1
|
Sharrow AC, Megill E, Chen AJ, Farooqi A, Tangudu NK, Uboveja A, McGonigal S, Hempel N, Snyder NW, Buckanovich RJ, Aird KM. Acetate drives ovarian cancer quiescence via ACSS2-mediated acetyl-CoA production. Mol Metab 2024; 89:102031. [PMID: 39304063 PMCID: PMC11462069 DOI: 10.1016/j.molmet.2024.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
Quiescence is a reversible cell cycle exit traditionally thought to be associated with a metabolically inactive state. Recent work in muscle cells indicates that metabolic reprogramming is associated with quiescence. Whether metabolic changes occur in cancer to drive quiescence is unclear. Using a multi-omics approach, we found that the metabolic enzyme ACSS2, which converts acetate into acetyl-CoA, is both highly upregulated in quiescent ovarian cancer cells and required for their survival. Indeed, quiescent ovarian cancer cells have increased levels of acetate-derived acetyl-CoA, confirming increased ACSS2 activity in these cells. Furthermore, either inducing ACSS2 expression or supplementing cells with acetate was sufficient to induce a reversible quiescent cell cycle exit. RNA-Seq of acetate treated cells confirmed negative enrichment in multiple cell cycle pathways as well as enrichment of genes in a published G0 gene signature. Finally, analysis of patient data showed that ACSS2 expression is upregulated in tumor cells from ascites, which are thought to be more quiescent, compared to matched primary tumors. Additionally, high ACSS2 expression is associated with platinum resistance and worse outcomes. Together, this study points to a previously unrecognized ACSS2-mediated metabolic reprogramming that drives quiescence in ovarian cancer. As chemotherapies to treat ovarian cancer, such as platinum, have increased efficacy in highly proliferative cells, our data give rise to the intriguing question that metabolically-driven quiescence may affect therapeutic response.
Collapse
Affiliation(s)
- Allison C Sharrow
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Emily Megill
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Amanda J Chen
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Afifa Farooqi
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naveen Kumar Tangudu
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Apoorva Uboveja
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Ronald J Buckanovich
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Katherine M Aird
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Sharrow AC, Megill E, Chen AJ, Farooqi A, McGonigal S, Hempel N, Snyder NW, Buckanovich RJ, Aird KM. Acetate drives ovarian cancer quiescence via ACSS2-mediated acetyl-CoA production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603313. [PMID: 39026889 PMCID: PMC11257583 DOI: 10.1101/2024.07.12.603313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Quiescence is a reversible cell cycle exit traditionally thought to be associated with a metabolically inactive state. Recent work in muscle cells indicates that metabolic reprogramming is associated with quiescence. Whether metabolic changes occur in cancer to drive quiescence is unclear. Using a multi-omics approach, we found that the metabolic enzyme ACSS2, which converts acetate into acetyl-CoA, is both highly upregulated in quiescent ovarian cancer cells and required for their survival. Indeed, quiescent ovarian cancer cells have increased levels of acetate-derived acetyl-CoA, confirming increased ACSS2 activity in these cells. Furthermore, either inducing ACSS2 expression or supplementing cells with acetate was sufficient to induce a reversible quiescent cell cycle exit. RNA-Seq of acetate treated cells confirmed negative enrichment in multiple cell cycle pathways as well as enrichment of genes in a published G0 gene signature. Finally, analysis of patient data showed that ACSS2 expression is upregulated in tumor cells from ascites, which are thought to be more quiescent, compared to matched primary tumors. Additionally, high ACSS2 expression is associated with platinum resistance and worse outcomes. Together, this study points to a previously unrecognized ACSS2-mediated metabolic reprogramming that drives quiescence in ovarian cancer. As chemotherapies to treat ovarian cancer, such as platinum, have increased efficacy in highly proliferative cells, our data give rise to the intriguing question that metabolically-driven quiescence may affect therapeutic response.
