1
|
Liu S, Ruan Y, Chen X, He B, Chen Q. miR-137: a potential therapeutic target for lung cancer. Front Cell Dev Biol 2024; 12:1427724. [PMID: 39247624 PMCID: PMC11377224 DOI: 10.3389/fcell.2024.1427724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Lung cancer is a prevalent malignancy and the leading cause of cancer-related deaths, posing a significant threat to human health. Despite advancements in treatment, the prognosis for lung cancer patients remains poor due to late diagnosis, cancer recurrence, and drug resistance. Epigenetic research, particularly in microRNAs, has introduced a new avenue for cancer prevention and treatment. MicroRNAs, including miR-137, play a vital role in tumor development by regulating various cellular processes. MiR-137 has garnered attention for its tumor-suppressive properties, with studies showing its potential in inhibiting cancer progression. In lung cancer, miR-137 is of particular interest, with numerous reports exploring its role and mechanisms. A comprehensive review is necessary to consolidate current evidence. This review highlights recent studies on miR-137 in lung cancer, covering cell proliferation, migration, apoptosis, drug resistance, and therapy, emphasizing its potential as a biomarker and therapeutic target for lung cancer treatment and prognosis.
Collapse
Affiliation(s)
- Shuanshuan Liu
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yanyun Ruan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xu Chen
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bao He
- Department of Neurosurgery, The First People's hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Du C, Cai J, Tang J, Chen Y, Díaz-Peña R, Tomita Y, Jassem J, Zhao J, Zheng D, Tu Z. Cell-free DNA methylation profile potential in the diagnosis of lung squamous cell carcinoma. J Thorac Dis 2024; 16:553-563. [PMID: 38410586 PMCID: PMC10894382 DOI: 10.21037/jtd-23-1827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Background Aberrant methylation plays an essential role in early cancer development. In this study, we investigated methylation patterns in lung squamous cell carcinoma (LUSC) and matched non-tumor tissue and plasma samples to evaluate the potential of these patterns in the diagnosis of LUSC. Methods The study group included 49 patients with stage I-III LUSC. We collected resected tumor tissue, paired peritumoral tissue, distant normal tissue, and corresponding plasma samples. A bespoke lung cancer bisulfite sequencing panel was used to profile the methylation level. Another 48 healthy volunteers provided control plasma samples. Results Peritumoral and distant normal tissues presented similar methylation signatures, distinct from those in tumor tissue samples. A comparison of methylation profiles led to the identification of 871 tumor-specific differentially methylated blocks, including 847 hypermethylated and 24 hypomethylated blocks (adjusted P value <0.05). All top-ranked blocks were tumor-related. Tissue samples were analyzed for field cancerization to identify progressively aggravating aberrant methylations during tumor initiation and development. The analysis revealed that 221 blocks presented a stepwise increase in methylation levels, while seven blocks presented a stepwise decrease in methylation pattern as the sampling drew nearer to the tumor. The malignant contaminated ratio (MCR) confirmed the presence of distinct methylation patterns between tumor and peritumoral tissue samples. We then constructed a diagnostic panel using a combined diagnostic score of cell-free DNA (cfDNA) that showed high sensitivity and specificity. The healthy controls had a significantly lower combined diagnostic score (cd-score) than LUSC patients. Additionally, based on the methylation profiles, LUSC could be classified into two subgroups, C1 and C2. The methylation profile of the C2 group was not distinct from the healthy controls, which had a significantly lower cd-score than did the C1 group. Conclusions LUSC-specific methylation patterns could potentially discriminate between peritumoral tissue, distant normal tumor tissue, and tumor tissues. This preliminary study also supported the potential utility of cfDNA methylation analysis in diagnosing LUSC.
Collapse
Affiliation(s)
- Chengli Du
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Cai
- Special Clinical Lab, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Tang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunhao Chen
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenómica-USC, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| | - Yusuke Tomita
- Department of Respiratory Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jiangang Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Difang Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengliang Tu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Frydrychowicz M, Kuszel Ł, Dworacki G, Budna-Tukan J. MicroRNA in lung cancer-a novel potential way for early diagnosis and therapy. J Appl Genet 2023; 64:459-477. [PMID: 36821071 PMCID: PMC10457410 DOI: 10.1007/s13353-023-00750-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Lung cancer is the most common cause of cancer-related deaths in the world. One of the reasons of poor prognosis and high mortality of lung cancer patients is the diagnosis of the disease in its advanced stage. Despite innovative diagnostic methods and multiple completed and ongoing clinical trials aiming at therapy improvement, no significant increase in patients' long-term survival has been noted over last decades. Patients would certainly benefit from early detection of lung cancer. Therefore, it is crucial to find new biomarkers that can help predict outcomes and tumor responses in order to maximize therapy effectiveness and avoid over- or under-treating patients with lung cancer. Nowadays, scientists' attention is mainly dedicated to so-called liquid biopsy, which is fully non-invasive and easily available method based on simple blood draw. Among common liquid biopsy elements, circulating tumor nucleic acids are worth mentioning. Epigenetic biomarkers, particularly miRNA expression, have several distinct features that make them promising prognostic markers. In this review, we described miRNA's involvement in tumorigenesis and present it as a predictor of cancer development and progression, potential indicator of treatment efficacy, and most importantly promising therapeutic target.
