1
|
Whitehall JC, Smith ALM, Greaves LC. Mitochondrial DNA Mutations and Ageing. Subcell Biochem 2023; 102:77-98. [PMID: 36600130 DOI: 10.1007/978-3-031-21410-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondria are subcellular organelles present in most eukaryotic cells which play a significant role in numerous aspects of cell biology. These include carbohydrate and fatty acid metabolism to generate cellular energy through oxidative phosphorylation, apoptosis, cell signalling, haem biosynthesis and reactive oxygen species production. Mitochondrial dysfunction is a feature of many human ageing tissues, and since the discovery that mitochondrial DNA mutations were a major underlying cause of changes in oxidative phosphorylation capacity, it has been proposed that they have a role in human ageing. However, there is still much debate on whether mitochondrial DNA mutations play a causal role in ageing or are simply a consequence of the ageing process. This chapter describes the structure of mammalian mitochondria, and the unique features of mitochondrial genetics, and reviews the current evidence surrounding the role of mitochondrial DNA mutations in the ageing process. It then focusses on more recent discoveries regarding the role of mitochondrial dysfunction in stem cell ageing and age-related inflammation.
Collapse
Affiliation(s)
- Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Anna L M Smith
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
2
|
Li D, Liang C, Zhang T, Marley JL, Zou W, Lian M, Ji D. Pathogenic mitochondrial DNA 3243A>G mutation: From genetics to phenotype. Front Genet 2022; 13:951185. [PMID: 36276941 PMCID: PMC9582660 DOI: 10.3389/fgene.2022.951185] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial DNA (mtDNA) m.3243A>G mutation is one of the most common pathogenic mtDNA variants, showing complex genetics, pathogenic molecular mechanisms, and phenotypes. In recent years, the prevention of mtDNA-related diseases has trended toward precision medicine strategies, such as preimplantation genetic diagnosis (PGD) and mitochondrial replacement therapy (MRT). These techniques are set to allow the birth of healthy children, but clinical implementation relies on thorough insights into mtDNA genetics. The genotype and phenotype of m.3243A>G vary greatly from mother to offspring, which compromises genetic counseling for the disease. This review is the first to systematically elaborate on the characteristics of the m.3243A>G mutation, from genetics to phenotype and the relationship between them, as well as the related influencing factors and potential strategies for preventing disease. These perceptions will provide clarity for clinicians providing genetic counseling to m.3243A>G patients.
Collapse
Affiliation(s)
- Danyang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Chunmei Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Tao Zhang
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jordan Lee Marley
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Muqing Lian
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- *Correspondence: Dongmei Ji,
| |
Collapse
|
3
|
mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences. Life (Basel) 2021; 11:life11070633. [PMID: 34209862 PMCID: PMC8307225 DOI: 10.3390/life11070633] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is predominately uniparentally transmitted. This results in organisms with a single type of mtDNA (homoplasmy), but two or more mtDNA haplotypes have been observed in low frequency in several species (heteroplasmy). In this review, we aim to highlight several aspects of heteroplasmy regarding its origin and its significance on mtDNA function and evolution, which has been progressively recognized in the last several years. Heteroplasmic organisms commonly occur through somatic mutations during an individual’s lifetime. They also occur due to leakage of paternal mtDNA, which rarely happens during fertilization. Alternatively, heteroplasmy can be potentially inherited maternally if an egg is already heteroplasmic. Recent advances in sequencing techniques have increased the ability to detect and quantify heteroplasmy and have revealed that mitochondrial DNA copies in the nucleus (NUMTs) can imitate true heteroplasmy. Heteroplasmy can have significant evolutionary consequences on the survival of mtDNA from the accumulation of deleterious mutations and for its coevolution with the nuclear genome. Particularly in humans, heteroplasmy plays an important role in the emergence of mitochondrial diseases and determines the success of the mitochondrial replacement therapy, a recent method that has been developed to cure mitochondrial diseases.