Collapse
Affiliation(s)
- Allison C. Sharrow
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
| | - Emily Megill
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA
| | - Amanda J. Chen
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Afifa Farooqi
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Division of Hematology/Oncology, Department of Medicine University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nathaniel W. Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA
| | - Ronald J. Buckanovich
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Katherine M. Aird
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
3
|
Collignon E. Unveiling the role of cellular dormancy in cancer progression and recurrence. Curr Opin Oncol 2024; 36:74-81. [PMID: 38193374 DOI: 10.1097/cco.0000000000001013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW Cellular dormancy is a major contributor to cancer progression and recurrence. This review explores recent findings on the molecular mechanisms implicated in cancer dormancy and investigates potential strategies to improve therapeutic interventions. RECENT FINDINGS Research on cancer dormancy reveals a complex and multifaceted phenomenon. Providing a latent reservoir of tumor cells with reduced proliferation and enhanced drug-tolerance, dormant cancer cells emerge from a clonally diverse population after therapy or at metastatic sites. These cells exhibit distinct transcriptional and epigenetic profiles, involving the downregulation of Myc and mechanistic target of rapamycin (mTOR) pathways, and the induction of autophagy. Senescence traits, under the control of factors such as p53, also contribute significantly. The tumor microenvironment can either promote or prevent dormancy establishment, notably through the involvement of T and NK cells within the dormant tumor niche. Strategies to combat dormancy-related relapse include direct elimination of dormant tumor cells, sustaining dormancy to prolong survival, or awakening dormant cells to re-sensitize them to antiproliferative drugs. SUMMARY Improving our understanding of cancer dormancy at primary and secondary sites provides valuable insights into patient care and relapse prevention.
Collapse
Affiliation(s)
- Evelyne Collignon
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC) and Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
4
|
Kang H, Hwang S, Kang H, Jo A, Lee JM, Choi JK, An HJ, Lee H. Altered tumor signature and T-cell profile after chemotherapy reveal new therapeutic opportunities in high-grade serous ovarian carcinoma. Cancer Sci 2024; 115:989-1000. [PMID: 38226451 PMCID: PMC10921005 DOI: 10.1111/cas.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Chemotherapy combined with debulking surgery is the standard treatment protocol for high-grade serous ovarian carcinoma (HGSOC). Nonetheless, a significant number of patients encounter relapse due to the development of chemotherapy resistance. To better understand and address this resistance, we conducted a comprehensive study investigating the transcriptional alterations at the single-cell resolution in tissue samples from patients with HGSOC, using single-cell RNA sequencing and T-cell receptor sequencing techniques. Our analyses unveiled notable changes in the tumor signatures after chemotherapy, including those associated with epithelial-mesenchymal transition and cell cycle arrest. Within the immune compartment, we observed alterations in the T-cell profiles, characterized by naïve or pre-exhausted populations following chemotherapy. This phenotypic change was further supported by the examination of adjoining T-cell receptor clonotypes in paired longitudinal samples. These findings underscore the profound impact of chemotherapy on reshaping the tumor landscape and the immune microenvironment. This knowledge may provide clues for the development of future therapeutic strategies to combat treatment resistance in HGSOC.
Collapse
Affiliation(s)
- Huiram Kang
- Department of Microbiology, College of MedicineThe Catholic University of KoreaSeoulKorea
- Department of Biomedicine and Health Sciences, Graduate SchoolThe Catholic University of KoreaSeoulKorea
| | - Sohyun Hwang
- Department of Pathology, CHA Bundang Medical CenterCHA UniversitySeongnam‐siKorea
- Department of CHA Future Medicine Research InstituteCHA Bundang Medical CenterSeongnam‐siGyeonggi‐doSouth Korea
| | - Haeyoun Kang