Collapse
Affiliation(s)
- Magdalena Frydrychowicz
- Department of Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Łukasz Kuszel
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Grzegorz Dworacki
- Department of Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-781 Poznan, Poland
| |
Collapse
|
4
|
Saviana M, Le P, Micalo L, Del Valle-Morales D, Romano G, Acunzo M, Li H, Nana-Sinkam P. Crosstalk between miRNAs and DNA Methylation in Cancer. Genes (Basel) 2023; 14:1075. [PMID: 37239435 PMCID: PMC10217889 DOI: 10.3390/genes14051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
miRNAs are some of the most well-characterized regulators of gene expression. Integral to several physiological processes, their aberrant expression often drives the pathogenesis of both benign and malignant diseases. Similarly, DNA methylation represents an epigenetic modification influencing transcription and playing a critical role in silencing numerous genes. The silencing of tumor suppressor genes through DNA methylation has been reported in many types of cancer and is associated with tumor development and progression. A growing body of literature has described the crosstalk between DNA methylation and miRNAs as an additional layer in the regulation of gene expression. Methylation in miRNA promoter regions inhibits its transcription, while miRNAs can target transcripts and subsequently regulate the proteins responsible for DNA methylation. Such relationships between miRNA and DNA methylation serve an important regulatory role in several tumor types and highlight a novel avenue for potential therapeutic targets. In this review, we discuss the crosstalk between DNA methylation and miRNA expression in the pathogenesis of cancer and describe how miRNAs influence DNA methylation and, conversely, how methylation impacts the expression of miRNAs. Finally, we address how these epigenetic modifications may be leveraged as biomarkers in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, 1250 E. Marshall Street, Richmond, VA 23298, USA
| |
Collapse
|
5
|
Comparison of tumor and two types of paratumoral tissues highlighted epigenetic regulation of transcription during field cancerization in non-small cell lung cancer. BMC Med Genomics 2022; 15:66. [PMID: 35313869 PMCID: PMC8939144 DOI: 10.1186/s12920-022-01192-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Field cancerization is the process in which a population of normal or pre-malignant cells is affected by oncogenic alterations leading to progressive molecular changes that drive malignant transformation. Aberrant DNA methylation has been implicated in early cancer development in non-small cell lung cancer (NSCLC); however, studies on its role in field cancerization (FC) are limited. This study aims to identify FC-specific methylation patterns that could distinguish between pre-malignant lesions and tumor tissues in NSCLC. Methods We enrolled 52 patients with resectable NSCLC and collected resected tumor (TUM), tumor-adjacent (ADJ) and tumor-distant normal (DIS) tissue samples, among whom 36 qualified for subsequent analyses. Methylation levels were profiled by bisulfite sequencing using a custom lung-cancer methylation panel. Results ADJ and DIS samples demonstrated similar methylation profiles, which were distinct from distinct from that of TUM. Comparison of TUM and DIS profiles led to identification of 1740 tumor-specific differential methylated regions (DMRs), including 1675 hypermethylated and 65 hypomethylated (adjusted P < 0.05). Six of the top 10 tumor-specific hypermethylated regions were associated with cancer development. We then compared the TUM, ADJ, and DIS to further identify the progressively aggravating aberrant methylations during cancer initiation and early development. A total of 332 DMRs were identified, including a predominant proportion of 312 regions showing stepwise increase in methylation levels as the sample drew nearer to the tumor (i.e. DIS < ADJ < TUM) and 20 regions showing a stepwise decrease pattern. Gene set enrichment analysis (GSEA) for KEGG and GO terms consistently suggested enrichment of DMRs located in transcription factor genes, suggesting a central role of epigenetic regulation of transcription factors in FC and tumorigenesis. Conclusion We revealed distinct methylation patterns between pre-malignant lesions and malignant tumors, suggesting the essential role of DNA methylation as an early step in pre-malignant field defects. Moreover, our study also identified differentially methylated genes, especially transcription factors, that could potentially be used as markers for lung cancer screening and for mechanistic studies of FC and early cancer development. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01192-1.
Collapse
|
6
|
Propranolol Suppresses Proliferation and Migration of HUVECs through Regulation of the miR-206/VEGFA Axis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7629176. [PMID: 34697590 PMCID: PMC8541866 DOI: 10.1155/2021/7629176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Abstract
Propranolol has been used in the first-line therapy of infantile hemangioma (IH) for a number of years; however, the mechanisms through which propranolol regulates IH are not yet fully understood. In the present study, microRNA (miRNA/miR) sequencing analysis was performed to identify differentially expressed miRNAs in human umbilical vascular endothelial cells (HUVECs) treated with propranolol. Cell viability and apoptosis were detected using CCK-8 assay and flow cytometry, respectively. Cell migration was assessed using wound healing, Transwell, and tube formation assays. Methylation-specific PCR was then used to investigate the promoter methylation status. The levels of oxidative stress indicators, including superoxide dismutase, glutathione, and malondialdehyde were also detected. Finally, cell cycle analysis was performed using flow cytometry and western blotting. It was observed that propranolol induced the upregulation of miR-206 in HUVECs, which was caused by demethylation of the miR-206 promoter. Moreover, propranolol significantly inhibited the proliferation of HUVECs by inducing apoptosis, while these phenomena were reversed by miR-206 antagomir. VEGFA was found to be a target gene of miR-206. In addition, propranolol notably inhibited the migration and induced G1 arrest of the HUVECs, whereas these results were eliminated by miR-206 antagomir. Collectively, the findings of the present study demonstrated that propranolol may inhibit the proliferation and migration in HUVECs via modulating the miR-206/VEGFA axis. These findings suggest a novel mechanism through which propranolol suppresses the progression of IH.
