1
|
Liu H, Shen W, Liu W, Yang Z, Yin D, Xiao C. From oncolytic peptides to oncolytic polymers: A new paradigm for oncotherapy. Bioact Mater 2024; 31:206-230. [PMID: 37637082 PMCID: PMC10450358 DOI: 10.1016/j.bioactmat.2023.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Traditional cancer therapy methods, especially those directed against specific intracellular targets or signaling pathways, are not powerful enough to overcome tumor heterogeneity and therapeutic resistance. Oncolytic peptides that can induce membrane lysis-mediated cancer cell death and subsequent anticancer immune responses, has provided a new paradigm for cancer therapy. However, the clinical application of oncolytic peptides is always limited by some factors such as unsatisfactory bio-distribution, poor stability, and off-target toxicity. To overcome these limitations, oncolytic polymers stand out as prospective therapeutic materials owing to their high stability, chemical versatility, and scalable production capacity, which has the potential to drive a revolution in cancer treatment. This review provides an overview of the mechanism and structure-activity relationship of oncolytic peptides. Then the oncolytic peptides-mediated combination therapy and the nano-delivery strategies for oncolytic peptides are summarized. Emphatically, the current research progress of oncolytic polymers has been highlighted. Lastly, the challenges and prospects in the development of oncolytic polymers are discussed.
Collapse
Affiliation(s)
- Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Zexin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
2
|
Cárdenas-Martínez K, Barragán-Cárdenas AC, de la Rosa-Arbeláez M, Parra-Giraldo CM, Ochoa-Zarzosa A, Lopez-Meza JE, Rivera-Monroy ZJ, Fierro-Medina R, García-Castañeda JE. Evaluating the In Vitro Activity and Safety of Modified LfcinB Peptides as Potential Colon Anticancer Agents: Cell Line Studies and Insect-Based Toxicity Assessments. ACS OMEGA 2023; 8:37948-37957. [PMID: 37867694 PMCID: PMC10586019 DOI: 10.1021/acsomega.3c03455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 10/24/2023]
Abstract
Anticancer peptides are increasingly being considered as alternative treatments for cancer due to their potency, selectivity, and low toxicity. Previously, the peptide LfcinB (21-25)Pal showed in vitro anticancer effects against the Caco-2 colon cancer cell line (half-maximal inhibitory concentration (IC50): 86 μM). In this study, we developed modifications to the peptide sequence to increase its anticancer activity. Sequence modifications were made such as the inclusion of amino hexanoic acid (Ahx), N-terminal biotinylation, acetylation, and substitutions of Orn for Arg and/or d-Arg by l-Arg. The molecules were synthesized using manual solid-phase peptide synthesis (SPPS), and their synthetic feasibility (SAScore) ranged from 6.2 to 7.6. The chromatographic purities of the synthesized peptides were greater than 89%. We found that Ahx-RWQWRWQWR and RWQWRWQW-Orn showed activity against both Caco-2 and HT-29 cell lines and decreased IC50 values by approx. 50% in Caco-2 cells (IC50: 40 μM) when compared to the parent peptide RWQWRWQWR. Moreover, the modified peptides demonstrated lower hemolytic effects, with values <10% at 200 μg/mL. Toxicity was assessed using the Galleria mellonella model and the half-maximal lethal dose (LD50) for the best peptides was >100 mg/kg, indicating that their toxicity is classified as moderately toxic or lower. In contrast, cisplatin showed an LD50 of 13 mg/Kg. The designed anticancer peptides presented good in vitro activity and low toxicity, making them promising molecules for future drug development studies.
Collapse
Affiliation(s)
- Karen
J. Cárdenas-Martínez
- Department
of Pharmacy, Department of Biotechnology, Deparment of Chemistry, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Andrea C. Barragán-Cárdenas
- Department
of Pharmacy, Department of Biotechnology, Deparment of Chemistry, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Manuela de la Rosa-Arbeláez
- Department
of Pharmacy, Department of Biotechnology, Deparment of Chemistry, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Claudia M. Parra-Giraldo
- Proteomics
and Human Mycosis Unit, Infectious Diseases Research Group, Department
of Microbiology, Pontificia Universidad
Javeriana, Bogotá 110231, Colombia
| | - Alejandra Ochoa-Zarzosa
- Multidisciplinary
Centre for Studies in Biotechnology, Universidad
Michoacana de San Nicolas de Hidalgo, Km 9.5, Carretera Morelia, Zinapécuaro, Tarímbaro 58880, México
| | - Joel E. Lopez-Meza
- Multidisciplinary
Centre for Studies in Biotechnology, Universidad
Michoacana de San Nicolas de Hidalgo, Km 9.5, Carretera Morelia, Zinapécuaro, Tarímbaro 58880, México
| | - Zuly J. Rivera-Monroy
- Department
of Pharmacy, Department of Biotechnology, Deparment of Chemistry, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Ricardo Fierro-Medina
- Department
of Pharmacy, Department of Biotechnology, Deparment of Chemistry, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Javier E. García-Castañeda
- Department
of Pharmacy, Department of Biotechnology, Deparment of Chemistry, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| |
Collapse
|
3
|
An YF, Pu N, Jia JB, Wang WQ, Liu L. Therapeutic advances targeting tumor angiogenesis in pancreatic cancer: Current dilemmas and future directions. Biochim Biophys Acta Rev Cancer 2023; 1878:188958. [PMID: 37495194 DOI: 10.1016/j.bbcan.2023.188958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies, which is generally resistant to various treatments. Tumor angiogenesis is deemed to be a pivotal rate-determining step for tumor growth and metastasis. Therefore, anti-angiogenetic therapy is a rational strategy to treat various cancers. However, numerous clinical trials on anti-angiogenetic therapies for PC are overwhelmingly disappointing. The unique characteristics of tumor blood vessels in PC, which are desperately lacking and highly compressed by the dense desmoplastic stroma, are reconsidered to explore some optimized strategies. In this review, we mainly focus on its specific characteristics of tumor blood vessels, discuss the current dilemmas of anti-angiogenic therapy in PC and their underlying mechanisms. Furthermore, we point out the future directions, including remodeling the abnormal vasculature or even reshaping the whole tumor microenvironment in which they are embedded to improve tumor microcirculation, and then create therapeutic vulnerabilities to the current available therapeutic strategies.