- Department of Pathology, CHA Bundang Medical CenterCHA UniversitySeongnam‐siKorea
| | - Areum Jo
- Department of Microbiology, College of MedicineThe Catholic University of KoreaSeoulKorea
- Department of Biomedicine and Health Sciences, Graduate SchoolThe Catholic University of KoreaSeoulKorea
| | - Ji Min Lee
- Department of CHA Future Medicine Research InstituteCHA Bundang Medical CenterSeongnam‐siGyeonggi‐doSouth Korea
| | | | - Hee Jung An
- Department of Pathology, CHA Bundang Medical CenterCHA UniversitySeongnam‐siKorea
- Department of CHA Future Medicine Research InstituteCHA Bundang Medical CenterSeongnam‐siGyeonggi‐doSouth Korea
| | - Hae‐Ock Lee
- Department of Microbiology, College of MedicineThe Catholic University of KoreaSeoulKorea
- Department of Biomedicine and Health Sciences, Graduate SchoolThe Catholic University of KoreaSeoulKorea
| |
Collapse
|
5
|
Chen HL, Jin WL. Diapause-like Drug-Tolerant Persister State: The Key to Nirvana Rebirth. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:228. [PMID: 38399515 PMCID: PMC10890489 DOI: 10.3390/medicina60020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Cancer is one of the leading causes of death in the world. Various drugs have been developed to eliminate it but to no avail because a tumor can go into dormancy to avoid therapy. In the past few decades, tumor dormancy has become a popular topic in cancer therapy. Recently, there has been an important breakthrough in the study of tumor dormancy. That is, cancer cells can enter a reversible drug-tolerant persister (DTP) state to avoid therapy, but no exact mechanism has been found. The study of the link between the DTP state and diapause seems to provide an opportunity for a correct understanding of the mechanism of the DTP state. Completely treating cancer and avoiding dormancy by targeting the expression of key genes in diapause are possible. This review delves into the characteristics of the DTP state and its connection with embryonic diapause, and possible treatment strategies are summarized. The authors believe that this review will promote the development of cancer therapy.
Collapse
Affiliation(s)
- Han-Lin Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wei-Lin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Cai HB, Zhao MY, Li XH, Li YQ, Yu TH, Wang CZ, Wang LN, Xu WY, Liang B, Cai YP, Zhang F, Hong WM. Single cell sequencing revealed the mechanism of CRYAB in glioma and its diagnostic and prognostic value. Front Immunol 2024; 14:1336187. [PMID: 38274814 PMCID: PMC10808695 DOI: 10.3389/fimmu.2023.1336187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Background We explored the characteristics of single-cell differentiation data in glioblastoma and established prognostic markers based on CRYAB to predict the prognosis of glioblastoma patients. Aberrant expression of CRYAB is associated with invasive behavior in various tumors, including glioblastoma. However, the specific role and mechanisms of CRYAB in glioblastoma are still unclear. Methods We assessed RNA-seq and microarray data from TCGA and GEO databases, combined with scRNA-seq data on glioma patients from GEO. Utilizing the Seurat R package, we identified distinct survival-related gene clusters in the scRNA-seq data. Prognostic pivotal genes were discovered through single-factor Cox analysis, and a prognostic model was established using LASSO and stepwise regression algorithms. Moreover, we investigated the predictive potential of these genes in the immune microenvironment and their applicability in immunotherapy. Finally, in vitro experiments confirmed the functional significance of the high-risk gene CRYAB. Results By analyzing the ScRNA-seq data, we identified 28 cell clusters representing seven cell types. After dimensionality reduction and clustering analysis, we obtained four subpopulations within the oligodendrocyte lineage based on their differentiation trajectory. Using CRYAB as a marker gene for the terminal-stage subpopulation, we found that its expression was associated with poor prognosis. In vitro experiments demonstrated that knocking out CRYAB in U87 and LN229 cells reduced cell viability, proliferation, and invasiveness. Conclusion The risk model based on CRYAB holds promise in accurately predicting glioblastoma. A comprehensive study of the specific mechanisms of CRYAB in glioblastoma would contribute to understanding its response to immunotherapy. Targeting the CRYAB gene may be beneficial for glioblastoma patients.
