1
|
Yakubov R, Kaloti R, Persaud P, McCracken A, Zadeh G, Bunda S. It's all downstream from here: RTK/Raf/MEK/ERK pathway resistance mechanisms in glioblastoma. J Neurooncol 2025; 172:327-345. [PMID: 39821893 PMCID: PMC11937199 DOI: 10.1007/s11060-024-04930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND The receptor tyrosine kinase (RTK)/Ras/Raf/MEK/ERK signaling pathway is one of the most tumorigenic pathways in cancer, with its hyperactivation strongly linked to the aggressive nature of glioblastoma (GBM). Although extensive research has focused on developing therapeutics targeting this pathway, clinical success remains elusive due to the emergence of resistance mechanisms. OBJECTIVE This review investigates how inhibition of the RTK/Ras/Raf/MEK/ERK pathway alters transcription factors, contributing to acquired resistance mechanisms in GBM. It also highlights the critical role of transcription factor dysregulation in therapeutic resistance. METHODS & RESULTS Findings from key studies on the RTK/Ras/Raf/MEK/ERK pathway in GBM were synthesized to explore the role of transcription factor dysregulation in resistance to targeted therapies, radiation, and chemotherapy. The review highlights that transcription factors undergo significant dysregulation following RTK/Ras/Raf/MEK/ERK pathway inhibition, contributing to therapeutic resistance. CONCLUSION Transcription factors are promising targets for overcoming treatment resistance in GBM, with cotreatment strategies combining RTK/Ras/Raf/MEK/ERK pathway inhibitors and transcription factor-targeted therapies presenting a novel approach. Despite the challenges of targeting complex structures and interactions, advancements in drug development and precision technologies hold great potential. Continued research is essential to refine these strategies and improve outcomes for GBM and other aggressive cancers.
Collapse
Affiliation(s)
- Rebeca Yakubov
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ramneet Kaloti
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Phooja Persaud
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anna McCracken
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Severa Bunda
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
2
|
Luck C, Jacobs KA, Okimoto RA. The Capicua C1 Domain Is Required for Full Activity of the CIC::DUX4 Fusion Oncoprotein. CANCER RESEARCH COMMUNICATIONS 2024; 4:3099-3113. [PMID: 39530749 PMCID: PMC11626509 DOI: 10.1158/2767-9764.crc-24-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
SIGNIFICANCE We show in mammalian settings that the capicua C1 functional domain is a supercharger for CIC::DUX4, a poorly studied fusion oncoprotein which drives a rare sarcoma with dismal outcomes.
Collapse
Affiliation(s)
- Cuyler Luck
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Kyle A. Jacobs
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California
| | - Ross A. Okimoto
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
3
|
van den Bent MJ, French PJ, Brat D, Tonn JC, Touat M, Ellingson BM, Young RJ, Pallud J, von Deimling A, Sahm F, Figarella Branger D, Huang RY, Weller M, Mellinghoff IK, Cloughsey TF, Huse JT, Aldape K, Reifenberger G, Youssef G, Karschnia P, Noushmehr H, Peters KB, Ducray F, Preusser M, Wen PY. The biological significance of tumor grade, age, enhancement, and extent of resection in IDH-mutant gliomas: How should they inform treatment decisions in the era of IDH inhibitors? Neuro Oncol 2024; 26:1805-1822. [PMID: 38912846 PMCID: PMC11449017 DOI: 10.1093/neuonc/noae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Indexed: 06/25/2024] Open
Abstract
The 2016 and 2021 World Health Organization 2021 Classification of central nervous system tumors have resulted in a major improvement in the classification of isocitrate dehydrogenase (IDH)-mutant gliomas. With more effective treatments many patients experience prolonged survival. However, treatment guidelines are often still based on information from historical series comprising both patients with IDH wild-type and IDH-mutant tumors. They provide recommendations for radiotherapy and chemotherapy for so-called high-risk patients, usually based on residual tumor after surgery and age over 40. More up-to-date studies give a better insight into clinical, radiological, and molecular factors associated with the outcome of patients with IDH-mutant glioma. These insights should be used today for risk stratification and for treatment decisions. In many patients with IDH-mutant grades 2 and 3 glioma, if carefully monitored postponing radiotherapy and chemotherapy is safe, and will not jeopardize the overall outcome of patients. With the INDIGO trial showing patient benefit from the IDH inhibitor vorasidenib, there is a sizable population in which it seems reasonable to try this class of agents before recommending radio-chemotherapy with its delayed adverse event profile affecting quality of survival. Ongoing trials should help to further identify the patients that are benefiting from this treatment.
Collapse
Affiliation(s)
| | - Pim J French
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Daniel Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Mehdi Touat
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, Paris Brain Institute, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Robert J Young
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer, New York, New York, USA
| | - Johan Pallud
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Université Paris Cité, Paris, France
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Figarella Branger
- DFB Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tim F Cloughsey
- Department of Neurology, TC David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gilbert Youssef
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Philipp Karschnia
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Hospital+Michigan State University, Detroit, Michigan, USA
| | - Katherine B Peters
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Francois Ducray
- Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon, Lyon, France
- Hospices Civils de Lyon, Service de neuro-oncologie, LabEx Dev2CAN, Centre de Recherche en Cancérologie de Lyon, France
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
5
|
Kulkarni A, Mohan V, Tang TT, Post L, Chan YC, Manning M, Thio N, Parker BL, Dawson MA, Rosenbluh J, Vissers JH, Harvey KF. Identification of resistance mechanisms to small-molecule inhibition of TEAD-regulated transcription. EMBO Rep 2024; 25:3944-3969. [PMID: 39103676 PMCID: PMC11387499 DOI: 10.1038/s44319-024-00217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
The Hippo tumor suppressor pathway controls transcription by regulating nuclear abundance of YAP and TAZ, which activate transcription with the TEAD1-TEAD4 DNA-binding proteins. Recently, several small-molecule inhibitors of YAP and TEADs have been reported, with some entering clinical trials for different cancers with Hippo pathway deregulation, most notably, mesothelioma. Using genome-wide CRISPR/Cas9 screens we reveal that mutations in genes from the Hippo, MAPK, and JAK-STAT signaling pathways all modulate the response of mesothelioma cell lines to TEAD palmitoylation inhibitors. By exploring gene expression programs of mutant cells, we find that MAPK pathway hyperactivation confers resistance to TEAD inhibition by reinstating expression of a subset of YAP/TAZ target genes. Consistent with this, combined inhibition of TEAD and the MAPK kinase MEK, synergistically blocks proliferation of multiple mesothelioma and lung cancer cell lines and more potently reduces the growth of patient-derived lung cancer xenografts in vivo. Collectively, we reveal mechanisms by which cells can overcome small-molecule inhibition of TEAD palmitoylation and potential strategies to enhance the anti-tumor activity of emerging Hippo pathway targeted therapies.
