cells in the latter. According to the current classification, LCC with neuroendocrine morphology and without neuroendocrine marker expression is classified as LCC. This subgroup we have named LCNEC-null and aimed to analyze its characteristics. Methods 31 surgical samples resected in West China Hospital of Sichuan University between 2017 to 2021 were collected, including 7 traditional LCCs, 11 LCNEC-nulls and 13 LCNECs. Each case was conducted to immunohistochemistry and 425-panel-NGS. Results Compared to other LCCs, detailed analysis of LCNEC-nulls revealed biological features similar to those of LCNECs, especially for immunohistochemistry and molecular analysis: 1. diffusive, coarse granular and high expression of Pan-CK; 2. rare PD-L1 expression; 3. High rate of p53 expression and Rb deficiency 4. abundant genetic alterations are similar to LCNEC. All characteristics above deviated from traditional LCC, indicating they have the same origin as LCNEC. Furthermore, LCNEC could be genetically divided into two subtypes when we reclassified LCNEC-null as LCNEC, and the mutational type and prognosis differed significantly. Conclusions We consider that LCNEC-null should be reclassified as LCNEC based on analysis above. In addition, two genetic types of LCNEC with different prognosis also indicate two mechanism of tumour formation. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-022-01204-9.
Collapse
Affiliation(s)
- Zuoyu Liang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianrong Hu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Ping Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Tang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Wu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyun Fu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Li
- Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
41
|
Prisciandaro M, Antista M, Raimondi A, Corti F, Morano F, Centonze G, Sabella G, Mangogna A, Randon G, Pagani F, Prinzi N, Niger M, Corallo S, Castiglioni di Caronno E, Massafra M, Bartolomeo MD, de Braud F, Milione M, Pusceddu S. Biomarker Landscape in Neuroendocrine Tumors With High-Grade Features: Current Knowledge and Future Perspective. Front Oncol 2022; 12:780716. [PMID: 35186729 PMCID: PMC8856722 DOI: 10.3389/fonc.2022.780716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
Neuroendocrine tumors (NETs) are classified based on morphology and are graded based on their proliferation rate as either well-differentiated low-grade (G1) to intermediate (G2–G3) or poorly differentiated high-grade neuroendocrine carcinomas (NEC G3). Recently, in gastroenteropancreatic (GEP) NETs, a new subgroup of well-differentiated high-grade tumors (NET G3) has been divided from NEC by WHO due to its different clinical–pathologic features. Although several mutational analyses have been performed, a molecular classification of NET is an unmet need in particular for G3, which tends to be more aggressive and have less benefit to the available therapies. Specifically, new possible prognostic and, above all, predictive factors are highly awaited, giving the basis for new treatments. Alteration of KRAS, TP53, and RB1 is mainly reported, but also druggable alterations, including BRAF and high microsatellite instability (MSI-H), have been documented in subsets of patients. In addition, PD-L1 demonstrated to be highly expressed in G3 NETs, probably becoming a new biomarker for G3 neuroendocrine neoplasm (NEN) discrimination and a predictive one for immunotherapy response. In this review, we describe the current knowledge available on a high-grade NET molecular landscape with a specific focus on those harboring potentially therapeutic targets in the advanced setting.
