1
|
Gandy A, Maussion G, Al-Habyan S, Nicouleau M, You Z, Chen CXQ, Abdian N, Aprahamian N, Krahn AI, Larocque L, Durcan TM, Deneault E. An Inducible Luminescent System to Explore Parkinson's Disease-Associated Genes. Int J Mol Sci 2024; 25:9493. [PMID: 39273438 PMCID: PMC11395715 DOI: 10.3390/ijms25179493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
With emerging genetic association studies, new genes and pathways are revealed as causative factors in the development of Parkinson's disease (PD). However, many of these PD genes are poorly characterized in terms of their function, subcellular localization, and interaction with other components in cellular pathways. This represents a major obstacle towards a better understanding of the molecular causes of PD, with deeper molecular studies often hindered by a lack of high-quality, validated antibodies for detecting the corresponding proteins of interest. In this study, we leveraged the nanoluciferase-derived LgBiT-HiBiT system by generating a cohort of tagged PD genes in both induced pluripotent stem cells (iPSCs) and iPSC-derived neuronal cells. To promote luminescence signals within cells, a master iPSC line was generated, in which LgBiT expression is under the control of a doxycycline-inducible promoter. LgBiT could bind to HiBiT when present either alone or when tagged onto different PD-associated proteins encoded by the genes GBA1, GPNMB, LRRK2, PINK1, PRKN, SNCA, VPS13C, and VPS35. Several HiBiT-tagged proteins could already generate luminescence in iPSCs in response to the doxycycline induction of LgBiT, with the enzyme glucosylceramidase beta 1 (GCase), encoded by GBA1, being one such example. Moreover, the GCase chaperone ambroxol elicited an increase in the luminescence signal in HiBiT-tagged GBA1 cells, correlating with an increase in the levels of GCase in dopaminergic cells. Taken together, we have developed and validated a Doxycycline-inducible luminescence system to serve as a sensitive assay for the quantification, localization, and activity of HiBiT-tagged PD-associated proteins with reliable sensitivity and efficiency.
Collapse
Affiliation(s)
- Anelya Gandy
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Gilles Maussion
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Sara Al-Habyan
- Centre for Oncology, Radiopharmaceuticals and Research (CORR), Biologic and Radiopharmaceutical Drugs Directorate (BRDD), Health Products and Food Branch (HPFB), Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Michael Nicouleau
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Zhipeng You
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Carol X-Q Chen
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Narges Abdian
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Nathalia Aprahamian
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Andrea I Krahn
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Louise Larocque
- Centre for Oncology, Radiopharmaceuticals and Research (CORR), Biologic and Radiopharmaceutical Drugs Directorate (BRDD), Health Products and Food Branch (HPFB), Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Eric Deneault
- Centre for Oncology, Radiopharmaceuticals and Research (CORR), Biologic and Radiopharmaceutical Drugs Directorate (BRDD), Health Products and Food Branch (HPFB), Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
2
|
Choi W, Cha S, Kim K. Navigating the CRISPR/Cas Landscape for Enhanced Diagnosis and Treatment of Wilson's Disease. Cells 2024; 13:1214. [PMID: 39056796 PMCID: PMC11274827 DOI: 10.3390/cells13141214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system continues to evolve, thereby enabling more precise detection and repair of mutagenesis. The development of CRISPR/Cas-based diagnosis holds promise for high-throughput, cost-effective, and portable nucleic acid screening and genetic disease diagnosis. In addition, advancements in transportation strategies such as adeno-associated virus (AAV), lentiviral vectors, nanoparticles, and virus-like vectors (VLPs) offer synergistic insights for gene therapeutics in vivo. Wilson's disease (WD), a copper metabolism disorder, is primarily caused by mutations in the ATPase copper transporting beta (ATP7B) gene. The condition is associated with the accumulation of copper in the body, leading to irreversible damage to various organs, including the liver, nervous system, kidneys, and eyes. However, the heterogeneous nature and individualized presentation of physical and neurological symptoms in WD patients pose significant challenges to accurate diagnosis. Furthermore, patients must consume copper-chelating medication throughout their lifetime. Herein, we provide a detailed description of WD and review the application of novel CRISPR-based strategies for its diagnosis and treatment, along with the challenges that need to be overcome.
Collapse
Affiliation(s)
- Woong Choi
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Seongkwang Cha
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Carroll RA, Rice ES, Murphy WJ, Lyons LA, Thibaud-Nissen F, Coghill LM, Swanson WF, Terio KA, Boyd T, Warren WC. A chromosome-scale fishing cat reference genome for the evaluation of potential germline risk variants. Sci Rep 2024; 14:8073. [PMID: 38580653 PMCID: PMC10997796 DOI: 10.1038/s41598-024-56003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/29/2024] [Indexed: 04/07/2024] Open
Abstract
The fishing cat, Prionailurus viverrinus, faces a population decline, increasing the importance of maintaining healthy zoo populations. Unfortunately, zoo-managed individuals currently face a high prevalence of transitional cell carcinoma (TCC), a form of bladder cancer. To investigate the genetics of inherited diseases among captive fishing cats, we present a chromosome-scale assembly, generate the pedigree of the zoo-managed population, reaffirm the close genetic relationship with the Asian leopard cat (Prionailurus bengalensis), and identify 7.4 million single nucleotide variants (SNVs) and 23,432 structural variants (SVs) from whole genome sequencing (WGS) data of healthy and TCC cats. Only BRCA2 was found to have a high recurrent number of missense mutations in fishing cats diagnosed with TCC when compared to inherited human cancer risk variants. These new fishing cat genomic resources will aid conservation efforts to improve their genetic fitness and enhance the comparative study of feline genomes.