Collapse
Affiliation(s)
- Aishwarya Kulkarni
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Varshini Mohan
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Tracy T Tang
- Vivace Therapeutics Inc., San Mateo, CA, 94404, USA
| | - Leonard Post
- Vivace Therapeutics Inc., San Mateo, CA, 94404, USA
| | - Yih-Chih Chan
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Murray Manning
- Department of Biochemistry, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
- Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Niko Thio
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Benjamin L Parker
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph Rosenbluh
- Department of Biochemistry, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
- Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Joseph Ha Vissers
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
6
|
Luck C, Jacobs KA, Okimoto RA. The Capicua C1 Domain is Required for Full Activity of the CIC::DUX4 Fusion Oncoprotein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597815. [PMID: 38895482 PMCID: PMC11185703 DOI: 10.1101/2024.06.06.597815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Rearrangements between genes can yield neomorphic fusions that drive oncogenesis. Fusion oncogenes are made up of fractional segments of the partner genes that comprise them, with each partner potentially contributing some of its own function to the nascent fusion oncoprotein. Clinically, fusion oncoproteins driving one diagnostic entity are typically clustered into a single molecular subset and are often treated a similar fashion. However, knowledge of where specific fusion breakpoints occur in partner genes, and the resulting retention of functional domains in the fusion, is an important determinant of fusion oncoprotein activity and may differ between patients. This study investigates this phenomena through the example of CIC::DUX4, a fusion between the transcriptional repressor capicua (CIC) and the double homeobox 4 gene (DUX4), which drives an aggressive subset of undifferentiated round cell sarcoma. Using a harmonized dataset of over 100 patient fusion breakpoints from the literature, we show that most bona fide CIC::DUX4 fusions retain the C1 domain, which is known to contribute to DNA binding by wild type CIC. Mechanistically, deletion or mutation of the C1 domain reduces, but does not eliminate, activation of CIC target genes by CIC::DUX4. We also find that expression of C1-deleted CIC::DUX4 is capable of exerting intermediate transformation-related phenotypes compared with those imparted by full-length CIC::DUX4, but was not sufficient for tumorigenesis in a subcutaneous mouse model. In summary, our results suggest a supercharging role for the C1 domain in the activity of CIC::DUX4.
Collapse
Affiliation(s)
- Cuyler Luck
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Kyle A. Jacobs
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Ross A. Okimoto
- Department of Medicine, University of California, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
7
|
Cowell LM, King M, West H, Broadsmith M, Genever P, Pownall ME, Isaacs HV. Regulation of gene expression downstream of a novel Fgf/Erk pathway during Xenopus development. PLoS One 2023; 18:e0286040. [PMID: 37856433 PMCID: PMC10586617 DOI: 10.1371/journal.pone.0286040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/08/2023] [Indexed: 10/21/2023] Open
Abstract
Activation of Map kinase/Erk signalling downstream of fibroblast growth factor (Fgf) tyrosine kinase receptors regulates gene expression required for mesoderm induction and patterning of the anteroposterior axis during Xenopus development. We have proposed that a subset of Fgf target genes are activated in the embyo in response to inhibition of a transcriptional repressor. Here we investigate the hypothesis that Cic (Capicua), which was originally identified as a transcriptional repressor negatively regulated by receptor tyrosine kinase/Erk signalling in Drosophila, is involved in regulating Fgf target gene expression in Xenopus. We characterise Xenopus Cic and show that it is widely expressed in the embryo. Fgf overexpression or ectodermal wounding, both of which potently activate Erk, reduce Cic protein levels in embryonic cells. In keeping with our hypothesis, we show that Cic knockdown and Fgf overexpression have overlapping effects on embryo development and gene expression. Transcriptomic analysis identifies a cohort of genes that are up-regulated by Fgf overexpression and Cic knockdown. We investigate two of these genes as putative targets of the proposed Fgf/Erk/Cic axis: fos and rasl11b, which encode a leucine zipper transcription factor and a ras family GTPase, respectively. We identify Cic consensus binding sites in a highly conserved region of intron 1 in the fos gene and Cic sites in the upstream regions of several other Fgf/Cic co-regulated genes, including rasl11b. We show that expression of fos and rasl11b is blocked in the early mesoderm when Fgf and Erk signalling is inhibited. In addition, we show that fos and rasl11b expression is associated with the Fgf independent activation of Erk at the site of ectodermal wounding. Our data support a role for a Fgf/Erk/Cic axis in regulating a subset of Fgf target genes during gastrulation and is suggestive that Erk signalling is involved in regulating Cic target genes at the site of ectodermal wounding.
Collapse
Affiliation(s)
- Laura M. Cowell
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Michael King
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Helena West
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Matthew Broadsmith
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Paul Genever
- Department of Biology, University of York, Heslington, York, United Kingdom
| | | | - Harry V. Isaacs
- Department of Biology, University of York, Heslington, York, United Kingdom
| |
Collapse
|
8
|
Schafer C, Young D, Singh H, Jayakrishnan R, Banerjee S, Song Y, Dobi A, Petrovics G, Srivastava S, Srivastava S, Sesterhenn IA, Chesnut GT, Tan SH. Development and characterization of an ETV1 rabbit monoclonal antibody for the immunohistochemical detection of ETV1 expression in cancer tissue specimens. J Immunol Methods 2023; 518:113493. [PMID: 37196930 PMCID: PMC10802095 DOI: 10.1016/j.jim.2023.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Aberrant ETV1 overexpression arising from gene rearrangements or mutations occur frequently in prostate cancer, round cell sarcomas, gastrointestinal stromal tumors, gliomas, and other malignancies. The absence of specific monoclonal antibodies (mAb) has limited its detection and our understanding of its oncogenic function. METHODS An ETV1 specific rabbit mAb (29E4) was raised using an immunogenic peptide. Key residues essential for its binding were probed by ELISA and its binding kinetics were measured by surface plasmon resonance imaging (SPRi). Its selective binding to ETV1 was assessed by immunoblots and immunofluorescence assays (IFA), and by both single and double-immuno-histochemistry (IHC) assays on prostate cancer tissue specimens. RESULTS Immunoblot results showed that the mAb is highly specific and lacked cross-reactivity with other ETS factors. A minimal epitope with two phenylalanine residues at its core was found to be required for effective mAb binding. SPRi measurements revealed an equilibrium dissociation constant in the picomolar range, confirming its high affinity. ETV1 (+) tumors were detected in prostate cancer tissue microarray cases evaluated. IHC staining of whole-mounted sections revealed glands with a mosaic staining pattern of cells that are partly ETV1 (+) and interspersed with ETV1 (-) cells. Duplex IHC, using ETV1 and ERG mAbs, detected collision tumors containing glands with distinct ETV1 (+) and ERG (+) cells. CONCLUSIONS The selective detection of ETV1 by the 29E4 mAb in immunoblots, IFA, and IHC assays using human prostate tissue specimens reveals a potential utility for the diagnosis, the prognosis of prostate adenocarcinoma and other cancers, and the stratification of patients for treatment by ETV1 inhibitors.
Collapse
Affiliation(s)
- Cara Schafer
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Denise Young
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Harpreet Singh
- Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Rahul Jayakrishnan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Sreedatta Banerjee
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Yingjie Song
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | | | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Urology Service, Walter Reed National Military Medical Center, Bethesda, MD, 20852, USA
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| |
Collapse
|
9
|
Takemon Y, LeBlanc VG, Song J, Chan SY, Lee SD, Trinh DL, Ahmad ST, Brothers WR, Corbett RD, Gagliardi A, Moradian A, Cairncross JG, Yip S, Aparicio SAJR, Chan JA, Hughes CS, Morin GB, Gorski SM, Chittaranjan S, Marra MA. Multi-Omic Analysis of CIC's Functional Networks Reveals Novel Interaction Partners and a Potential Role in Mitotic Fidelity. Cancers (Basel) 2023; 15:2805. [PMID: 37345142 PMCID: PMC10216487 DOI: 10.3390/cancers15102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
CIC encodes a transcriptional repressor and MAPK signalling effector that is inactivated by loss-of-function mutations in several cancer types, consistent with a role as a tumour suppressor. Here, we used bioinformatic, genomic, and proteomic approaches to investigate CIC's interaction networks. We observed both previously identified and novel candidate interactions between CIC and SWI/SNF complex members, as well as novel interactions between CIC and cell cycle regulators and RNA processing factors. We found that CIC loss is associated with an increased frequency of mitotic defects in human cell lines and an in vivo mouse model and with dysregulated expression of mitotic regulators. We also observed aberrant splicing in CIC-deficient cell lines, predominantly at 3' and 5' untranslated regions of genes, including genes involved in MAPK signalling, DNA repair, and cell cycle regulation. Our study thus characterises the complexity of CIC's functional network and describes the effect of its loss on cell cycle regulation, mitotic integrity, and transcriptional splicing, thereby expanding our understanding of CIC's potential roles in cancer. In addition, our work exemplifies how multi-omic, network-based analyses can be used to uncover novel insights into the interconnected functions of pleiotropic genes/proteins across cellular contexts.