Collapse
|
7
|
Chen Y, Zhou X, Huang C, Li L, Qin Y, Tian Z, He J, Liu H. LncRNA PART1 promotes cell proliferation and progression in non-small-cell lung cancer cells via sponging miR-17-5p. J Cell Biochem 2021; 122:315-325. [PMID: 33368623 DOI: 10.1002/jcb.29714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
It has been demonstrated in previous studies that lncPART1 is dysregulated in non-small cell lung cancer (NSCLC). However, the function of lncPART1 in NSCLC is unclear. Therefore, this experimental design was based on LncPART1 to explore the pathogenesis of NSCLC. Real-time polymerase chain reaction was used to detect the expression of lncPART1 and miR-17-5p in NSCLC. Cell Counting Kit -8, colony formation, and transwell assays were used to examine the effects of lncPART1 and miR-17-5p on NSCLC cell proliferation and migration invasiveness. Target gene prediction, luciferase reporter assays were used to validate downstream target genes for lncPART1 and miR-17-5p. Western blot analysis was used to detect the expression of TGFBETAR2. LncPART1 was highly expressed in NSCLC. LncPART1 significantly promoted cell proliferation of NSCLC cells. miR-17-5p was down-expressed in NSCLC. miR-17-5p overexpression inhibited cell proliferation and migration invasion in NSCLC cells. LncPART1 was able to inhibit miR-17-5p expression and upregulate the expression level of TGFBETAR2. The results of in vivo animal models confirmed that lncPART1 promoted NSCLC progression by miR-17-5p/TGFBETAR2 axis. LncPART1 promoted the progression of NSCLC by miR-17-5p/TGFBETAR2 axis.
Collapse
Affiliation(s)
- Yeye Chen
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyun Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Cheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingzhi Qin
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenhuan Tian
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia He
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Tumor Suppressor miR-584-5p Inhibits Migration and Invasion in Smoking Related Non-Small Cell Lung Cancer Cells by Targeting YKT6. Cancers (Basel) 2021; 13:cancers13051159. [PMID: 33800298 PMCID: PMC7962648 DOI: 10.3390/cancers13051159] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cigarette smoke is a major carcinogen that causes lung cancer and induces DNA methylation. DNA methylation regulates the expression of microRNA (miRNAs), which are important regulators of cancer biology. However, the association between smoking and miRNAs has not been fully elucidated in smoking-related lung carcinogenesis. In this study, we found that miR-584-5p expression was downregulated with cancer progression using a lung carcinogenesis model cell line. Moreover, we demonstrated that miR-584-5p is downregulated by the methylation of its promoter region and that it suppresses migration and invasion by targeting YKT6 in smoking-related non-small cell lung cancer (NSCLC) cells. Our results provide a better understanding of the underlying changes in miRNA expression in smoking-related lung carcinogenesis and suggest that miR-584-5p is a potential molecular biomarker for smoking-related NSCLC. Abstract Cigarette smoke (CS) affects the expression of microRNAs (miRNAs), which are important regulators of gene expression by inducing DNA methylation. However, the effects of smoking on miRNA expression have not been fully elucidated in smoking-related lung carcinogenesis. Therefore, in this study, to investigate the change of miRNA expression pattern and to identify tumor suppressor miRNAs by smoking in lung carcinogenesis, we used lung carcinogenesis model cell lines that, derived from a murine xenograft model with human bronchial epithelial cells (BEAS-2B), exposed CS or not. The microarray analysis revealed that miR-584-5p expression was downregulated with cancer progression in lung carcinogenesis model cell lines. We confirmed by pyrosequencing that the methylation level of the miR-584-5p promoter increased with cancer progression. In vitro and in vivo experiments showed that miR-584-5p suppressed migration and invasion in non-small cell lung cancer (NSCLC) cells by targeting YKT6. Furthermore, we showed that high level of YKT6 was associated with a poor survival rate in NSCLC patients with a history of smoking. These results suggest that miR-584-5p acts as a tumor suppressor and is a potential molecular biomarker for smoking-related NSCLC.