Collapse
Affiliation(s)
- Michele Prisciandaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- *Correspondence: Michele Prisciandaro,
| | - Maria Antista
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Raimondi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Corti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Morano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Centonze
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Giovanni Randon
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pagani
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Natalie Prinzi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Corallo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Marco Massafra
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Massimo Milione
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pusceddu
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
42
|
Araujo-Castro M, Pascual-Corrales E, Molina-Cerrillo J, Moreno Mata N, Alonso-Gordoa T. Bronchial Carcinoids: From Molecular Background to Treatment Approach. Cancers (Basel) 2022; 14:520. [PMID: 35158788 PMCID: PMC8833538 DOI: 10.3390/cancers14030520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
A better understanding of the genetic and molecular background of bronchial carcinoids (BCs) would allow a better estimation of the risk of disease progression and the personalization of treatment in cases of advanced disease. Molecular studies confirmed that lungs neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs) are different entities; thus, no progression of NET to NEC is expected. In BCs, MEN1 gene mutations and deletions and decreased gene expression have been associated with a poor prognosis. ATRX mutation has also been linked to a shorter disease-specific survival. In terms of therapeutic targets, PI3K/AKT/mTOR pathway mutations have been described in 13% of typical carcinoids (TCs) and 39% of atypical carcinoids (ACs), representing a targetable mutation with kinase inhibitors. Regarding treatment, surgical resection is usually curative in localized BCs and adjuvant treatment is not routinely recommended. Multiple options for systemic therapy exist for patients with advanced BCs, although limited by a heterogeneity in the scientific evidence behind their use recommendation. These options include somatostatin analogues, everolimus, peptide receptor radionuclide therapy, chemotherapy, radiotherapy, antiangiogenic agents, and immunotherapy. In this article, we provide a comprehensive review about the molecular and genetic background of BCs, and about the treatment of local and metastatic disease, as well as the main paraneoplastic syndromes that have been associated with this tumor.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Neuroendocrinology Unit, Endocrinology and Nutrition Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
- Instituto de Investigación Biomédica Ramón y Cajal (IRICYS), 28034 Madrid, Spain;
- Universidad de Alcalá, 28801 Madrid, Spain
| | - Eider Pascual-Corrales
- Neuroendocrinology Unit, Endocrinology and Nutrition Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
- Instituto de Investigación Biomédica Ramón y Cajal (IRICYS), 28034 Madrid, Spain;
| | - Javier Molina-Cerrillo
- Instituto de Investigación Biomédica Ramón y Cajal (IRICYS), 28034 Madrid, Spain;
- Universidad de Alcalá, 28801 Madrid, Spain
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Nicolás Moreno Mata
- Thoracic Surgery Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| | - Teresa Alonso-Gordoa
- Instituto de Investigación Biomédica Ramón y Cajal (IRICYS), 28034 Madrid, Spain;
- Universidad de Alcalá, 28801 Madrid, Spain
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
43
|
Zhu Y, Zhang F, Yu D, Wang F, Yin M, Chen L, Xiao C, Huang Y, Ding F. Genomic Feature of a Rare Case of Mix Small-Cell and Large-Cell Neuroendocrine Lung Carcinoma: A Case Report. Front Oncol 2022; 11:794744. [PMID: 35117995 PMCID: PMC8804208 DOI: 10.3389/fonc.2021.794744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background Cases of both of small- (SCLC) and large-cell neuroendocrine lung carcinoma (LCNEC) were rarely reported. Although typical cases are morphologically distinct, the distinction between LCNEC and SCLC is still controversial, with some LCNECs showing close morphologies with SCLC. Here, we reported on a patient who had tumor with a mix of SCLC and LCNEC and uncovered these components’ histological and genomic features. Case Presentation A 59-year-old man was diagnosed with lung cancer and had resection surgery in our hospital. The H&E and immunohistochemistry staining revealed that the tumor had 30%–35% LCNEC and 65%–70% SCLC cells. The whole-exome sequencing (WES) identified no potentially actionable alteration in the tumor sample but found five alterations all with allele frequency over 90%, including TP53 p.R273H, MYH8 p.Q1814K, SLC17A6 p.W505L, PTPN5 p.M40I, and RB1 p.L267X. The genomic results supported that these two different components shared a similar dominant clonal origin. Furthermore, fluorescence in situ hybridization analysis revealed that the LCNECs have a higher copy number of MET than the SCLC component while without notable difference in the copy number of HER2 and TP53. Chemotherapy with pemetrexed and carboplatin was administrated for two cycles after the surgery. Although the chest CT showed remission in the lung, he was diagnosed with bone metastasis in 1 year later. Then, he received chemotherapy with etoposide and carboplatin but had severe side effect, leading to the discontinuation of the regime. Unfortunately, he returned to the local hospital with supportive care and died shortly after. Conclusion Based on these observations, we proposed that LCNEC and SCLC components in this patient may have a common clonal origin with dual mutations in TP53 and RB1, while the chromosome instability may cause multiple independent conversion that leads to LCNEC or SCLC morphologies.