Collapse
Affiliation(s)
- Yuka Takemon
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada;
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Véronique G. LeBlanc
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Jungeun Song
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Susanna Y. Chan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Stephen Dongsoo Lee
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Diane L. Trinh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Shiekh Tanveer Ahmad
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - William R. Brothers
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Richard D. Corbett
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Alessia Gagliardi
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Annie Moradian
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - J. Gregory Cairncross
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Stephen Yip
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Samuel A. J. R. Aparicio
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Jennifer A. Chan
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Christopher S. Hughes
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
| | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Suganthi Chittaranjan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
10
|
Franke K, Bal G, Li Z, Zuberbier T, Babina M. Clorfl86/RHEX Is a Negative Regulator of SCF/KIT Signaling in Human Skin Mast Cells. Cells 2023; 12:cells12091306. [PMID: 37174705 PMCID: PMC10177086 DOI: 10.3390/cells12091306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Mast cells (MCs) are key effector cells in allergic and inflammatory diseases, and the SCF/KIT axis regulates most aspects of the cells' biology. Using terminally differentiated skin MCs, we recently reported on proteome-wide phosphorylation changes initiated by KIT dimerization. C1orf186/RHEX was revealed as one of the proteins to become heavily phosphorylated. Its function in MCs is undefined and only some information is available for erythroblasts. Using public databases and our own data, we now report that RHEX exhibits highly restricted expression with a clear dominance in MCs. While expression is most pronounced in mature MCs, RHEX is also abundant in immature/transformed MC cell lines (HMC-1, LAD2), suggesting early expression with further increase during differentiation. Using RHEX-selective RNA interference, we reveal that RHEX unexpectedly acts as a negative regulator of SCF-supported skin MC survival. This finding is substantiated by RHEX's interference with KIT signal transduction, whereby ERK1/2 and p38 both were more strongly activated when RHEX was attenuated. Comparing RHEX and capicua (a recently identified repressor) revealed that each protein preferentially suppresses other signaling modules elicited by KIT. Induction of immediate-early genes strictly requires ERK1/2 in SCF-triggered MCs; we now demonstrate that RHEX diminution translates to this downstream event, and thereby enhances NR4A2, JUNB, and EGR1 induction. Collectively, our study reveals RHEX as a repressor of KIT signaling and function in MCs. As an abundant and selective lineage marker, RHEX may have various roles in the lineage, and the provided framework will enable future work on its involvement in other crucial processes.
Collapse
Affiliation(s)
- Kristin Franke
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Zhuoran Li
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Magda Babina
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
11
|
Gupta N, Song H, Wu W, Ponce RK, Lin YK, Kim JW, Small EJ, Feng FY, Huang FW, Okimoto RA. The CIC-ERF co-deletion underlies fusion-independent activation of ETS family member, ETV1, to drive prostate cancer progression. eLife 2022; 11:e77072. [PMID: 36383412 PMCID: PMC9668335 DOI: 10.7554/elife.77072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
Human prostate cancer can result from chromosomal rearrangements that lead to aberrant ETS gene expression. The mechanisms that lead to fusion-independent ETS factor upregulation and prostate oncogenesis remain relatively unknown. Here, we show that two neighboring transcription factors, Capicua (CIC) and ETS2 repressor factor (ERF), which are co-deleted in human prostate tumors can drive prostate oncogenesis. Concurrent CIC and ERF loss commonly occur through focal genomic deletions at chromosome 19q13.2. Mechanistically, CIC and ERF co-bind the proximal regulatory element and mutually repress the ETS transcription factor, ETV1. Targeting ETV1 in CIC and ERF-deficient prostate cancer limits tumor growth. Thus, we have uncovered a fusion-independent mode of ETS transcriptional activation defined by concurrent loss of CIC and ERF.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Hanbing Song
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Wei Wu
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Rovingaile K Ponce
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Yone K Lin
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Ji Won Kim
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Eric J Small
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| | - Felix Y Feng
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
- Department of Radiation Oncology, University of CaliforniaSan FranciscoUnited States
| | - Franklin W Huang
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| | - Ross A Okimoto
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| |
Collapse
|
12
|
Ismail A, Abulsoud AI, Fathi D, Elshafei A, El-Mahdy HA, Elsakka EG, Aglan A, Elkhawaga SY, Doghish AS. The role of miRNAs in Ovarian Cancer Pathogenesis and Therapeutic Resistance - A Focus on Signaling Pathways Interplay. Pathol Res Pract 2022; 240:154222. [DOI: 10.1016/j.prp.2022.154222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
|
13
|
Franke K, Kirchner M, Mertins P, Zuberbier T, Babina M. The SCF/KIT axis in human mast cells: Capicua acts as potent KIT repressor and ERK predominates PI3K. Allergy 2022; 77:3337-3349. [PMID: 35652819 DOI: 10.1111/all.15396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The SCF/KIT axis regulates nearly all aspects of mast cell (MC) biology. A comprehensive view of SCF-triggered phosphorylation dynamics is lacking. The relationship between signaling modules and SCF-supported functions likewise remains ill-defined. METHODS Mast cells were isolated from human skin; upon stimulation by SCF, global phosphoproteomic changes were analyzed by LC-MS/MS and selectively validated by immunoblotting. MC survival was inspected by YoPro; BrdU incorporation served to monitor proliferation. Gene expression was quantified by RT-qPCR and cytokines by ELISA. Pharmacological inhibitors were supplemented by ERK1 and/or ERK2 knockdown. CIC translocation and degradation were studied in nuclear and cytoplasmic fractions. CIC's impact on KIT signaling and function was assessed following RNA interference. RESULTS ≈5400 out of ≈10,500 phosphosites experienced regulation by SCF. The MEK/ERK cascade was strongly induced surpassing STAT5 > PI3K/Akt > p38 > JNK. Comparison between MEK/ERK's and PI3K's support of basic programs (apoptosis, proliferation) revealed equipotency between modules. In functional outputs (gene expression, cytokines), ERK was the most influential kinase. OSM and LIF production was identified in skin MCs. Strikingly, SCF triggered massive phosphorylation of a protein not associated with KIT previously: CIC. Phosphorylation was followed by CIC's cytoplasmic appearance and degradation, the latter sensitive to protease but not preoteasome inhibition. Both shuttling and degradation were ERK-dependent. Conversely, CIC-siRNA facilitated KIT signaling, functional outputs, and survival. CONCLUSION The SCF/KIT axis shows notable strength in MCs, and MEK/ERK as most prominent module. An inhibitory circuit exists between KIT and CIC. CIC stabilization in MCs may turn out as a therapeutic option to interfere with allergic and MC-driven diseases.