Collapse
|
9
|
Zhan Y, Guo Z, Zheng F, Zhang Z, Li K, Wang Q, Wang L, Cai Z, Chen N, Wu S, Li H. Reactive oxygen species regulate miR-17-5p expression via DNA methylation in paraquat-induced nerve cell damage. ENVIRONMENTAL TOXICOLOGY 2020; 35:1364-1373. [PMID: 32691990 DOI: 10.1002/tox.23001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/04/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
There is emerging evidence suggesting that oxidative stress and DNA methylation can alter miRNA expression. However, little is known on the mechanism of miR-17-5p expression changes in paraquat (PQ)-induced nerve cell damage. In the present study, neuro-2a cells were pretreated with antioxidant N-acetylcysteine (NAC) or DNA methylation inhibitor decitabine (DAC), then exposed to different concentrations of PQ, while the expression levels of miR-17-5p were detected by qRT-PCR. Here, it is showed that PQ downregulated the expression of miR-17-5p dose-dependently in neuro-2a cells. The DNA methylation level was upregulated after PQ exposure, while downregulated with the pretreatment of NAC in the above content, detected by 5-mC immunofluorescence technique. The interaction effect of NAC and PQ in alternating DNA methylation level was further confirmed by flow cytometry. NAC and DAC individually had an interaction effect in PQ-induced nerve cell damage. After using NAC, PQ-induced ROS elevation and DNA methylation are reduced, thereby preventing the proapoptotic effect of miR-17-5p. Above all, PQ can induce DNA methylation variations through ROS production, leading to the downregulation of miR-17-5p expression in PQ-induced nerve cell damage.
Collapse
Affiliation(s)
- Yanting Zhan
- Department of Health Management, Fujian Health College, Fuzhou, China
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhenkun Guo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Environment and Health, Universities and Colleges in Fujian, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fuli Zheng
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Environment and Health, Universities and Colleges in Fujian, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhipeng Zhang
- Fujian Provincial Center for Adverse Drug Reaction Monitoring, Fujian Provincial Food and Drug Administration, Fuzhou, China
| | - Ke Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Qingqing Wang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Lijin Wang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhipeng Cai
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Nengzhou Chen
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Siying Wu
- Key Laboratory of Environment and Health, Universities and Colleges in Fujian, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Huangyuan Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Environment and Health, Universities and Colleges in Fujian, School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Qu X, Zhu L, Song L, Liu S. circ_0084927 promotes cervical carcinogenesis by sponging miR-1179 that suppresses CDK2, a cell cycle-related gene. Cancer Cell Int 2020; 20:333. [PMID: 32699532 PMCID: PMC7372805 DOI: 10.1186/s12935-020-01417-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cervical cancer (CC) is a malignant tumor found in the lowermost part of the womb. Evolving studies on CC have reported that circRNA plays a crucial role in CC progression. In this study, we investigated the main function of a novel circRNA, circ_0084927, and its regulatory network in CC development. Methods qRT-PCR was applied to evaluate the expression of circ_0084927, miR-1179, and CDK2 mRNA in CC tissues and cells. Dual-luciferase reporting experiments and RNA immunoprecipitation (RIP) assay were conducted to validate the target relationship of miR-1179 with circ_0084927 and CDK2 mRNA. CCK-8 and BrdU assays were also used to evaluate CC cell proliferation. The adhesion and apoptosis phenotypes of CC cells were measured using cell–matrix adhesion and caspase 3 activation assay. Flow cytometry was also employed to detect the CC cell cycle. Results Our results indicated that circ_0084927 was up-regulated in CC tissues and cells. Findings also revealed that circ_0084927 silence inhibited CC cell proliferation and adhesion while facilitating apoptosis and triggering cell cycle arrest. However, miR-1179 down-regulation appeared in CC tissues. Apart from observing that circ_0084927 abolished miR-1179’s inhibitory effects on cell proliferation and adhesion, it was found that CDK2 was up-regulated in CC tissues and was instrumental in cancer promotion. Also observed was that miR-1179 directly targeted CDK2, thereby inhibiting CDK2’s promotion on the malignant phenotypes of CC cells. Lastly, results indicated that circ_0084927 revoked the inhibitory effect of miR-1179 on CDK2 by sponging miR-1179. Conclusion circ_0084927 promoted cervical carcinogenesis by sequestering miR-1179, which directly targeted CDK2. Our results also provided novel candidate targets for CC treatment in that it revealed the circ_0084927/miR-1179/CDK2 regulatory network that strengthened CC aggressiveness.