Collapse
Affiliation(s)
- Youcai Zhu
- The Center for Thoracic Diseases, Zhejiang Rongjun Hospital, Jiaxing, China
- Department of Pathology, The Hospital of Marine Police Corps of the Chinese People’s Armed Police Force, Jiaxing, China
| | - Feng Zhang
- Precision Medicine Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Dong Yu
- Precision Medicine Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Fang Wang
- Precision Medicine Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Manxiang Yin
- The Center for Thoracic Diseases, Zhejiang Rongjun Hospital, Jiaxing, China
- Department of Pathology, The Hospital of Marine Police Corps of the Chinese People’s Armed Police Force, Jiaxing, China
| | - Liangye Chen
- Department of Pathology, The Hospital of Marine Police Corps of the Chinese People’s Armed Police Force, Jiaxing, China
| | - Chun Xiao
- Department of Pathology, The Hospital of Marine Police Corps of the Chinese People’s Armed Police Force, Jiaxing, China
| | - Yueyan Huang
- Department of Pharmacy, Jiaxing University Medical College, Jiaxing, China
- *Correspondence: Yueyan Huang, ; Feng Ding,
| | - Feng Ding
- Precision Medicine Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
- *Correspondence: Yueyan Huang, ; Feng Ding,
| |
Collapse
|
44
|
Boons G, Vandamme T, Mariën L, Lybaert W, Roeyen G, Rondou T, Papadimitriou K, Janssens K, Op de Beeck B, Simoens M, Demey W, Dero I, Van Camp G, Peeters M, Op de Beeck K. Longitudinal Copy-Number Alteration Analysis in Plasma Cell-Free DNA of Neuroendocrine Neoplasms is a Novel Specific Biomarker for Diagnosis, Prognosis, and Follow-up. Clin Cancer Res 2022; 28:338-349. [PMID: 34759042 PMCID: PMC9401546 DOI: 10.1158/1078-0432.ccr-21-2291] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/01/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE As noninvasive biomarkers are an important unmet need for neuroendocrine neoplasms (NEN), biomarker potential of genome-wide molecular profiling of plasma cell-free DNA (cfDNA) was prospectively studied in patients with NEN. EXPERIMENTAL DESIGN Longitudinal plasma samples were collected from patients with well-differentiated, metastatic gastroenteropancreatic and lung NEN. cfDNA was subjected to shallow whole-genome sequencing to detect genome-wide copy-number alterations (CNA) and estimate circulating tumor DNA (ctDNA) fraction, and correlated to clinicopathologic and survival data. To differentiate pancreatic NENs (PNEN) from pancreatic adenocarcinomas (PAAD) using liquid biopsies, a classification model was trained using tissue-based CNAs and validated in cfDNA. RESULTS One hundred and ninety-five cfDNA samples from 43 patients with NEN were compared with healthy control cfDNA (N = 100). Plasma samples from patients with PNEN (N = 21) were used for comparison with publicly available PNEN tissue (N = 98), PAAD tissue (N = 109), and PAAD cfDNA (N = 96). Thirty percent of the NEN cfDNA samples contained ctDNA and 44% of the patients had at least one ctDNA-positive (ctDNA+) sample. CNAs detected in cfDNA were highly specific for NENs and the classification model could distinguish PAAD and PNEN cfDNA samples with a sensitivity, specificity, and AUC of 62%, 86%, and 79%, respectively. ctDNA-positivity was associated with higher World Health Organization (WHO) grade, primary tumor location, and higher chromogranin A and neuron-specific enolase values. Overall survival was significantly worse for ctDNA+ patients and increased ctDNA fractions were associated with poorer progression-free survival. CONCLUSIONS Sequential genome-wide profiling of plasma cfDNA is a novel, noninvasive biomarker with high specificity for diagnosis, prognosis, and follow-up in metastatic NENs.