Collapse
Affiliation(s)
- Kristin Franke
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité- Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité- Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Torsten Zuberbier
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Magda Babina
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| |
Collapse
|
14
|
Saburi A, Kahrizi MS, Naghsh N, Etemadi H, İlhan A, Adili A, Ghoreishizadeh S, Tamjidifar R, Akbari M, Ercan G. A comprehensive survey into the role of microRNAs in ovarian cancer chemoresistance; an updated overview. J Ovarian Res 2022; 15:81. [PMID: 35799305 PMCID: PMC9264529 DOI: 10.1186/s13048-022-01012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer (OC), a frequent malignant tumor that affects women, is one of the leading causes of cancer-related death in this group of individuals. For the treatment of ovarian cancer, systemic chemotherapy with platinum-based drugs or taxanes is the first-line option. However, drug resistance developed over time during chemotherapy medications worsens the situation. Since uncertainty exists for the mechanism of chemotherapy resistance in ovarian cancer, there is a need to investigate and overcome this problem. miRNAs are engaged in various signaling pathways that contribute to the chemotherapeutic resistance of ovarian cancer. In the current study, we have tried to shed light on the mechanisms by which microRNAs contribute to the drug resistance of ovarian cancer and the use of some microRNAs to combat this chemoresistance, leading to the worse outcome of ovarian cancer patients treated with systemic chemotherapeutics.
Collapse
Affiliation(s)
- Ahmad Saburi
- Department of Biology, Faculty of Basic Sciences, Gonbad Kavous University, Gonbad Kavous, Iran
| | | | - Navid Naghsh
- Department of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hasti Etemadi
- Department of Biotechnology, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University, Pune, India
| | - Ahmet İlhan
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, Florida USA
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Rozita Tamjidifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, 35100 Turkey
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gülinnaz Ercan
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, 35100 Turkey
- Department of Stem Cell, Institute of Health Sciences, Ege University, Izmir, 35100 Turkey
| |
Collapse
|
15
|
Wong D, Lee TH, Lum A, Tao VL, Yip S. Integrated proteomic analysis of low-grade gliomas reveals contributions of 1p-19q co-deletion to oligodendroglioma. Acta Neuropathol Commun 2022; 10:70. [PMID: 35526077 PMCID: PMC9080204 DOI: 10.1186/s40478-022-01372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
Diffusely infiltrative low-grade gliomas (LGG) are primary brain tumours that arise predominantly in the cerebral hemispheres of younger adults. LGG can display either astrocytic or oligodendroglial histology and do not express malignant histological features. Vast majority of LGG are unified by IDH mutations. Other genomic features including ATRX as well as copy number status of chromosomes 1p and 19q serve to molecularly segregate this tumor group. Despite the exponential gains in molecular profiling and understanding of LGG, survival rates and treatment options have stagnated over the past few decades with few advancements. In this study, we utilize low grade glioma RNA-seq data from the Cancer Genome Atlas (TCGA-LGG) and tandem mass-spectrometry on an in-house cohort of 54 formalin-fixed paraffin-embedded (FFPE) LGG specimens to investigate the transcriptomic and proteomic profiles across the three molecular subtypes of LGG (Type I: IDH mutant – 1p19q co-deleted, Type II: IDH mutant – 1p19q retained, Type III: IDH wildtype). Within the 3 LGG subtypes, gene expression was driven heavily by IDH mutation and 1p19q co-deletion. In concordance with RNA expression, we were able to identify decreased expressions of proteins coded in 1p19q in Type I LGG. Further proteomic analysis identified 54 subtype specific proteins that were used to classify the three subtypes using a multinomial regression model (AUC = 0.911). Type I LGG were found to have increased protein expression of several metabolic proteins while Type III LGG were found to have increased immune infiltration and inflammation related proteins. Here we present the largest proteomic cohort of LGG and show that proteomic profiles can be successfully analyzed from FFPE tissues. We uncover previously known and novel subtype specific markers that are useful for the proteomic classification of LGG subtypes.
Collapse
|
16
|
Hong H, Lee J, Park GY, Kim S, Park J, Park JS, Song Y, Lee S, Kim TJ, Lee YJ, Roh TY, Kwok SK, Kim SW, Tan Q, Lee Y. Postnatal regulation of B-1a cell development and survival by the CIC-PER2-BHLHE41 axis. Cell Rep 2022; 38:110386. [PMID: 35172136 DOI: 10.1016/j.celrep.2022.110386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
B-1 cell development mainly occurs via fetal and neonatal hematopoiesis and is suppressed in adult bone marrow hematopoiesis. However, little is known about the factors inhibiting B-1 cell development at the adult stage. We report that capicua (CIC) suppresses postnatal B-1a cell development and survival. CIC levels are high in B-1a cells and gradually increase in transitional B-1a (TrB-1a) cells with age. B-cell-specific Cic-null mice exhibit expansion of the B-1a cell population and a gradual increase in TrB-1a cell frequency with age but attenuated B-2 cell development. CIC deficiency enhances B cell receptor (BCR) signaling in transitional B cells and B-1a cell viability. Mechanistically, CIC-deficiency-mediated Per2 derepression upregulates Bhlhe41 levels by inhibiting CRY-mediated transcriptional repression for Bhlhe41, consequently promoting B-1a cell formation in Cic-null mice. Taken together, CIC is a key transcription factor that limits the B-1a cell population at the adult stage and balances B-1 versus B-2 cell formation.
Collapse
Affiliation(s)
- Hyebeen Hong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Guk-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Soeun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jiho Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jong Seok Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Youngkwon Song
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sujin Lee
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - You Jeong Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Qiumin Tan
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
17
|
CIC-mediated modulation of MAPK signaling opposes receptor tyrosine kinase inhibitor response in kinase-addicted sarcoma. Cancer Res 2022; 82:1110-1127. [DOI: 10.1158/0008-5472.can-21-1397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/15/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
|
18
|
Lee SD, Song J, LeBlanc VG, Marra MA. Integrative multi-omic analysis reveals neurodevelopmental gene dysregulation in CIC-knockout and IDH1 mutant cells. J Pathol 2021; 256:297-309. [PMID: 34767259 PMCID: PMC9305137 DOI: 10.1002/path.5835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022]
Abstract
Capicua (CIC)'s transcriptional repressor function is implicated in neurodevelopment and in oligodendroglioma (ODG) aetiology. However, CIC's role in these contexts remains obscure, primarily from our currently limited knowledge regarding its biological functions. Moreover, CIC mutations in ODG invariably co‐occur with a neomorphic IDH1/2 mutation, yet the functional relationship between these two genetic events is unknown. Here, we analysed models derived from an E6/E7/hTERT‐immortalized (i.e. p53‐ and RB‐deficient) normal human astrocyte cell line. To examine the consequences of CIC loss, we compared transcriptomic and epigenomic profiles between CIC wild‐type and knockout cell lines, with and without mutant IDH1 expression. Our analyses revealed dysregulation of neurodevelopmental genes in association with CIC loss. CIC ChIP‐seq was also performed to expand upon the currently limited ensemble of known CIC target genes. Among the newly identified direct CIC target genes were EPHA2 and ID1, whose functions are linked to neurodevelopment and the tumourigenicity of in vivo glioma tumour models. NFIA, a known mediator of gliogenesis, was discovered to be uniquely overexpressed in CIC‐knockout cells expressing mutant IDH1‐R132H protein. These results identify neurodevelopment and specific genes within this context as candidate targets through which CIC alterations may contribute to the progression of IDH‐mutant gliomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Stephen D Lee
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Jungeun Song
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | | | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Li G, Gong J, Cao S, Wu Z, Cheng D, Zhu J, Huang X, Tang J, Yuan Y, Cai W, Zhang H. The Non-Coding RNAs Inducing Drug Resistance in Ovarian Cancer: A New Perspective for Understanding Drug Resistance. Front Oncol 2021; 11:742149. [PMID: 34660304 PMCID: PMC8514763 DOI: 10.3389/fonc.2021.742149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer, a common malignant tumor, is one of the primary causes of cancer-related deaths in women. Systemic chemotherapy with platinum-based compounds or taxanes is the first-line treatment for ovarian cancer. However, resistance to these chemotherapeutic drugs worsens the prognosis. The underlying mechanism of chemotherapeutic resistance in ovarian cancer remains unclear. Non-coding RNAs, including long non-coding RNAs, microRNAs, and circular RNAs, have been implicated in the development of drug resistance. Abnormally expressed non-coding RNAs can promote ovarian cancer resistance by inducing apoptosis inhibition, protective autophagy, abnormal tumor cell proliferation, epithelial-mesenchymal transition, abnormal glycolysis, drug efflux, and cancer cell stemness. This review summarizes the role of non-coding RNAs in the development of chemotherapeutic resistance in ovarian cancer, including their mechanisms, targets, and potential signaling pathways. This will facilitate the development of novel chemotherapeutic agents that can target these non-coding RNAs and improve ovarian cancer treatment.