Collapse
Affiliation(s)
- Hua-Bao Cai
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng-Yu Zhao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin-Han Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu-Qing Li
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Tian-Hang Yu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cun-Zhi Wang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Na Wang
- School of Nursing, Anhui Medical University, Hefei, China
| | - Wan-Yan Xu
- School of Nursing, Anhui Medical University, Hefei, China
| | - Bo Liang
- Department of Dermatology and Venereology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong-Ping Cai
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Fang Zhang
- School of Nursing, Anhui Medical University, Hefei, China
| | - Wen-Ming Hong
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Open Project of Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Sharrow AC, Ho M, Dua A, Buj R, Blenman KRM, Orsulic S, Buckanovich R, Aird KM, Wu L. Tumor-Associated Macrophages Expand Chemoresistant, Ovarian Cancer Stem-Like Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549067. [PMID: 37503008 PMCID: PMC10370114 DOI: 10.1101/2023.07.17.549067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The persistence of ovarian cancer stem-like cells (OvCSCs) after chemotherapy resistance has been implicated in relapse. However, the ability of these relatively quiescent cells to produce the robust tumor regrowth necessary for relapse remains an enigma. Since normal stem cells exist in a niche, and tumor-associated macrophages (TAMs) are the highest abundance immune cell within ovarian tumors, we hypothesized that TAMs may influence OvCSC proliferation. To test this, we optimized OvCSC enrichment by sphere culture and in vitro polarization of monocytes to a TAM-like M2 phenotype. Using cocultures that permitted the exchange of only soluble factors, we found that M2 macrophages increased the proliferation of sphere cells. Longer-term exposure (5-7 days) to soluble TAM factors led to retention of some stem cell features by OvCSCs but loss of others, suggesting that TAMs may support an intermediate stemness phenotype in OvCSCs. Although TAM coculture decreased the percentage of OvCSCs surviving chemotherapy, it increased the overall number. We therefore sought to determine the influence of this interaction on chemotherapy efficacy in vivo and found that inhibiting macrophages improved chemotherapy response. Comparing the gene expression changes in OvCSCs cocultured with TAMs to publicly available patient data identified 34 genes upregulated in OvCSCs by exposure to soluble TAM factors whose expression correlates with outcome. Overall, these data suggest that TAMs may influence OvCSC proliferation and impact therapeutic response.
Collapse
|
8
|
Duan Y, Xu X. A signature based on anoikis-related genes for the evaluation of prognosis, immunoinfiltration, mutation, and therapeutic response in ovarian cancer. Front Endocrinol (Lausanne) 2023; 14:1193622. [PMID: 37383389 PMCID: PMC10295154 DOI: 10.3389/fendo.2023.1193622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
Background Ovarian cancer (OC) is a highly lethal and aggressive gynecologic cancer, with an overall survival rate that has shown little improvement over the decades. Robust models are urgently needed to distinguish high-risk cases and predict reliable treatment options for OC. Although anoikis-related genes (ARGs) have been reported to contribute to tumor growth and metastasis, their prognostic value in OC remains unknown. The purpose of this study was to construct an ARG pair (ARGP)-based prognostic signature for patients with OC and elucidate the potential mechanism underlying the involvement of ARGs in OC progression. Methods The RNA-sequencing and clinical information data of OC patients were obtained from The Center Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A novel algorithm based on pairwise comparison was utilized to select ARGPs, followed by the Least Absolute Shrinkage and Selection Operator Cox analysis to construct a prognostic signature. The predictive ability of the model was validated using an external dataset, a receiver operating characteristic curve, and stratification analysis. The immune microenvironment and the proportion of immune cells were analyzed in high- and low-risk OC cases using seven algorithms. Gene set enrichment analysis and weighted gene co-expression network analysis were performed to investigate the potential mechanisms of ARGs in OC occurrence and prognosis. Results The 19-ARGP signature was identified as an important prognostic predictor for 1-, 2-, and 3-year overall survival of patients with OC. Gene function enrichment analysis showed that the high-risk group was characterized by the infiltration of immunosuppressive cells and the enrichment of adherence-related signaling pathway, suggesting that ARGs were involved in OC progression by mediating immune escape and tumor metastasis. Conclusion We constructed a reliable ARGP prognostic signature of OC, and our findings suggested that ARGs exerted a vital interplay in OC immune microenvironment and therapeutic response. These insights provided valuable information regarding the molecular mechanisms underlying this disease and potential targeted therapies.