Collapse
Affiliation(s)
- Gitta Boons
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Timon Vandamme
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium.,NETwerk, Antwerp University Hospital, Edegem, Belgium.,Corresponding Author: Timon Vandamme, NETwerk, Antwerp University Hospital, Drie Eikenstraat 655, 2650 Edegem, Antwerp, Belgium. Phone: 00-323-821-2111; E-mail:
| | - Laura Mariën
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Willem Lybaert
- NETwerk, Antwerp University Hospital, Edegem, Belgium.,Department of Medical Oncology, AZ Nikolaas, Sint-Niklaas, Belgium
| | - Geert Roeyen
- NETwerk, Antwerp University Hospital, Edegem, Belgium.,Department of Hepatobiliary, Endocrine and Transplantation Surgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Tim Rondou
- NETwerk, Antwerp University Hospital, Edegem, Belgium.,Department of Gastroenterology, AZ Rivierenland, Bornem, Belgium
| | - Konstantinos Papadimitriou
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Katrien Janssens
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Bart Op de Beeck
- NETwerk, Antwerp University Hospital, Edegem, Belgium.,Department of Radiology, Antwerp University Hospital, Edegem, Belgium
| | - Marc Simoens
- NETwerk, Antwerp University Hospital, Edegem, Belgium.,Department of Gastroenterology, Ziekenhuis Netwerk Antwerpen, Antwerp, Belgium
| | - Wim Demey
- NETwerk, Antwerp University Hospital, Edegem, Belgium.,Department of Medical Oncology, AZ Klina, Brasschaat, Belgium.,Department of Oncology, AZ Voorkempen, Malle, Belgium
| | - Isabel Dero
- NETwerk, Antwerp University Hospital, Edegem, Belgium.,Department of Gastroenterology, Gasthuiszusters Antwerpen, Antwerp, Belgium
| | - Guy Van Camp
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,NETwerk, Antwerp University Hospital, Edegem, Belgium
| | - Ken Op de Beeck
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
45
|
Savu C, Melinte A, Diaconu C, Stiru O, Gherghiceanu F, Tudorica Ș, Dumitrașcu O, Bratu A, Balescu I, Bacalbasa N. Lung neuroendocrine tumors: A systematic literature review (Review). Exp Ther Med 2021; 23:176. [DOI: 10.3892/etm.2021.11099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Cornel Savu
- Department of Thoracic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Alexandru Melinte
- Department of Thoracic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Camelia Diaconu
- Department of Internal Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Ovidiu Stiru
- Department of Cardiovascular Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Florentina Gherghiceanu
- Department of Marketing and Medical Technology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Ștefan Tudorica
- Department of Anesthesiology and Intensive Care, Emergency University Hospital, Bucharest 050098, Romania
| | - Oana Dumitrașcu
- Department of Anesthesiology and Intensive Care, Emergency University Hospital, Bucharest 050098, Romania
| | - Angelica Bratu
- Department of Anesthesiology and Intensive Care, Emergency University Hospital, Bucharest 050098, Romania
| | - Irina Balescu
- Department of Surgery, ‘Ponderas’ Academic Hospital, Bucharest 021188, Romania
| | - Nicolae Bacalbasa
- Department of Obstetrics and Gynecology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| |
Collapse
|
46
|
Simbolo M, Bersani S, Vicentini C, Taormina SV, Ciaparrone C, Bagante F, Rusev B, Centonze G, Montresor M, Brunelli M, Pedron S, Mafficini A, Paolino G, Mattiolo P, Conci S, Milione M, Guglielmi A, Ruzzenente A, Scarpa A, Luchini C. Molecular characterization of extrahepatic cholangiocarcinoma: perihilar and distal tumors display divergent genomic and transcriptomic profiles. Expert Opin Ther Targets 2021; 25:1095-1105. [PMID: 34873971 DOI: 10.1080/14728222.2021.2013801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Extrahepatic cholangiocarcinoma (ECC) is classified into two subtypes based on anatomic origin: distal extrahepatic (DECC) and perihilar (PHCC) cholangiocarcinoma. This study aimed to shed light on its genomic and transcriptomic profiles. RESEARCH DESIGN AND METHODS The genomic alterations of 99 ECC (47 PHCC and 52 DECC) were investigated