Collapse
Affiliation(s)
- Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jun Gong
- Department of Abdominal and Pelvic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Shulong Cao
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaoyang Wu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Dong Cheng
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Zhu
- Hubei Enshi College, Enshi, China
| | - Xuqun Huang
- Department of Thoracic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Jingyi Tang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yuning Yuan
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wenqi Cai
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| |
Collapse
|
20
|
Wong D, Sogerer L, Lee SS, Wong V, Lum A, Levine AB, Marra MA, Yip S. TRIM25 promotes Capicua degradation independently of ERK in the absence of ATXN1L. BMC Biol 2020; 18:154. [PMID: 33115448 PMCID: PMC7594423 DOI: 10.1186/s12915-020-00895-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Aberrations in Capicua (CIC) have recently been implicated as a negative prognostic factor in a multitude of cancer types through the derepression of targets downstream of the mitogen-activated protein kinase (MAPK) signaling cascade, such as oncogenic E26 transformation-specific (ETS) transcription factors. The Ataxin-family protein ATXN1L has previously been reported to interact with CIC in both developmental and disease contexts to facilitate the repression of CIC target genes and promote the post-translational stability of CIC. However, little is known about the mechanisms at the base of ATXN1L-mediated CIC post-translational stability. Results Functional in vitro studies utilizing ATXN1LKO human cell lines revealed that loss of ATXN1L leads to the accumulation of polyubiquitinated CIC protein, promoting its degradation through the proteasome. Although transcriptomic signatures of ATXN1LKO cell lines indicated upregulation of the mitogen-activated protein kinase pathway, ERK activity was found to contribute to CIC function but not stability. Degradation of CIC protein following loss of ATXN1L was instead observed to be mediated by the E3 ubiquitin ligase TRIM25 which was further validated using glioma-derived cell lines and the TCGA breast carcinoma and liver hepatocellular carcinoma cohorts. Conclusions The post-translational regulation of CIC through ATXN1L and TRIM25 independent of ERK activity suggests that the regulation of CIC stability and function is more intricate than previously appreciated and involves several independent pathways. As CIC status has become a prognostic factor in several cancer types, further knowledge into the mechanisms which govern CIC stability and function may prove useful for future therapeutic approaches.
Collapse
Affiliation(s)
- Derek Wong
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Molecular Oncology, BC Cancer Agency, Vancouver, Canada
| | - Lisa Sogerer
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Samantha S Lee
- Department of Biological and Chemical Engineering, University of British Columbia, Vancouver, Canada
| | - Victor Wong
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Amy Lum
- Molecular Oncology, BC Cancer Agency, Vancouver, Canada
| | - Adrian B Levine
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Stephen Yip
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada. .,Molecular Oncology, BC Cancer Agency, Vancouver, Canada. .,Vancouver General Hospital, Vancouver, Canada.
| |
Collapse
|
21
|
Ren Y, Ouyang Z, Hou Z, Yan Y, Zhi Z, Shi M, Du M, Liu H, Wen Y, Shao Y. CIC Is a Mediator of the ERK1/2-DUSP6 Negative Feedback Loop. iScience 2020; 23:101635. [PMID: 33103082 PMCID: PMC7578760 DOI: 10.1016/j.isci.2020.101635] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/01/2020] [Accepted: 09/29/2020] [Indexed: 01/10/2023] Open
Abstract
DUSP6 functions as an important negative feedback component of the MAPK/ERK signaling pathway. Although DUSP6 expression is tightly regulated by ERK1/2 signaling, the molecular mechanism of this regulation remains partially understood. In this work, we show that the transcriptional repressor CIC functions downstream of the ERK1/2 signaling to negatively regulate DUSP6 expression. CIC directly represses DUSP6 transcription by binding to three cis-regulatory elements (CREs) in DUSP6 promoter. p90RSK, a downstream target of ERK1/2, phosphorylates CIC at S173 and S301 sites, which creates a 14-3-3 recognition motif, resulting in 14-3-3-mediated nuclear export of CIC and derepression of DUSP6. Finally, we demonstrate that the oncogenic CIC-DUX4 fusion protein acts as a transcriptional activator of DUSP6 and its nuclear/cytoplasmic distribution remains regulated by ERK1/2 signaling. These results complete an ERK1/2/p90RSK/CIC/DUSP6 negative feedback circuit and elucidate the molecular mechanism of how RTK/MAPK signaling harnesses the transcriptional repressor activity of CIC in mammalian cells. CIC represses DUSP6 transcription through direct promoter binding p90RSK phosphorylates CIC at S173 and S301 sites S173/S301 phosphorylated CIC binds to 14-3-3 to promote its nuclear export ERK/p90RSK signaling regulates the subcellular localization of CIC-DUX4 protein
Collapse
Affiliation(s)
- Yibo Ren
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenlin Ouyang
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhanwu Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuwei Yan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhe Zhi
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mengjin Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengtao Du
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huadong Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yurong Wen
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
22
|
HLA-DPA1 gene is a potential predictor with prognostic values in multiple myeloma. BMC Cancer 2020; 20:915. [PMID: 32972413 PMCID: PMC7513295 DOI: 10.1186/s12885-020-07393-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background Multiple myeloma (MM) is an incurable hematological tumor, which is closely related to hypoxic bone marrow microenvironment. However, the underlying mechanisms are still far from fully understood. We took integrated bioinformatics analysis with expression profile GSE110113 downloaded from National Center for Biotechnology Information-Gene Expression Omnibus (NCBI-GEO) database, and screened out major histocompatibility complex, class II, DP alpha 1 (HLA-DPA1) as a hub gene related to hypoxia in MM. Methods Differentially expressed genes (DEGs) were filtrated with R package “limma”. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed using “clusterProfiler” package in R. Then, protein-protein interaction (PPI) network was established. Hub genes were screened out according to Maximal Clique Centrality (MCC). PrognoScan evaluated all the significant hub genes for survival analysis. ScanGEO was used for visualization of gene expression in different clinical studies. P and Cox p value < 0.05 was considered to be statistical significance. Results HLA-DPA1 was finally picked out as a hub gene in MM related to hypoxia. MM patients with down-regulated expression of HLA-DPA1 has statistically significantly shorter disease specific survival (DSS) (COX p = 0.005411). Based on the clinical data of GSE47552 dataset, HLA-DPA1 expression showed significantly lower in MM patients than that in healthy donors (HDs) (p = 0.017). Conclusion We identified HLA-DPA1 as a hub gene in MM related to hypoxia. HLA-DPA1 down-regulated expression was associated with MM patients’ poor outcome. Further functional and mechanistic studies are need to investigate HLA-DPA1 as potential therapeutic target.