Collapse
Affiliation(s)
- Yiqi Duan
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
El-Swaify ST, Laban M, Ali SH, Sabbour M, Refaat MA, Farrag N, Ibrahim EA, Coleman RL. Can fluorescence-guided surgery improve optimal surgical treatment for ovarian cancer? A systematic scoping review of clinical studies. Int J Gynecol Cancer 2023; 33:549-561. [PMID: 36707085 DOI: 10.1136/ijgc-2022-003846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The predicament of achieving optimal surgical intervention faced by surgeons in treating ovarian cancer has driven research into improving intra-operative detection of cancer using fluorescent materials. OBJECTIVE To provide a literature overview on the clinical use of intra-operative fluorescence-guided surgery for ovarian cancer, either for cytoreductive surgery or sentinel lymph node (SLN) biopsy. METHODS The systematic review included studies from June 2002 until October 2021 from PubMed, Web of Science, and Scopus as well as those from a search of related literature. Studies were included if they investigated the use of fluorescence-guided surgery in patients with a diagnosis of ovarian cancer. Authors charted variables related to study characteristics, patient demographics, baseline clinical characteristics, fluorescence-guided surgery material, and treatment details, and surgical, oncological, and survival outcome variables. After screening 2817 potential studies, 24 studies were included. RESULTS Studies investigating the role of fluorescence-guided surgery to visualize tumor deposits or SLN biopsy included the data of 410 and 118 patients, respectively. Six studies used indocyanine green tracer with a mean SLN detection rate of 92.3% with a pelvic and para-aortic detection rate of 94.8% and 96.7%, respectively. The sensitivity, specificity, and positive predictive value for micrometastases detection of OTL38 and 5-aminolevulinc acid at time of cytoreduction were 92.2% vs 79.8%, 67.3% vs 94.8%, and 55.8% vs 95.8%, respectively. CONCLUSION Fluorescence -guided surgery is a technique that may improve the detection rate of micrometastases and SLN identification in ovarian cancer. Further research is needed to establish whether this will lead to improved patient outcomes.
Collapse
Affiliation(s)
| | - Mohamed Laban
- Gynecologic Oncology Unit, Ain Shams University Hospitals, Cairo, Egypt
| | - Sara H Ali
- Ain Shams University Hospitals, Cairo, Egypt
| | | | | | | | - Eman A Ibrahim
- Department of Pathology, Ain Shams University Hospitals, Cairo, Egypt
| | | |
Collapse
|
10
|
Velazquez C, Orhan E, Tabet I, Fenou L, Orsetti B, Adélaïde J, Guille A, Thézénas S, Crapez E, Colombo PE, Chaffanet M, Birnbaum D, Sardet C, Jacot W, Theillet C. BRCA1-methylated triple negative breast cancers previously exposed to neoadjuvant chemotherapy form RAD51 foci and respond poorly to olaparib. Front Oncol 2023; 13:1125021. [PMID: 37007122 PMCID: PMC10064050 DOI: 10.3389/fonc.2023.1125021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundAbout 15% of Triple-Negative-Breast-Cancer (TNBC) present silencing of the BRCA1 promoter methylation and are assumed to be Homologous Recombination Deficient (HRD). BRCA1-methylated (BRCA1-Me) TNBC could, thus, be eligible to treatment based on PARP-inhibitors or Platinum salts. However, their actual HRD status is discussed, as these tumors are suspected to develop resistance after chemotherapy exposure.MethodsWe interrogated the sensitivity to olaparib vs. carboplatin of 8 TNBC Patient-Derived Xenografts (PDX) models. Four PDX corresponded to BRCA1-Me, of which 3 were previously exposed to NeoAdjuvant-Chemotherapy (NACT). The remaining PDX models corresponded to two BRCA1-mutated (BRCA1-Mut) and two BRCA1-wild type PDX that were respectively included as positive and negative controls. The HRD status of our PDX models was assessed using both genomic signatures and the functional BRCA1 and RAD51 nuclear foci formation assay. To assess HR restoration associated with olaparib resistance, we studied pairs of BRCA1 deficient cell lines and their resistant subclones.ResultsThe 3 BRCA1-Me PDX that had been exposed to NACT responded poorly to olaparib, likewise BRCA1-WT PDX. Contrastingly, 3 treatment-naïve BRCA1-deficient PDX (1 BRCA1-Me and 2 BRCA1-mutated) responded to olaparib. Noticeably, the three olaparib-responsive PDX scored negative for BRCA1- and RAD51-foci, whereas all non-responsive PDX models, including the 3 NACT-exposed BRCA1-Me PDX, scored positive for RAD51-foci. This suggested HRD in olaparib responsive PDX, while non-responsive models were HR proficient. These results were consistent with observations in cell lines showing a significant increase of RAD51-foci in olaparib-resistant subclones compared with sensitive parental cells, suggesting HR restoration in these models.ConclusionOur results thus support the notion that the actual HRD status of BRCA1-Me TNBC, especially if previously exposed to chemotherapy, may be questioned and should be verified using the BRCA1- and RAD51-foci assay.