by next-generation sequencing of 96 genes. A subgroup of cases, representative of each subtype, was further investigated using transcriptomic analysis. Bioinformatics tools were applied for clustering and pathway analysis and defining the immune composition of the tumor microenvironment. RESULTS PHCC had more frequent KRAS mutations (p = 0.0047), whereas TP53 mutations were more common in DECC (p = 0.006). Potentially actionable alterations included high-tumor mutational burden and/or microsatellite instability (7.1%), PI3KCA mutations (8.1%), and MYC (10.1%) and ERBB2 amplification (5.1%). The transcriptomic profiles showed the presence of three distinct clusters, which followed the anatomic origin and differed in immune microenvironment. DECC appeared to contain two distinct tumor subgroups, one enriched for druggable alterations and one lacking actionable opportunities. CONCLUSIONS This study provides new insights into the molecular landscape and the actionable alterations of ECC. Our findings represent a step toward improved ECC molecular taxonomy and therapeutic strategies for precision oncology.
Collapse
Affiliation(s)
- Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Samantha Bersani
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Caterina Vicentini
- ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - Sergio V Taormina
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Chiara Ciaparrone
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Fabio Bagante
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Unit of General and Hepatobiliary Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Borislav Rusev
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy.,ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - Giovanni Centonze
- Pathology Unit, Foundation IRCCS, Istituto Nazionale Tumori, Milano, Italy
| | - Marina Montresor
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Matteo Brunelli
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Serena Pedron
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy.,ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - Gaetano Paolino
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Simone Conci
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Unit of General and Hepatobiliary Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Milione
- Pathology Unit, Foundation IRCCS, Istituto Nazionale Tumori, Milano, Italy
| | - Alfredo Guglielmi
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Unit of General and Hepatobiliary Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Andrea Ruzzenente
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Unit of General and Hepatobiliary Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy.,ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy.,ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
47
|
Parente P, Rossi A, Sparaneo A, Fabrizio FP, Centonza A, Taurchini M, Mazza T, Cassano M, Miscio G, Centra F, Ferretti GM, Di Micco CM, Graziano P, Muscarella LA. Mixed Pulmonary Adenocarcinoma and Atypical Carcinoid: A Report of Two Cases of a Non-codified Entity With Biological Profile. Front Mol Biosci 2021; 8:784876. [PMID: 34926584 PMCID: PMC8678082 DOI: 10.3389/fmolb.2021.784876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary carcinoids combined with a non-neuroendocrine component have rarely been described, and this histological subtype is not included as a specific entity in the current World Health Organization classification of pulmonary neoplasms. Here, we described the molecular and histological features of two rare cases of mixed lung neoplasms, composed of atypical carcinoid and adenocarcinoma. The targeted next-generation sequencing analysis covering single nucleotide variations, copy number variations, and transcript fusions in a total of 161 cancer genes of the two different tumor components shows a similar molecular profile of shared and private gene mutations. These findings suggest their monoclonal origin from a transformed stem/progenitor tumor cell, which acquires a divergent differentiation during its development and progression and accumulates novel, specific mutations.