Collapse
|
23
|
Capicua in Human Cancer. Trends Cancer 2020; 7:77-86. [PMID: 32978089 DOI: 10.1016/j.trecan.2020.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Capicua (CIC) is a highly conserved transcriptional repressor that is differentially regulated through mitogen-activated protein kinase (MAPK) signaling or genetic alteration across human cancer. CIC contributes to tumor progression and metastasis through direct transcriptional control of effector target genes. Recent findings indicate that CIC dysregulation is mechanistically linked and restricted to specific cancer subtypes, yet convergence on key downstream transcriptional nodes are critical for CIC-regulated oncogenesis across these cancers. In this review, we focus on how differential regulation of CIC through functional and genetic mechanisms contributes to subtype-specific cancer phenotypes and we propose new therapeutic strategies to effectively target CIC-altered cancers.
Collapse
|
24
|
Inactivation of Transcriptional Repressor Capicua Confers Sorafenib Resistance in Human Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2020; 10:269-285. [PMID: 32169577 PMCID: PMC7305345 DOI: 10.1016/j.jcmgh.2020.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Sorafenib is a multireceptor tyrosine kinase inhibitor that can prolong overall survival in patients with advanced hepatocellular carcinoma (HCC). Although most HCC patients who receive sorafenib ultimately show disease progression, it still is unclear whether and how HCC cells acquire chemoresistance during sorafenib treatment in human beings. METHODS We analyzed surgically resected HCC tissues from a patient who received sorafenib for prevention of HCC recurrence after surgery (Adjuvant Sorafenib for Hepatocellular Carcinoma after Resection or Ablation trial) and established patient-derived HCC cells. Whole-exome sequence analysis was performed to detect mutations in sorafenib-resistant clones. We examined 30 advanced HCC cases immunohistochemically and 140 HCC cases enrolled in the Adjuvant Sorafenib for Hepatocellular Carcinoma after Resection or Ablation trial using microarray analysis to evaluate the association of Capicua Transcriptional Repressor (CIC) status with sorafenib treatment response. RESULTS We found a CIC mutation in recurrent HCC specimens after sorafenib. CIC encodes Capicua, a general sensor of receptor tyrosine kinase signaling. HCC cells established from the recurrent tumor specimen showed chemoresistance to sorafenib in vitro and in vivo. Established sorafenib-resistant Huh1 and Huh7 cell lines showed reduced expression of Capicua without mutations. Immunohistochemical analysis showed that HCC patients with low Capicua expression showed poor overall survival. Microarray analysis showed that the CIC gene signature could predict the preventive effect of adjuvant sorafenib treatment on HCC recurrence. Intriguingly, although CIC knockdown induced sorafenib resistance in HCC cell lines, regorafenib suppressed growth of sorafenib-resistant, Capicua-inactivated HCC cells and inhibited extracellular signal-regulated kinase phosphorylation. CONCLUSIONS Evaluation of Capicua status may be pivotal to predict response to sorafenib, and regorafenib treatment could be effective to treat HCC with functional Capicua impairment.
Collapse
|
25
|
Wong D, Yip S. Making heads or tails - the emergence of capicua (CIC) as an important multifunctional tumour suppressor. J Pathol 2020; 250:532-540. [PMID: 32073140 DOI: 10.1002/path.5400] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Abstract
Capicua, encoded by the gene CIC, is an evolutionarily conserved high-mobility group-box transcription factor downstream of the receptor tyrosine kinase and mitogen-activated protein kinase pathways. It was initially discovered and studied in Drosophila. Recurrent mutations in CIC were first identified in oligodendroglioma, a subtype of low-grade glioma. Subsequent studies have identified CIC aberrations in multiple types of cancer and have established CIC as a potent tumour suppressor involved in regulating pathways related to cell growth and proliferation, invasion and treatment resistance. The most well-known and studied targets of mammalian CIC are the oncogenic E-Twenty Six transcription factors ETV1/4/5, which have been found to be elevated in cancers with CIC aberrations. Here, we review the role of CIC in normal mammalian development, oncogenesis and tumour progression, and the functional interactors that mediate them. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Derek Wong
- Molecular Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Molecular Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Yoe J, Kim D, Kim S, Lee Y. Capicua restricts cancer stem cell-like properties in breast cancer cells. Oncogene 2020; 39:3489-3506. [PMID: 32108163 DOI: 10.1038/s41388-020-1230-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022]
Abstract
Cancer stem cells (CSCs) play a central role in cancer initiation, progression, therapeutic resistance, and recurrence in patients. Here we present Capicua (CIC), a developmental transcriptional repressor, as a suppressor of CSC properties in breast cancer cells. CIC deficiency critically enhances CSC self-renewal and multiple CSC subpopulations of breast cancer cells without altering their growth rate or invasiveness. Loss of CIC relieves repression of ETV4 and ETV5 expression, consequently promoting self-renewal capability, EpCAM+/CD44+/CD24low/- expression, and ALDH activity. In xenograft models, CIC deficiency significantly increases CSC frequency and drives tumor initiation through derepression of ETV4. Consistent with the experimental data, the CD44high/CD24low CSC-like feature is inversely correlated with CIC levels in breast cancer patients. We also identify SOX2 as a downstream target gene of CIC that partly promotes CSC properties. Taken together, our study demonstrates that CIC suppresses breast cancer formation via restricting cancer stemness and proposes CIC as a potential regulator of stem cell maintenance.
Collapse
Affiliation(s)
- Jeehyun Yoe
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Donghyo Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.,Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea. .,Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
27
|
Da Vià MC, Solimando AG, Garitano-Trojaola A, Barrio S, Munawar U, Strifler S, Haertle L, Rhodes N, Teufel E, Vogt C, Lapa C, Beilhack A, Rasche L, Einsele H, Kortüm KM. CIC Mutation as a Molecular Mechanism of Acquired Resistance to Combined BRAF-MEK Inhibition in Extramedullary Multiple Myeloma with Central Nervous System Involvement. Oncologist 2019; 25:112-118. [PMID: 32043788 DOI: 10.1634/theoncologist.2019-0356] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Combined MEK-BRAF inhibition is a well-established treatment strategy in BRAF-mutated cancer, most prominently in malignant melanoma with durable responses being achieved through this targeted therapy. However, a subset of patients face primary unresponsiveness despite presence of the activating mutation at position V600E, and others acquire resistance under treatment. Underlying resistance mechanisms are largely unknown, and diagnostic tests to predict tumor response to BRAF-MEK inhibitor treatment are unavailable. Multiple myeloma represents the second most common hematologic malignancy, and point mutations in BRAF are detectable in about 10% of patients. Targeted inhibition has been successfully applied, with mixed responses observed in a substantial subset of patients mirroring the widespread spatial heterogeneity in this genomically complex disease. Central nervous system (CNS) involvement is an extremely rare, extramedullary form of multiple myeloma that can be diagnosed in less than 1% of patients. It is considered an ultimate high-risk feature, associated with unfavorable cytogenetics, and, even with intense treatment applied, survival is short, reaching less than 12 months in most cases. Here we not only describe the first patient with an extramedullary CNS relapse responding to targeted dabrafenib and trametinib treatment, we furthermore provide evidence that a point mutation within the capicua transcriptional repressor (CIC) gene mediated the acquired resistance in this patient. KEY POINTS: BRAF mutations constitute an attractive druggable target in multiple myeloma. This is the first genomic dissection of the central nervous system involvement in a multiple myeloma patient harboring a druggable BRAFV600E mutation. Deep genomic characterization of the extramedullary lesion prompted a personalized therapeutic approach. Acquisition of CIC mutation confers a mechanism of BRAF-MEK inhibitor drug resistance in multiple myeloma. The in silico interrogation of the CoMMpass clinical study revealed 10 patients with somatic mutations of CIC and its downregulation at gene expression level in multiple myeloma. CIC gene silencing decreases the sensitivity of multiple myeloma cells to BRAF-MEK inhibition in vitro. The correlation between CIC downregulation and ETV4/5 nuclear factor expression in multiple myeloma BRAF-mutant cells is shown for the first time. CIC mutation, its downregulation, and the related downstream effect on MMP24 support disseminative potential providing new clues in the extramedullary biology definition.