Collapse
Affiliation(s)
- Carolina Velazquez
- Institut de Recherche en Cancérologie de Montpellier, IRCM U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
| | - Esin Orhan
- Institut de Recherche en Cancérologie de Montpellier, IRCM U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
| | - Imene Tabet
- Institut de Recherche en Cancérologie de Montpellier, IRCM U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
| | - Lise Fenou
- Institut de Recherche en Cancérologie de Montpellier, IRCM U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
| | - Béatrice Orsetti
- Institut de Recherche en Cancérologie de Montpellier, IRCM U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
| | - José Adélaïde
- Centre de Recherche en Cancérologie de Marseille, CRCM UMR1068, Aix-Marseille University, IPC, CNRS, Marseille, France
| | - Arnaud Guille
- Centre de Recherche en Cancérologie de Marseille, CRCM UMR1068, Aix-Marseille University, IPC, CNRS, Marseille, France
| | - Simon Thézénas
- Biometry Unit, Institut du Cancer de Montpellier, Montpellier, France
| | - Evelyne Crapez
- Unité de Recherche Translationnelle, Institut du Cancer de Montpellier, Montpellier, France
| | - Pierre-Emmanuel Colombo
- Institut de Recherche en Cancérologie de Montpellier, IRCM U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
- Oncological Surgery, Institut du Cancer de Montpellier, Montpellier, France
| | - Max Chaffanet
- Centre de Recherche en Cancérologie de Marseille, CRCM UMR1068, Aix-Marseille University, IPC, CNRS, Marseille, France
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille, CRCM UMR1068, Aix-Marseille University, IPC, CNRS, Marseille, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier, IRCM U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
| | - William Jacot
- Institut de Recherche en Cancérologie de Montpellier, IRCM U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
- Clinical Oncology, Institut du Cancer de Montpellier, Montpellier, France
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier, IRCM U1194, Montpellier University, INSERM, ICM, CNRS, Montpellier, France
- *Correspondence: Charles Theillet,
| |
Collapse
|
11
|
Oxidative Stress Response Biomarkers of Ovarian Cancer Based on Single-Cell and Bulk RNA Sequencing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1261039. [PMID: 36743693 PMCID: PMC9897923 DOI: 10.1155/2023/1261039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 01/28/2023]
Abstract
Background The occurrence and development of ovarian cancer (OV) are significantly influenced by increased levels of oxidative stress (OS) byproducts and the lack of an antioxidant stress repair system. Hence, it is necessary to explore the markers related to OS in OV, which can aid in predicting the prognosis and immunotherapeutic response in patients with OV. Methods The single-cell RNA-sequencing (scRNA-seq) dataset GSE146026 was retrieved from the Gene Expression Omnibus (GEO) database, and Bulk RNA-seq data were obtained from TCGA and GTEx databases. The Seurat R package and SingleR package were used to analyze scRNA-seq and to identify OS response-related clusters based on ROS markers. The "limma" R package was used to identify the differentially expressed genes (DEGs) between normal and ovarian samples. The risk model was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. The immune cell infiltration, genomic mutation, and drug sensitivity of the model were analyzed using the CIBERSORT algorithm, the "maftools," and the "pRRophetic" R packages, respectively. Results Based on scRNA-seq data, we identified 12 clusters; OS response-related genes had the strongest specificity for cluster 12. A total of 151 genes were identified from 2928 DEGs to be significantly correlated with OS response. Finally, nine prognostic genes were used to construct the risk score (RS) model. The risk score model was an independent prognostic factor for OV. The gene mutation frequency and tumor immune microenvironment in the high- and low-risk score groups were significantly different. The value of the risk score model in predicting immunotherapeutic outcomes was confirmed. Conclusions OS response-related RS model could predict the prognosis and immune responses in patients with OV and provide new strategies for cancer treatment.
Collapse
|