Collapse
|
4
|
Smith AL, Whitehall JC, Bradshaw C, Gay D, Robertson F, Blain AP, Hudson G, Pyle A, Houghton D, Hunt M, Sampson JN, Stamp C, Mallett G, Amarnath S, Leslie J, Oakley F, Wilson L, Baker A, Russell OM, Johnson R, Richardson CA, Gupta B, McCallum I, McDonald SA, Kelly S, Mathers JC, Heer R, Taylor RW, Perkins ND, Turnbull DM, Sansom OJ, Greaves LC. Age-associated mitochondrial DNA mutations cause metabolic remodelling that contributes to accelerated intestinal tumorigenesis. NATURE CANCER 2020; 1:976-989. [PMID: 33073241 PMCID: PMC7116185 DOI: 10.1038/s43018-020-00112-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 01/15/2023]
Abstract
Oxidative phosphorylation (OXPHOS) defects caused by somatic mitochondrial DNA (mtDNA) mutations increase with age in human colorectal epithelium and are prevalent in colorectal tumours, but whether they actively contribute to tumorigenesis remains unknown. Here we demonstrate that mtDNA mutations causing OXPHOS defects are enriched during the human adenoma/carcinoma sequence, suggesting they may confer a metabolic advantage. To test this we deleted the tumour suppressor Apc in OXPHOS deficient intestinal stem cells in mice. The resulting tumours were larger than in control mice due to accelerated cell proliferation and reduced apoptosis. We show that both normal crypts and tumours undergo metabolic remodelling in response to OXPHOS deficiency by upregulating the de novo serine synthesis pathway (SSP). Moreover, normal human colonic crypts upregulate the SSP in response to OXPHOS deficiency prior to tumorigenesis. Our data show that age-associated OXPHOS deficiency causes metabolic remodelling that can functionally contribute to accelerated intestinal cancer development.
Collapse
Affiliation(s)
- Anna Lm Smith
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Carla Bradshaw
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Gay
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow. G61 1QH, UK
| | - Fiona Robertson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Alasdair P Blain
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Houghton
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Matthew Hunt
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - James N Sampson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig Stamp
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Grace Mallett
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Shoba Amarnath
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura Wilson
- Newcastle Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Angela Baker
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Oliver M Russell
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Riem Johnson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Claire A Richardson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Bhavana Gupta
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Iain McCallum
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Stuart Ac McDonald
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Seamus Kelly
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - John C Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH
| | - Rakesh Heer
- Newcastle Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Neil D Perkins
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow. G61 1QH, UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
5
|
Affiliation(s)
- Hiran A Prag
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
6
|
Liberles DA, Chang B, Geiler-Samerotte K, Goldman A, Hey J, Kaçar B, Meyer M, Murphy W, Posada D, Storfer A. Emerging Frontiers in the Study of Molecular Evolution. J Mol Evol 2020; 88:211-226. [PMID: 32060574 PMCID: PMC7386396 DOI: 10.1007/s00239-020-09932-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A collection of the editors of Journal of Molecular Evolution have gotten together to pose a set of key challenges and future directions for the field of molecular evolution. Topics include challenges and new directions in prebiotic chemistry and the RNA world, reconstruction of early cellular genomes and proteins, macromolecular and functional evolution, evolutionary cell biology, genome evolution, molecular evolutionary ecology, viral phylodynamics, theoretical population genomics, somatic cell molecular evolution, and directed evolution. While our effort is not meant to be exhaustive, it reflects research questions and problems in the field of molecular evolution that are exciting to our editors.