Collapse
Affiliation(s)
| | - Antonio Giovanni Solimando
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | - Santiago Barrio
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Umair Munawar
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Susanne Strifler
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Larissa Haertle
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Nadine Rhodes
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Eva Teufel
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Cornelia Vogt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Zhou Y, Wang M, Shuang T, Liu Y, Zhang Y, Shi C. MiR-1307 influences the chemotherapeutic sensitivity in ovarian cancer cells through the regulation of the CIC transcriptional repressor. Pathol Res Pract 2019; 215:152606. [PMID: 31500928 DOI: 10.1016/j.prp.2019.152606] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/06/2019] [Accepted: 08/18/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Extended from our previously observation that expression of miR-1307 in chemoresistant primary ovarian cancer tissues is elevated, here we are aiming to dissect the function of miR-1307 and its predicted target gene, CIC (capicua transcriptional repressor), in ovarian cancer chemotherapy. METHODS We evaluated the expression of miR-1307 and CIC in chemoresistant and chemosensitive ovarian cancer tissues and cells by real time-PCR and western blot. We used chemoresistant/chemosensitive cells with miR-1307 suppression/overexpression to study the biological effects of miR-1307 by MTT and flow cytometer. Dual luciferase reporter gene assay was used to validate direct binding between miR-1307 and the 3'-UTR of CIC. Real-time PCR and western blot analyses, MTT and flow cytometry were used to reveal the biological effects of miR-1307 and CIC, as well as their regulation. RESULTS We found that miR-1307 affects cell cycle dynamics, cell viability in ovarian cancer cells. In addition, its expression level can influence chemosensitivity to paclitaxel in ovarian cancer cells. We also validate that CIC is a downstream target of miR-1307 via its regulation on 3'-UTR of CIC gene and ETV4 and ETV5 are also regulated by miR-1307/CIC axis. CONCLUSIONS Our data suggested that miR-1307 may be involved in the resistance of ovarian cancer to chemotherapy drugs via regulation of CIC, and should be further explored as a potential therapeutic target.
Collapse
Affiliation(s)
- Yingying Zhou
- Department of Obstetrics/Gynecology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Min Wang
- Department of Obstetrics/Gynecology, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Ting Shuang
- Department of Obstetrics/Gynecology, Shengjing Hospital, China Medical University, Shenyang, China; Department of Obstetrics/Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Yisi Liu
- Department of Obstetrics/Gynecology, Shengjing Hospital, China Medical University, Shenyang, China; Cancer Hospital, China Medical University, Shenyang, China
| | - Yongqi Zhang
- Department of Obstetrics/Gynecology, Shengjing Hospital, China Medical University, Shenyang, China; Department of Obstetrics/Gynecology, Roicare Hospital & Clinics, Shenyang, China
| | - Cong Shi
- Department of Obstetrics/Gynecology, Shengjing Hospital, China Medical University, Shenyang, China; Women's and Children's Hospital, Shenyang, China
| |
Collapse
|
29
|
The pivotal role of sampling recurrent tumors in the precision care of patients with tumors of the central nervous system. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004143. [PMID: 31371350 PMCID: PMC6672021 DOI: 10.1101/mcs.a004143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Effective management of brain and spine tumors relies on a multidisciplinary approach encompassing surgery, radiation, and systemic therapy. In the era of personalized oncology, the latter is complemented by various molecularly targeting agents. Precise identification of cellular targets for these drugs requires comprehensive profiling of the cancer genome coupled with an efficient analytic pipeline, leading to an informed decision on drug selection, prognosis, and confirmation of the original pathological diagnosis. Acquisition of optimal tumor tissue for such analysis is paramount and often presents logistical challenges in neurosurgery. Here, we describe the experience and results of the Personalized OncoGenomics (POG) program with a focus on tumors of the central nervous system (CNS). Patients with recurrent CNS tumors were consented and enrolled into the POG program prior to accrual of tumor and matched blood followed by whole-genome and transcriptome sequencing and processing through the POG bioinformatic pipeline. Sixteen patients were enrolled into POG. In each case, POG analyses identified genomic drivers including novel oncogenic fusions, aberrant pathways, and putative therapeutic targets. POG has highlighted that personalized oncology is truly a multidisciplinary field, one in which neurosurgeons must play a vital role if these programs are to succeed and benefit our patients.
Collapse
|
30
|
Bunda S, Heir P, Metcalf J, Li ASC, Agnihotri S, Pusch S, Yasin M, Li M, Burrell K, Mansouri S, Singh O, Wilson M, Alamsahebpour A, Nejad R, Choi B, Kim D, von Deimling A, Zadeh G, Aldape K. CIC protein instability contributes to tumorigenesis in glioblastoma. Nat Commun 2019; 10:661. [PMID: 30737375 PMCID: PMC6368580 DOI: 10.1038/s41467-018-08087-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/07/2018] [Indexed: 01/12/2023] Open
Abstract
Capicua (CIC) is a transcriptional repressor that counteracts activation of genes downstream of receptor tyrosine kinase (RTK)/Ras/ERK signaling. It is well-established that tumorigenesis, especially in glioblastoma (GBM), is attributed to hyperactive RTK/Ras/ERK signaling. While CIC is mutated in other tumors, here we show that CIC has a tumor suppressive function in GBM through an alternative mechanism. We find that CIC protein levels are negligible in GBM due to continuous proteasome-mediated degradation, which is mediated by the E3 ligase PJA1 and show that this occurs through binding of CIC to its DNA target and phosphorylation on residue S173. PJA1 knockdown increased CIC stability and extended survival using in-vivo models of GBM. Deletion of the ERK binding site resulted in stabilization of CIC and increased therapeutic efficacy of ERK inhibition in GBM models. Our results provide a rationale to target CIC degradation in Ras/ERK-driven tumors, including GBM, to increase efficacy of ERK inhibitors. Capicua (CIC) is a tumour suppressor in oligodendroglioma. Here, the authors show that ERK activation mediates CIC regulation via ubiquitination and degradation by PJA1 and a degradation resistant form of CIC enhances efficacy of ERK inhibition in glioblastoma.