Collapse
Affiliation(s)
- Xinhua Qu
- Department of Obstetrics, Yantai Affiliated Hospital, Binzhou Medical College, No. 717 Jinbu Street, Muping District, Yantai, 264100 Shandong China
| | - Liumei Zhu
- Department of Maternal and Child Health Promotion, Yantai Affiliated Hospital, Binzhou Medical College, No. 717 Jinbu Street, Muping District, Yantai, 264100 Shandong China
| | - Linlin Song
- Department of Obstetrics, Yantai Affiliated Hospital, Binzhou Medical College, No. 717 Jinbu Street, Muping District, Yantai, 264100 Shandong China
| | - Shaohua Liu
- Department of Obstetrics, Yantai Affiliated Hospital, Binzhou Medical College, No. 717 Jinbu Street, Muping District, Yantai, 264100 Shandong China
| |
Collapse
|
11
|
Zhang Y, Wang J, Su H. MiR-3150b inhibits hepatocellular carcinoma cell proliferation, migration and invasion by targeting GOLPH3. J Investig Med 2020; 68:770-775. [PMID: 31806673 PMCID: PMC7057801 DOI: 10.1136/jim-2019-001181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND In this study, we aimed to explore the potential involvement of miR-3150b in hepatocellular carcinoma (HCC) carcinogenesis. METHODS The expression of miR-3150b and Golgi phosphoprotein 3 (GOLPH3) was determined in HCC cell lines. Cell proliferation, migration and invasion were estimated by Cell Counting Kit-8, wound healing and Transwell assays. The association between miR-3150b and GOLPH3 was verified by luciferase assay. RESULTS MiR-3150b was downregulated, while GOLPH3 was remarkably upregulated in HCC cells. Furthermore, miR-3150b inhibited HCC cell proliferation, migration and invasion. MiR-3150b directly targeted and negatively regulated GOLPH3. CONCLUSION MiR-3150b suppressed HCC cell proliferation, invasion and migration by targeting GOLPH3.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, Xi'an XD Group Hospital, Xi'an, China
| | - Jianjun Wang
- Department of General Surgery, Xi'an XD Group Hospital, Xi'an, China
| | - Hongling Su
- Department of Gastroenterology, Xi'an XD Group Hospital, Xi'an, China
| |
Collapse
|
12
|
miR-9 Does Not Regulate Lamin A Expression in Metastatic Cells from Lung Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21051599. [PMID: 32111074 PMCID: PMC7084260 DOI: 10.3390/ijms21051599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 11/17/2022] Open
Abstract
In lung adenocarcinoma, low lamin A expression in pleural metastatic cells has been proposed as a pejorative factor. miR-9 physiologically inhibits the expression of lamin A in neural cells and seems to be a central actor in the carcinogenesis and the metastatic process in lung cancer. Thus, it could be a good candidate to explain the reduction of lamin A expression in lung adenocarcinoma cells. miR-9 expression was analyzed in 16 pleural effusions containing metastatic cells from lung adenocarcinoma and was significantly reduced in patients from the 'Low lamin A expression' group compared to patients from the 'High lamin A expression' group. Then, carcinoma cells selection by fluorescence-activated cell sorting (FACS) was performed according to epithelial membrane antigen (EMA) expression, reflecting lamin A expression. miR-9 was underexpressed in lamin A- carcinoma cells compared to lamin A+ carcinoma cells in patients from the 'Low lamin A expression' group, whereas there was no difference of miR-9 expression between lamin A+ and lamin A- carcinoma cells in patients from the 'High lamin A expression' group. These results suggest that miR-9 does not regulate lamin A expression in metastatic cells from lung adenocarcinoma. On the contrary, miR-9 expression was shown to be reduced in lamin A-negative carcinoma cells.
Collapse
|
13
|
Kumar S, Sharawat SK, Ali A, Gaur V, Malik PS, Kumar S, Mohan A, Guleria R. Identification of differentially expressed circulating serum microRNA for the diagnosis and prognosis of Indian non-small cell lung cancer patients. Curr Probl Cancer 2020; 44:100540. [PMID: 32007320 DOI: 10.1016/j.currproblcancer.2020.100540] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/12/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Identification of noninvasive blood-based biomarkers is of utmost importance for the early diagnosis and predicting prognosis of advance stage lung cancer patients. MicroRNAs (miRNAs) has been implicated in numerous diseases, however, their role as diagnostic and prognostic biomarkers in Indian lung cancer patients has not been evaluated yet. METHODS For the identification of differentially expressed miRNAs in the serum of non-small cell lung cancer (NSCLC) patients, we performed small RNA sequencing. We validated the expression of 10 miRNAs in 75 NSCLC patients and 40 controls using quantitative reverse transcription polymerase chain reaction (PCR). miRNA expression was correlated with survival and therapeutic response. RESULTS We identified 16 differentially expressed miRNAs in the serum of NSCLC patients as compared to controls. We observed significant downregulation of miR-15a-5p, miR-320a, miR-25-3p, miR-192-5p, let-7d-5p, let-7e-5p, miR-148a-3p, and miR-92a-3p in the serum of NSCLC patients. The expression of miR-375 and miR-10b-5p was significantly downregulated in lung squamous cell carcinoma patients than controls. The expression of miR-320a, miR-25-3p, and miR-148a-3p significantly correlated with stage. None of the miRNAs were correlated with survival outcome and therapeutic response. CONCLUSIONS We conclude that the relative abundance of miRNAs in serum may be explored for the development of miRNA-based assays for better diagnosis and prognosis of NSCLC. Moreover, further studies are warranted to elucidate the role of some of the less explored miRNAs, such as miR-375 and miR-320a, in the pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| | - Surender K Sharawat
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ashraf Ali