Collapse
Affiliation(s)
- Yan-Fei An
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Basic Medicine, Chang Zhi Medical College, Changzhi 046000,China; Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jin-Bin Jia
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Cruz EMS, Concato VM, de Morais JMB, Silva TF, Inoue FSR, de Souza Cremer M, Bidóia DL, Machado RRB, de Almeida Chuffa LG, Mantovani MS, Panis C, Pavanelli WR, Seiva FRF. Melatonin modulates the Warburg effect and alters the morphology of hepatocellular carcinoma cell line resulting in reduced viability and migratory potential. Life Sci 2023; 319:121530. [PMID: 36863486 DOI: 10.1016/j.lfs.2023.121530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
AIMS Hepatocellular Carcinoma (HCC) is a primary neoplasm derived from hepatocytes with low responsiveness and recurrent chemoresistance. Melatonin is an alternative agent that may be helpful in treating HCC. We aimed to study in HuH 7.5 cells whether melatonin treatment exerts antitumor effects and, if so, what cellular responses are induced and involved. MAIN METHODS We evaluated the effects of melatonin on cell cytotoxicity and proliferation, colony formation, morphological and immunohistochemical aspects, and on glucose consumption and lactate release. KEY FINDINGS Melatonin reduced cell motility and caused lamellar breakdown, membrane damage, and reduction in microvillus. Immunofluorescence analysis revealed that melatonin reduced TGF and N-cadherin expression, which was further associated with inhibition of epithelial-mesenchymal transition process. In relation to the Warburg-type metabolism, melatonin reduced glucose uptake and lactate production by modulating intracellular lactate dehydrogenase activity. SIGNIFICANCE Our results indicate that melatonin can act upon pyruvate/lactate metabolism, preventing the Warburg effect, which may reflect in the cell architecture. We demonstrated the direct cytotoxic and antiproliferative effect of melatonin on the HuH 7.5 cell line, and suggest that melatonin is a promising candidate to be further tested as an adjuvant to antitumor drugs for HCC treatment.
Collapse
Affiliation(s)
- Ellen Mayara Souza Cruz
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil
| | - Virginia Marcia Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil
| | | | | | | | - Milena de Souza Cremer
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil; Universidade Estadual do Norte do Paraná (UENP), Centro de Ciências Biológicas, Bandeirantes, PR, Brazil
| | - Danielle Lazarin Bidóia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil
| | - Rayanne Regina Beltrame Machado
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá (UEM), Brazil
| | | | | | - Carolina Panis
- Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR, Brazil
| | | |
Collapse
|
5
|
Song C, Chen X, Ma J, Buhe H, Liu Y, Saiyin H, Ma L. Construction of a pancreatic cancer nerve invasion system using brain and pancreatic cancer organoids. J Tissue Eng 2023; 14:20417314221147113. [PMID: 36636100 PMCID: PMC9829995 DOI: 10.1177/20417314221147113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023] Open
Abstract
Pancreatic cancer (PC) is a fatal malignancy in the human abdominal cavity that prefers to invade the surrounding nerve/nerve plexus and even the spine, causing devastating and unbearable pain. The limitation of available in vitro models restricts revealing the molecular mechanism of pain and screening pain-relieving strategies to improve the quality of life of end-stage PC patients. Here, we report a PC nerve invasion model that merged human brain organoids (hBrO) with mouse PC organoids (mPCO). After merging hBrOs with mPCOs, we monitored the structural crosstalk, growth patterns, and mutual interaction dynamics of hBrO with mPCOs for 7 days. After 7 days, we also analyzed the pathophysiological statuses, including proliferation, apoptosis and inflammation. The results showed that mPCOs tend to approximate and intrude into the hBrOs, merge entirely into the hBrOs, and induce the retraction/shrinking of neuronal projections that protrude from the margin of the hBrOs. The approximating of mPCOs to hBrOs accelerated the proliferation of neuronal progenitor cells, intensified the apoptosis of neurons in the hBrOs, and increased the expression of inflammatory molecules in hBrOs, including NLRP3, IL-8, and IL-1β. Our system pathophysiologically replicated the nerve invasions in mouse GEMM (genetically engineered mouse model) primary and human PCs and might have the potential to be applied to reveal the molecular mechanism of nerve invasion and screen therapeutic strategies in PCs.