Collapse
Affiliation(s)
- Severa Bunda
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Pardeep Heir
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Julie Metcalf
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Annie Si Cong Li
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Sameer Agnihotri
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada.,Department of Neurosurgery, University of Pittsburgh Medical Center, UPMC Presbyterian, Suite B-400, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Stefan Pusch
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, D-69120, Germany.,German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Mamatjan Yasin
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Mira Li
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Kelly Burrell
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Sheila Mansouri
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Olivia Singh
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Mark Wilson
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Amir Alamsahebpour
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Romina Nejad
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Bethany Choi
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - David Kim
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, D-69120, Germany.,German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology German Cancer Research Center (DKFZ), Heidelberg, D-69120, Germany
| | - Gelareh Zadeh
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada. .,Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, M5G 2C1, Canada. .,Insititute of Medical Science, University Health Network and University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | - Kenneth Aldape
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada. .,Laboratory of Pathology, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
31
|
Transcriptomic analysis of CIC and ATXN1L reveal a functional relationship exploited by cancer. Oncogene 2018; 38:273-290. [PMID: 30093628 DOI: 10.1038/s41388-018-0427-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 12/24/2022]
Abstract
Aberrations in Capicua (CIC) have recently been implicated as a negative prognostic factor in a multitude of cancer types through activation of the MAPK signalling cascade and derepression of oncogenic ETS transcription factors. The Ataxin-family protein ATXN1L has previously been reported to interact with CIC in developmental and disease contexts to facilitate the repression of CIC target genes. To further investigate this relationship, we performed functional in vitro studies utilizing ATXN1LKO and CICKO human cell lines and characterized a reciprocal functional relationship between CIC and ATXN1L. Transcriptomic interrogation of the CIC-ATXN1-ATXN1L axis in low-grade glioma, prostate adenocarcinoma and stomach adenocarcinoma TCGA cohorts revealed context-dependent convergence of gene sets and pathways related to mitotic cell cycle and division. This study highlights the CIC-ATXN1-ATXN1L axis as a more potent regulator of the cell cycle than previously appreciated.
Collapse
|
32
|
Weissmann S, Cloos PA, Sidoli S, Jensen ON, Pollard S, Helin K. The Tumor Suppressor CIC Directly Regulates MAPK Pathway Genes via Histone Deacetylation. Cancer Res 2018; 78:4114-4125. [PMID: 29844126 PMCID: PMC6076439 DOI: 10.1158/0008-5472.can-18-0342] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/25/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022]
Abstract
Oligodendrogliomas are brain tumors accounting for approximately 10% of all central nervous system cancers. CIC is a transcription factor that is mutated in most patients with oligodendrogliomas; these mutations are believed to be a key oncogenic event in such cancers. Analysis of the Drosophila melanogaster ortholog of CIC, Capicua, indicates that CIC loss phenocopies activation of the EGFR/RAS/MAPK pathway, and studies in mammalian cells have demonstrated a role for CIC in repressing the transcription of the PEA3 subfamily of ETS transcription factors. Here, we address the mechanism by which CIC represses transcription and assess the functional consequences of CIC inactivation. Genome-wide binding patterns of CIC in several cell types revealed that CIC target genes were enriched for MAPK effector genes involved in cell-cycle regulation and proliferation. CIC binding to target genes was abolished by high MAPK activity, which led to their transcriptional activation. CIC interacted with the SIN3 deacetylation complex and, based on our results, we suggest that CIC functions as a transcriptional repressor through the recruitment of histone deacetylases. Independent single amino acid substitutions found in oligodendrogliomas prevented CIC from binding its target genes. Taken together, our results show that CIC is a transcriptional repressor of genes regulated by MAPK signaling, and that ablation of CIC function leads to increased histone acetylation levels and transcription at these genes, ultimately fueling mitogen-independent tumor growth.Significance: Inactivation of CIC inhibits its direct repression of MAPK pathway genes, leading to their increased expression and mitogen-independent growth.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/15/4114/F1.large.jpg Cancer Res; 78(15); 4114-25. ©2018 AACR.
Collapse
Affiliation(s)
- Simon Weissmann
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Paul A Cloos
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Simone Sidoli
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
- Department of Biochemistry and Molecular Biology, VILLUM Centre for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Ole N Jensen
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
- Department of Biochemistry and Molecular Biology, VILLUM Centre for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Steven Pollard
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Kim E, Kim D, Lee JS, Yoe J, Park J, Kim CJ, Jeong D, Kim S, Lee Y. Capicua suppresses hepatocellular carcinoma progression by controlling the ETV4-MMP1 axis. Hepatology 2018; 67:2287-2301. [PMID: 29251790 DOI: 10.1002/hep.29738] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/24/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is developed by multiple steps accompanying progressive alterations of gene expression, which leads to increased cell proliferation and malignancy. Although environmental factors and intracellular signaling pathways that are critical for HCC progression have been identified, gene expression changes and the related genetic factors contributing to HCC pathogenesis are still insufficiently understood. In this study, we identify a transcriptional repressor, Capicua (CIC), as a suppressor of HCC progression and a potential therapeutic target. Expression of CIC is posttranscriptionally reduced in HCC cells. CIC levels are correlated with survival rates in patients with HCC. CIC overexpression suppresses HCC cell proliferation and invasion, whereas loss of CIC exerts opposite effects in vivo as well as in vitro. Levels of polyoma enhancer activator 3 (PEA3) group genes, the best-known CIC target genes, are correlated with lethality in patients with HCC. Among the PEA3 group genes, ETS translocation variant 4 (ETV4) is the most significantly up-regulated in CIC-deficient HCC cells, consequently promoting HCC progression. Furthermore, it induces expression of matrix metalloproteinase 1 (MMP1), the MMP gene highly relevant to HCC progression, in HCC cells; and knockdown of MMP1 completely blocks the CIC deficiency-induced HCC cell proliferation and invasion. CONCLUSION Our study demonstrates that the CIC-ETV4-MMP1 axis is a regulatory module controlling HCC progression. (Hepatology 2018;67:2287-2301).
Collapse
Affiliation(s)
- Eunjeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Donghyo Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Jeon-Soo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Jeehyun Yoe
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Jongmin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Chang-Jin Kim
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam, Republic of Korea
| | - Dongjun Jeong
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam, Republic of Korea.,Soonchunhyang Medical Science Research Institute, College of Medicine, Soonchunhyang University, Cheonan, Chungnam, Republic of Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea.,Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea.,Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| |
Collapse
|
34
|
Tanaka M, Yoshimoto T, Nakamura T. A double-edged sword: The world according to Capicua in cancer. Cancer Sci 2017; 108:2319-2325. [PMID: 28985030 PMCID: PMC5715262 DOI: 10.1111/cas.13413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
CIC/Capicua is an HMG‐box transcription factor that is well conserved during evolution. CIC recognizes the T(G/C)AATG(A/G)A sequence and represses its target genes, such as PEA3 family genes. The receptor tyrosine kinase/RAS/MAPK signals downregulate CIC and relieves CIC's target genes from the transrepressional activity; CIC thus acts as an important downstream molecule of the pathway and as a tumor suppressor. CIC loss‐of‐function mutations are frequently observed in several human neoplasms such as oligodendroglioma, and lung and gastric carcinoma. CIC is also involved in chromosomal translocation‐associated gene fusions in highly aggressive small round cell sarcoma that is biologically and clinically distinct from Ewing sarcoma. In these mutations, PEA3 family genes and other important target genes are upregulated, inducing malignant phenotypes. Downregulation of CIC abrogates the effect of MAPK inhibitors, suggesting its potential role as an important modifier of molecular target therapies for cancer. These data reveal the importance of CIC as a key molecule in signal transduction, carcinogenesis, and developing novel therapies.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toyoki Yoshimoto
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Pathology, Toranomon Hospital, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|