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Vikas Gaur
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Kumar
- Department of Surgical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Gu Y, Shi X, Wang X, Liu X, Xie Y. Expression profile of miRNA in NSCLC tissues in middle-altitude area. Oncol Lett 2020; 19:783-794. [PMID: 31897195 PMCID: PMC6924178 DOI: 10.3892/ol.2019.11176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/25/2019] [Indexed: 11/07/2022] Open
Abstract
Micro ribonucleic acid (miRNA) expression profile in non-small cell lung cancer (NSCLC) tissues in middle-altitude area was analyzed using the Affymetrix chip technique, to predict the target genes of abnormally-expressed miRNAs, and to analyze the target gene-related signaling pathways and cell biological functions regulated by them. The difference in miRNA expression profile in NSCLC tissues was analyzed using the Affymetrix chip technique. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed for the verification of some differentially-expressed miRNAs. The genes predicted by at least 6 out of 12 commonly used prediction methods of miRNA target genes, based on miRWalk2.0, were considered as target genes. The functions of differentially-expressed miRNA target genes were analyzed via Gene Ontology (GO) enrichment analysis, and the main signaling pathways involving target genes were analyzed via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. There was abnormal expression of miRNAs in NSCLC tissues in the middle-altitude area. There were 140,405 target genes predicted for differentially-expressed miRNAs. The GO enrichment analysis of the functions of the target genes of differentially expressed miRNAs revealed that they mainly influence the binding process of intracellular components to protein, the positive regulation of biological process and the regulation of metabolic process. Moreover, these target genes were mainly enriched in the immunity, gene expression, metabolism and signal transduction, among which signal transduction was enriched with the most genes. The expression levels of miRNA-139-5p and miRNA-150-5p in lung cancer group were lower than those in the control group. The expression of miRNAs in NSCLC tissues in the middle-altitude area is abnormal, and most miRNAs are downregulated.
Collapse
Affiliation(s)
- Yuhai Gu
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Xuefeng Shi
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Xinying Wang
- Graduate School of Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Xia Liu
- Graduate School of Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Youbang Xie
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
15
|
Hypermethylation of Anti-oncogenic MicroRNA 7 is Increased in Emphysema Patients. Arch Bronconeumol 2019; 56:506-513. [PMID: 31780284 DOI: 10.1016/j.arbres.2019.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/29/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION MicroRNA-7 (miR-7) has a suppressive role in lung cancer and alterations in its DNA methylation may contribute to tumorigenesis. As COPD patients with emphysema have a higher risk of lung cancer than other COPD phenotypes, we compared the miR-7 methylation status among smoker subjects and patients with various COPD phenotypes to identify its main determinants. METHODS 30 smoker subjects without airflow limitation and 136 COPD patients without evidence of cancer were recruited in a prospective study. Clinical and functional characteristics were assessed and patients were classified into: frequent exacerbator, emphysema, chronic bronchitis and asthma COPD overlap (ACO). DNA collected from buccal epithelial samples was isolated and bisulfite modified. miR-7 methylation status was evaluated by quantitative methylation-specific polymerase chain reaction (qMSP). RESULTS miR-7 Methylated levels were higher in COPD patients than in smokers without airflow limitation (23.7±12.4 vs. 18.5±8.8%, p=0.018). Among COPD patients, those with emphysema had higher values of methylated miR-7 (27.1±10.2%) than those with exacerbator (19.4±9.9%, p=0.004), chronic bronchitis (17.3±9.0%, p=0.002) or ACO phenotypes (16.0±7.2%, p=0.010). After adjusting for clinical parameters, differences between emphysematous patients and those with other phenotypes were retained. In COPD patients, advanced age, mild-moderate airflow limitation, reduced diffusing capacity and increased functional residual capacity were identified as independent predictors of methylated miR-7 levels. CONCLUSION The increase of miR-7 methylation levels experienced by COPD patients occurs mainly at the expense of the emphysema phenotype, which might contribute to explain the higher incidence of lung cancer in these patients.
Collapse
|
16
|
Zhang W, Chen X, Jia J. MiR-3150b-3p inhibits the progression of colorectal cancer cells via targeting GOLPH3. J Investig Med 2019; 68:425-429. [PMID: 31678970 PMCID: PMC7063393 DOI: 10.1136/jim-2019-001124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2019] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate the function of miR-3150b-3p in malignant behaviors of colorectal cancer (CRC). The tumor-inhibitive effect of miR-3150b-3p was determined by cell viability, invasion, and migration assays. The influence of miR-3150b-3p on the expression of Golgi phosphoprotein 3 (GOLPH3) and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway was evaluated by luciferase reporter, qRT-PCR and western blot analysis. MiR-3150b-3p was markedly decreased in CRC cell lines compared with colonic mucosal epithelial cell line (FHC). Furthermore, miR-3150b-3p inhibited malignant biological behaviors by targeting GOLPH3, an oncogene in CRC. Additionally, we suggested that miR-3150b-3p ameliorated CRC tumorigenesis in vitro through GOLPH3-mediated JAK2/STAT3 pathway. MiR-3150b-3p might function as a promising tumor suppressor in CRC.