Collapse
Affiliation(s)
- David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| | - Belinda Chang
- Department of Ecology and Evolutionary Biology and Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Kerry Geiler-Samerotte
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Aaron Goldman
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Jody Hey
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - Betül Kaçar
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Michelle Meyer
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - William Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - David Posada
- Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
7
|
Youle RJ. Mitochondria-Striking a balance between host and endosymbiont. Science 2019; 365:365/6454/eaaw9855. [PMID: 31416937 DOI: 10.1126/science.aaw9855] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria are organelles with their own genome that arose from α-proteobacteria living within single-celled Archaea more than a billion years ago. This step of endosymbiosis offered tremendous opportunities for energy production and metabolism and allowed the evolution of fungi, plants, and animals. However, less appreciated are the downsides of this endosymbiosis. Coordinating gene expression between the mitochondrial genomes and the nuclear genome is imprecise and can lead to proteotoxic stress. The clonal reproduction of mitochondrial DNA requires workarounds to avoid mutational meltdown. In metazoans that developed innate immune pathways to thwart bacterial and viral infections, mitochondrial components can cross-react with pathogen sensors and invoke inflammation. Here, I focus on the numerous and elegant quality control processes that compensate for or mitigate these challenges of endosymbiosis.
Collapse
Affiliation(s)
- Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Abstract
Apart from reliable management of the "powerhouse" of the cell, mitochondria faithfully orchestrate a diverse array of important and critical functions in governing cellular signaling, apoptosis, autophagy, mitophagy and innate and adaptive immune system. Introduction of instability and imbalance in the mitochondrial own genome or the nuclear encoded mitochondrial proteome would result in the manifestation of various diseases through alterations in the oxidative phosphorylation system (OXPHOS) and nuclear-mitochondria retrograde signaling. Understanding mitochondrial biology and dynamism are thus of paramount importance to develop strategies to prevent or treat various diseases caused due to mitochondrial alterations.
Collapse
Affiliation(s)
- Santanu Dasgupta
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| |
Collapse
|
9
|
Filograna R, Koolmeister C, Upadhyay M, Pajak A, Clemente P, Wibom R, Simard ML, Wredenberg A, Freyer C, Stewart JB, Larsson NG. Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. SCIENCE ADVANCES 2019; 5:eaav9824. [PMID: 30949583 PMCID: PMC6447380 DOI: 10.1126/sciadv.aav9824] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Heteroplasmic mtDNA mutations typically act in a recessive way and cause mitochondrial disease only if present above a certain threshold level. We have experimentally investigated to what extent the absolute levels of wild-type (WT) mtDNA influence disease manifestations by manipulating TFAM levels in mice with a heteroplasmic mtDNA mutation in the tRNAAla gene. Increase of total mtDNA levels ameliorated pathology in multiple tissues, although the levels of heteroplasmy remained the same. A reduction in mtDNA levels worsened the phenotype in postmitotic tissues, such as heart, whereas there was an unexpected beneficial effect in rapidly proliferating tissues, such as colon, because of enhanced clonal expansion and selective elimination of mutated mtDNA. The absolute levels of WT mtDNA are thus an important determinant of the pathological manifestations, suggesting that pharmacological or gene therapy approaches to selectively increase mtDNA copy number provide a potential treatment strategy for human mtDNA mutation disease.
Collapse
Affiliation(s)
- R. Filograna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - C. Koolmeister
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - M. Upadhyay
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - A. Pajak
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - P. Clemente
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - R. Wibom
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - M. L. Simard
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - A. Wredenberg
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - C. Freyer
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - J. B. Stewart
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - N. G. Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
- Corresponding author.
| |
Collapse
|
10
|
Palozzi JM, Jeedigunta SP, Hurd TR. Mitochondrial DNA Purifying Selection in Mammals and Invertebrates. J Mol Biol 2018; 430:4834-4848. [DOI: 10.1016/j.jmb.2018.10.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/20/2018] [Accepted: 10/25/2018] [Indexed: 01/19/2023]
|
11
|
Shibata D. Somatic cell evolution: how to improve with age. J Pathol 2018; 247:3-5. [PMID: 30246391 DOI: 10.1002/path.5173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 11/09/2022]
Abstract
A recent article published in this journal illuminates a rare example of somatic evolution where cells improve rather than deteriorate with age. In mitotic intestinal crypts, stem cells with higher levels of a deleterious heteroplasmic germline mitochondrial mutation are purged through time, leading to crypts without the mutation. Similar somatic mitochondrial mutations are not purged from crypts, indicating that special conditions are needed to improve with age. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Darryl Shibata
- Department of Pathology, University of Southern California - Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|