Collapse
Affiliation(s)
- Chenyun Song
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Xinyu Chen
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Jixin Ma
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Hada Buhe
- The School of Pharmacy, Fujian Medical
University, Fuzhou, People’s Republic of China
| | - Yang Liu
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Hexige Saiyin
- State Key Laboratory of Genetic
Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic
of China,Hexige Saiyin, State Key Laboratory of
Genetic Engineering, School of Life Sciences, Fudan University, Songhu Road,
Shanghai 200438, People’s Republic of China.
| | - Lixiang Ma
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| |
Collapse
|
6
|
Buhe H, Ma JX, Ye FZ, Song CY, Chen XY, Liu Y, Lin H, Han X, Ma LX, Saiyin H. IDO-1 inhibitor INCB24360 elicits distant metastasis of basal extruded cancer cells in pancreatic ductal adenocarcinoma. Acta Pharmacol Sin 2022; 44:1277-1289. [DOI: 10.1038/s41401-022-01035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractNeoplastic cells of non-immunogenic pancreatic ductal adenocarcinoma (PDAC) express indoleamine 2,3-dioxygenase 1 (IDO-1), an immunosuppressive enzyme. The metabolites of IDO-1 in cancers provide one-carbon units that annihilate effector T cells, and recruit immunosuppressive cells. In this study we investigated how IDO-1 affected the neoplastic cell behaviors in PDACs. Using multiple markers co-labeling method in 45-µm-thick tissue sections, we showed that IDO-1 expression was uniquely increased in the neoplastic cells extruded from ducts’ apical or basal domain, but decreased in lymph metastatic cells. IDO-1+ extruding neoplastic cells displayed increased vimentin expression and decreased cytokeratin expression in PDACs, characteristics of epithelial-mesenchymal transition (EMT). However, IDO-1 expression was uncorrelated with immunosuppressive infiltrates and clinicopathological characteristics of grim outcome. We replicated basal extrusion with EMT in murine KPIC PDAC organoids by long-term IFN-γ induction; application of IDO-1 inhibitor INCB24360 or 1-MT partially reversed basal extrusion coupled EMT. Ido-1 deletion in KPIC cells deprived its tumorigenicity in immunocompetent mice, decreased cellular proliferation and macropinocytic ability, and increased immunogenicity. KPIC organoids with IFN-γ-induced basal extrusion did not accelerate distant metastasis, whereas inhibition IFN-γ-induced IDO-1 with INB24360 but not 1-MT in KPIC organoids elicited liver metastasis of subcutaneous KPIC organoid tumors, suggesting that lower IDO-1 activity accelerated distant metastasis, whereas IDO-1 was indispensable for tumorigenicity of PDAC cells and supports the survival of extruding cells.
Collapse
|
7
|
Manrique-Moreno M, Santa-González G, Gallego V. Bioactive cationic peptides as potential agents for breast cancer treatment. Biosci Rep 2021; 41:BSR20211218C. [PMID: 34874400 PMCID: PMC8655503 DOI: 10.1042/bsr20211218c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Breast cancer continues to affect millions of women worldwide, and the number of new cases dramatically increases every year. The physiological causes behind the disease are still not fully understood. One in every 100 cases can occur in men, and although the frequency is lower than among women, men tend to have a worse prognosis of the disease. Various therapeutic alternatives to combat the disease are available. These depend on the type and progress of the disease, and include chemotherapy, radiotherapy, surgery, and cancer immunotherapy. However, there are several well-reported side effects of these treatments that have a significant impact on life quality, and patients either relapse or are refractory to treatment. This makes it necessary to develop new therapeutic strategies. One promising initiative are bioactive peptides, which have emerged in recent years as a family of compounds with an enormous number of clinical applications due to their broad spectrum of activity. They are widely distributed in several organisms as part of their immune system. The antitumoral activity of these peptides lies in a nonspecific mechanism of action associated with their interaction with cancer cell membranes, inducing, through several routes, bilayer destabilization and cell death. This review provides an overview of the literature on the evaluation of cationic peptides as potential agents against breast cancer under different study phases. First, physicochemical characteristics such as the primary structure and charge are presented. Secondly, information about dosage, the experimental model used, and the mechanism of action proposed for the peptides are discussed.
Collapse
Affiliation(s)
- Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Antioquia
| | - Gloria A. Santa-González
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnólogico Metropolitano, A.A. 54959, Medellin, Colombia
| | - Vanessa Gallego
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Antioquia
| |
Collapse
|