Collapse
Affiliation(s)
- Weiqing Zhang
- Department of General Surgery, Wuwei People's Hospital, Wuwei, Gansu, China
| | - Xiaoyan Chen
- Day Care Ward, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Junzhi Jia
- Day Care Ward, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
17
|
Fan X, Jin S, Li Y, Khadaroo PA, Dai Y, He L, Zhou D, Lin H. Genetic And Epigenetic Regulation Of E-Cadherin Signaling In Human Hepatocellular Carcinoma. Cancer Manag Res 2019; 11:8947-8963. [PMID: 31802937 PMCID: PMC6801489 DOI: 10.2147/cmar.s225606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
E-cadherin is well known as a growth and invasion suppressor and belongs to the large cadherin family. Loss of E-cadherin is widely known as the hallmark of epithelial-to-mesenchymal transition (EMT) with the involvement of transcription factors such as Snail, Slug, Twist and Zeb1/2. Tumor cells undergoing EMT could migrate to distant sites and become metastases. Recently, numerous studies have revealed how the expression of E-cadherin is regulated by different kinds of genetic and epigenetic alteration, which are implicated in several crucial transcription factors and pathways. E-cadherin signaling plays an important role in hepatocellular carcinoma (HCC) initiation and progression considering the highly mutated frequency of CTNNB1 (27%). Combining the data from The Cancer Genome Atlas (TCGA) database and previous studies, we have summarized the roles of gene mutations, chromosome instability, DNA methylation, histone modifications and non-coding RNA in E-cadherin in HCC. In this review, we discuss the current understanding of the relationship between these modifications and HCC. Perspectives on E-cadherin-related research in HCC are provided.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Parikshit Asutosh Khadaroo
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Yili Dai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
18
|
Wang J, Yu XF, OUYang N, Luo Q, Tong J, Chen T, Li J. Role of DNA methylation regulation of miR-130b expression in human lung cancer using bioinformatics analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:935-943. [PMID: 31524549 DOI: 10.1080/15287394.2019.1667634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are involved in various crucial biological processes including regulation of cell differentiation, proliferation, and migration, and are closely associated with tumor development. This study aimed to investigate miR-130b expression levels in lung cancer patient tissues. Two Gene Expression Omnibus (GEO) databases, including GSE48414 and GSE74190, and two The Cancer Genome Atlas (TCGA) databases including TCGA LUAD and TCGA LUSC, were accessed to obtain information for differential expression analysis and clinical-pathological correlation analysis. The results showed that miR-130b expression levels were significantly increased in lung cancer compared to normal tissues. Data also demonstrated that confounding factors such as tumor clinical stages and tumor invasion depth markedly affected miR-130b expression levels in cancer patients. A total of 169 target genes modified by miR-130b expression were identified by using 4 online websites for target gene prediction. Further enrichment analysis indicated that these 169 target genes were significantly enriched in several cancer-related biological processes and signaling pathways, including wound healing, cell proliferation, Wnt signaling, Ras signaling, and mTOR signaling. It was also of interest to examine the seven sites on the promoter region of miR-130b encoding gene in lung cancer patients and then compare methylation at these loci with miR-130b expression. The correlation analysis between encoding gene methylation and miR-130b expression in TCGA datasets revealed that decreased methylation in the promoter region was significantly associated with elevated miR-130b expression. This phenomenon was markedly dependent upon smoking history and clinical-pathological features. In conclusion, data indicated alterations in the methylation of DNA promoter region of miR-130b encoding gene were associated with disturbances in miR-130b expression in lung cancer patients suggesting that the DNA methylation process and miR-130b expression may serve as biomarkers for detection of lung cancer.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Xiao-Fan Yu
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Nan OUYang
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Qiulin Luo
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
| | - Jian Tong
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Tao Chen
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| |
Collapse
|
19
|
Zhang Y, Xie ZY, Guo XT, Xiao XH, Xiong LX. Notch and breast cancer metastasis: Current knowledge, new sights and targeted therapy. Oncol Lett 2019; 18:2743-2755. [PMID: 31452752 PMCID: PMC6704289 DOI: 10.3892/ol.2019.10653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common type of invasive cancer in females and metastasis is one of the major causes of breast cancer-associated mortality. Following detachment from the primary site, disseminated tumor cells (DTCs) enter the bloodstream and establish secondary colonies during the metastatic process. An increasing amount of studies have elucidated the importance of Notch signaling in breast cancer metastasis; therefore, the present review focuses on the mechanisms by which Notch contributes to the occurrence of breast cancer DTCs, increases their motility, establishes interactions with the tumor microenvironment, protects DTCs from host surveillance and finally facilitates secondary colonization. Identification of the underlying mechanisms of Notch-associated breast cancer metastasis will provide additional insights that may contribute towards the development of novel Notch-targeted therapeutic strategies, which may aid in reducing metastasis, culminating in an improved patient prognosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zi-Yan Xie