Collapse
Affiliation(s)
- Paola Parente
- Unit of Pathology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Rossi
- Unit of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo Sparaneo
- Laboratory of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonella Centonza
- Unit of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Taurchini
- Surgical Thoracic Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maurizio Cassano
- Unit of Pathology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giuseppe Miscio
- Unit of Pathology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Flavia Centra
- Laboratory of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Gian Maria Ferretti
- Surgical Thoracic Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Concetta Martina Di Micco
- Unit of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paolo Graziano
- Unit of Pathology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- *Correspondence: Lucia Anna Muscarella,
| |
Collapse
|
48
|
Lee CJ, Modave E, Boeckx B, Stacchiotti S, Rutkowski P, Blay JY, Debiec-Rychter M, Sciot R, Lambrechts D, Wozniak A, Schöffski P. Histopathological and Molecular Profiling of Clear Cell Sarcoma and Correlation with Response to Crizotinib: An Exploratory Study Related to EORTC 90101 "CREATE" Trial. Cancers (Basel) 2021; 13:cancers13236057. [PMID: 34885165 PMCID: PMC8657105 DOI: 10.3390/cancers13236057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Clear cell sarcoma (CCSA) is a rare subtype of soft tissue sarcoma characterized by EWSR1 rearrangement and subsequent MET upregulation. The European Organisation for Research and Treatment of Cancer 90101 phase II trial evaluated the MET inhibitor crizotinib in CCSA but resulted in only sporadic responses. The aim of this exploratory study was to identify the molecular alterations potentially relevant for the treatment outcome by using archival CCSA samples and trial-related clinical data. We characterized MET signaling and revealed an infrequent activation of MET, which may explain the lack of response to crizotinib in the disease cohort. Based on sequencing analyses, we discovered copy number alterations, mutations and dysregulated pathways with potentially predictive or prognostic values for patients’ outcomes. This work describes the molecular heterogeneity in CCSA and provides deep insight into the biology of this ultra-rare malignancy, which may potentially lead to better therapeutic approaches. Abstract Clear cell sarcoma (CCSA) is characterized by a chromosomal translocation leading to EWSR1 rearrangement, resulting in aberrant transcription of multiple genes, including MET. The EORTC 90101 phase II trial evaluated the MET inhibitor crizotinib in CCSA but resulted in only sporadic responses. We performed an in-depth histopathological and molecular analysis of archival CCSA samples to identify alterations potentially relevant for the treatment outcome. Immunohistochemical characterization of MET signaling was performed using a tissue microarray constructed from 32 CCSA cases. The DNA from 24 available tumor specimens was analyzed by low-coverage whole-genome sequencing and whole-exome sequencing for the detection of recurrent copy number alterations (CNAs) and mutations. A pathway enrichment analysis was performed to identify the pathways relevant for CCSA tumorigenesis. Kaplan–Meier estimates and Fisher’s exact test were used to correlate the molecular findings with the clinical features related to crizotinib treatment, aiming to assess a potential association with the outcomes. The histopathological analysis showed the absence of a MET ligand and MET activation, with the presence of MET itself in most of cases. However, the expression/activation of MET downstream molecules was frequently observed, suggesting the role of other receptors in CCSA signal transduction. Using sequencing, we detected a number of CNAs at the chromosomal arm and region levels. The most common alteration was a gain of 8q24.21, observed in 83% of the cases. The loss of chromosomes 9q and 12q24 was associated with shorter survival. Based on exome sequencing, 40 cancer-associated genes were found to be mutated in more than one sample, with SRGAP3 and KMT2D as the most common alterations (each in four cases). The mutated genes encoded proteins were mainly involved in receptor tyrosine kinase signaling, polymerase-II transcription, DNA damage repair, SUMOylation and chromatin organization. Disruption in chromatin organization was correlated with longer progression-free survival in patients receiving crizotinib. Conclusions: The infrequent activation of MET may explain the lack of response to crizotinib observed in the majority of cases in the clinical trial. Our work describes the molecular heterogeneity in CCSA and provides further insight into the biology of this ultra-rare malignancy, which may potentially lead to better therapeutic approaches for CCSA.