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuan-Tong Guo
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xing-Hua Xiao
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
20
|
Braga EA, Fridman MV, Loginov VI, Dmitriev AA, Morozov SG. Molecular Mechanisms in Clear Cell Renal Cell Carcinoma: Role of miRNAs and Hypermethylated miRNA Genes in Crucial Oncogenic Pathways and Processes. Front Genet 2019; 10:320. [PMID: 31110513 PMCID: PMC6499217 DOI: 10.3389/fgene.2019.00320] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the third most common urological cancer, and it has the highest mortality rate. The increasing drug resistance of metastatic ccRCC has resulted in the search for new biomarkers. Epigenetic regulatory mechanisms, such as genome-wide DNA methylation and inhibition of protein translation by interaction of microRNA (miRNA) with its target messenger RNA (mRNA), are deeply involved in the pathogenesis of human cancers, including ccRCC, and may be used in its diagnosis and prognosis. Here, we review oncogenic and oncosuppressive miRNAs, their putative target genes, and the crucial pathways they are involved in. The contradictory behavior of a number of miRNAs, such as suppressive and anti-metastatic miRNAs with oncogenic potential (for example, miR-99a, miR-106a, miR-125b, miR-144, miR-203, miR-378), is examined. miRNAs that contribute mostly to important pathways and processes in ccRCC, for instance, PI3K/AKT/mTOR, Wnt-β, histone modification, and chromatin remodeling, are discussed in detail. We also separately consider their participation in crucial oncogenic processes, such as hypoxia and angiogenesis, metastasis, and epithelial-mesenchymal transition (EMT). The review also considers the interactions of long non-coding RNAs (lncRNAs) and miRNAs of significance in ccRCC. Recent advances in the understanding of the role of hypermethylated miRNA genes in ccRCC and their usefulness as biomarkers are reviewed based on our own data and those available in the literature. Finally, new data and perspectives concerning the clinical applications of miRNAs in the diagnosis, prognosis, and treatment of ccRCC are discussed.
Collapse
Affiliation(s)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Center of Medical Genetics, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
21
|
Zhu J, Han S. miR-150-5p promotes the proliferation and epithelial-mesenchymal transition of cervical carcinoma cells via targeting SRCIN1. Pathol Res Pract 2019; 215:738-747. [PMID: 30679084 DOI: 10.1016/j.prp.2019.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022]
Abstract
Cervical carcinoma is one of the most universal cancers among women. Recent researches have reported that microRNA-150-5p (miR-150-5p) is up-regulated in diverse carcinomas containing cervical carcinoma. The purpose of this study was to further investigate the potential role of miR-150-5p in the progress of cervical carcinoma cells including proliferation and epithelial-mesenchymal transition (EMT).The ability of miR-150-5p to promote carcinogenesis was analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot assays, respectively. Bioinformatics analyses predicted and identified whether SRC kinase signaling inhibitor 1 (SRCIN1) was served as a potential target of miR-150-5p. C-33A and HeLa cells were utilized to determine the function of miR-150-5p through targeting SRCIN1. Among the aberrantly expressed miRNAs, miR-150-5p was significantly revealed differential expression in cervical carcinoma cell lines and was closely relevant to cell growth regulation. Furthermore, we found that SRCIN1 overexpression could obviously inhibit the proliferation and EMT of cervical cancer cells triggered by miR-150-5p mimics as well as accelerated the apoptosis of cervical carcinoma cells. In conclusion, our data demonstrated that miR-150-5p could promote the proliferation and EMT of cervical carcinoma cells via targeting SRCIN1. Thus, miR-150-5p may hold a promise as a prognostic biomarker and potential therapeutic target for cervical carcinoma.
Collapse
Affiliation(s)
- Jinming Zhu
- Department of Oncology, Affiliated Zhongshan Hospital, Dalian University, Dalian, China
| | - Shichao Han
- Department of Gynecology, The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
22
|
Chen Q, Cheng L, Li Q. The molecular characterization and therapeutic strategies of papillary renal cell carcinoma. Expert Rev Anticancer Ther 2018; 19:169-175. [PMID: 30474436 DOI: 10.1080/14737140.2019.1548939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction: Papillary renal cell carcinoma (pRCC) is an important subtype of kidney cancer with a problematic pathological classification and highly variable clinical behavior. In this review, we summarize the current progression on pRCC in molecular level. Our findings highlight the need for molecular markers to accurately subtype pRCC and may lead to the development of more targeted agents and better patient stratification in clinical trials for pRCC. Areas covered: This review highlights the need for molecular markers to accurately subtype PRCC and may lead to the development of more targeted agents and better patient stratification in clinical trials for pRCC. Expert commentary: There are mainly two subtypes of pRCC based on histology. However, little is known about the genetic characterization of the sporadic forms of pRCC and there are currently no standard forms of therapy for patients with advanced disease. Both MET inhibitors and immunotherapy may be effective in advanced pRCC treatment. Therefore, understanding the molecular basis of pRCC and identifying the main goal of treatment is crucial for the selection of the best strategy.
Collapse
Affiliation(s)
- Qiwei Chen
- a Department of Urology , First Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Liang Cheng
- b Department of Pathology and Laboratory Medicine , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Quanlin Li
- a Department of Urology , First Affiliated Hospital of Dalian Medical University , Dalian , China
| |
Collapse
|