Collapse
Affiliation(s)
- Che-Jui Lee
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
| | - Elodie Modave
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Bram Boeckx
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Silvia Stacchiotti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 120133 Milano, Italy;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 00001 Warsaw, Poland;
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Centre Léon Bérard & Université Claude Bernard Lyon I, 69008 Lyon, France;
| | - Maria Debiec-Rychter
- Department of Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium;
| | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium;
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-341019
| |
Collapse
|
49
|
Li Q, Chen Q, Chen J, Wang Z, Wang P, Zhao H, Zhao J. Prognostic nomogram for predicting long-term survival in bronchopulmonary carcinoid tumor patients receiving resection. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1402. [PMID: 34733954 PMCID: PMC8506713 DOI: 10.21037/atm-21-1929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/01/2021] [Indexed: 11/06/2022]
Abstract
Background We analyzed bronchopulmonary carcinoid tumor (BPC) patients receiving resection from the Surveillance, Epidemiology, and End Results (SEER) database to identify the predictive factors of their survival. Then, we developed and validated nomograms to predict overall survival (OS) and cancer-specific survival (CSS) in BPC patients. Methods BPC patients registered in the SEER database were included. They were divided into a training set and an internal validation set (7:3). BPC patients from our center were included as an external validation set. Independent prognostic factors identified by a Cox regression model in the training set were used to construct nomograms to predict survival. Discrimination and calibration plots were used to evaluate the predictive accuracy of the nomograms. The nomograms were evaluated in both the internal and the external validation datasets. Results Age, pathological type, and N stage were identified as independent prognostic factors of OS and CSS by Cox analyses (all P<0.05). Tumor size ≥2.5 cm (P=0.045) was an independent factor for unfavorable CSS. Based on these variables, nomograms were constructed. All concordance indexes of the training set, internal validation set, and external validation set indicated that the nomograms had the preferable discriminatory ability. The calibration plots for predictions of the 1-, 3-, and 5-year OS and CSS were in excellent agreement. Conclusions Age, pathological type, N stage, and tumor size were independent predictive factors of prognosis in BPC patients receiving resection. These nomograms could serve as effective and accurate tools for the prognostic evaluation of patients with BPCs.
Collapse
Affiliation(s)
- Qiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghua Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zijing Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pan Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Zhao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Guo D, Xie Q, Jiang S, Xie T, Li Y, Huang X, Li F, Wang T, Sun J, Wang A, Zhang Z, Li H, Bo X, Chen H, Liang Z. Synergistic alterations in the multilevel chromatin structure anchor dysregulated genes in small cell lung cancer. Comput Struct Biotechnol J 2021; 19:5946-5959. [PMID: 34849199 PMCID: PMC8604672 DOI: 10.1016/j.csbj.2021.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive form of lung cancer that uniquely changes the chromosomal structure, although the basis of aberrant gene expression in SCLC remains largely unclear. Topologically associated domains (TADs) are structural and functional units of the human genome. Genetic and epigenetic alterations in the cancer genome can lead to the disruption of TAD boundaries and may cause gene dysregulation. To understand the potential regulatory role of this process in SCLC, we developed the TAD boundary alteration-related gene identification in tumors (TARGET) computational framework, which enables the systematic identification of candidate dysregulated genes associated with altered TAD boundaries. Using TARGET to compare gene expression profiles between SCLC and normal human lung fibroblast cell lines, we identified >100 genes in this category, of which 24 were further verified in samples from patients with SCLC using NanoString. The analysis revealed synergistic chromatin structure alteration at the A/B compartment and TAD boundary levels that underlies aberrant gene expression in SCLC. TARGET is a novel and powerful tool that can be used to explore the relationship of chromatin structure alteration to gene dysregulation related to SCLC tumorigenesis, progression, and prognosis.
Collapse
Affiliation(s)
- Dan Guo
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qiu Xie
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shuai Jiang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Ting Xie
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yaru Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xin Huang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Fangyuan Li
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tingting Wang
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jian Sun
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Anqi Wang
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zixin Zhang
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hao Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hebing Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|