Collapse
Affiliation(s)
- Rachel A Carroll
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO, 65211, USA
| | - Edward S Rice
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO, 65211, USA
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A and M University, College Station, TX, 77843-4458, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Francoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Lyndon M Coghill
- Bioinformatics and Analytics Core, University of Missouri, 1201 Rollins St., Columbia, MO, 65211, USA
| | - William F Swanson
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo and Botanical Garden, 3400 Vine St., Cincinnati, OH, 45220, USA
| | - Karen A Terio
- Zoological Pathology Program, University of Illinois, 3300 Golf Rd, Brookfield, IL, 60513, USA
| | - Tyler Boyd
- Oklahoma City Zoo and Botanical Garden, 2000 Remington Pl., Oklahoma, OK, 73111, USA
| | - Wesley C Warren
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO, 65211, USA.
- Department of Surgery, Bond Life Sciences Center, Institute of Data Science and Informatics, University of Missouri, 1201 Rollins St., Columbia, MO, 65211, USA.
| |
Collapse
|
4
|
Katsuya Y. Current and future trends in whole genome sequencing in cancer. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0420. [PMID: 38356245 PMCID: PMC10875287 DOI: 10.20892/j.issn.2095-3941.2023.0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 02/16/2024] Open
Affiliation(s)
- Yuki Katsuya
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
5
|
Antinucci M, Comas D, Calafell F. Population history modulates the fitness effects of Copy Number Variation in the Roma. Hum Genet 2023; 142:1327-1343. [PMID: 37311904 PMCID: PMC10449987 DOI: 10.1007/s00439-023-02579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
We provide the first whole genome Copy Number Variant (CNV) study addressing Roma, along with reference populations from South Asia, the Middle East and Europe. Using CNV calling software for short-read sequence data, we identified 3171 deletions and 489 duplications. Taking into account the known population history of the Roma, as inferred from whole genome nucleotide variation, we could discern how this history has shaped CNV variation. As expected, patterns of deletion variation, but not duplication, in the Roma followed those obtained from single nucleotide polymorphisms (SNPs). Reduced effective population size resulting in slightly relaxed natural selection may explain our observation of an increase in intronic (but not exonic) deletions within Loss of Function (LoF)-intolerant genes. Over-representation analysis for LoF-intolerant gene sets hosting intronic deletions highlights a substantial accumulation of shared biological processes in Roma, intriguingly related to signaling, nervous system and development features, which may be related to the known profile of private disease in the population. Finally, we show the link between deletions and known trait-related SNPs reported in the genome-wide association study (GWAS) catalog, which exhibited even frequency distributions among the studied populations. This suggests that, in general human populations, the strong association between deletions and SNPs associated to biomedical conditions and traits could be widespread across continental populations, reflecting a common background of potentially disease/trait-related CNVs.
Collapse
Affiliation(s)
- Marco Antinucci
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Comas
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesc Calafell
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
6
|
Grunt TW, Heller G. A critical appraisal of the relative contribution of tissue architecture, genetics, epigenetics and cell metabolism to carcinogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00056-1. [PMID: 37268024 DOI: 10.1016/j.pbiomolbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Here we contrast several carcinogenesis models. The somatic-mutation-theory posits mutations as main causes of malignancy. However, inconsistencies led to alternative explanations. For example, the tissue-organization-field-theory considers disrupted tissue-architecture as main cause. Both models can be reconciled using systems-biology-approaches, according to which tumors hover in states of self-organized criticality between order and chaos, are emergent results of multiple deviations and are subject to general laws of nature: inevitable variation(mutation) explainable by increased entropy(second-law-of-thermodynamics) or indeterminate decoherence upon measurement of superposed quantum systems(quantum mechanics), followed by Darwinian-selection. Genomic expression is regulated by epigenetics. Both systems cooperate. So cancer is neither just a mutational nor an epigenetic problem. Rather, epigenetics links environmental cues to endogenous genetics engendering a regulatory machinery that encompasses specific cancer-metabolic-networks. Interestingly, mutations occur at all levels of this machinery (oncogenes/tumor-suppressors, epigenetic-modifiers, structure-genes, metabolic-genes). Therefore, in most cases, DNA mutations may be the initial and crucial cancer-promoting triggers.
Collapse
Affiliation(s)
- Thomas W Grunt
- Cell Signaling and Metabolism Networks Program, Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090, Vienna, Austria; Comprehensive Cancer Center, 1090, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, 1090, Vienna, Austria.
| | - Gerwin Heller
- Comprehensive Cancer Center, 1090, Vienna, Austria; Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
7
|
Hunt JMT, Samson CA, Rand AD, Sheppard HM. Unintended CRISPR-Cas9 editing outcomes: a review of the detection and prevalence of structural variants generated by gene-editing in human cells. Hum Genet 2023; 142:705-720. [PMID: 37093294 PMCID: PMC10182114 DOI: 10.1007/s00439-023-02561-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Genome editing using the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) gene-editing system (CRISPR-Cas) is a valuable tool for fundamental and applied research applications. Significant improvements in editing efficacy have advanced genome editing strategies into phase 3 human clinical trials. However, recent studies suggest that our understanding of editing outcomes has lagged behind the developments made in generating the edits themselves. While many researchers have analyzed on- and off-target events through the lens of small insertions or deletions at predicted sites, screens for larger structural variants (SVs) and chromosomal abnormalities are not routinely performed. Full and comprehensive validation of on- and off-target effects is required to ensure reproducibility and to accurately assess the safety of future editing applications. Here we review SVs associated with CRISPR-editing in cells of human origin and highlight the methods used to detect and avoid them.
Collapse
Affiliation(s)
| | | | - Alex du Rand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Hilary M Sheppard
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
8
|
Zhang Q, Yang L, Xiao H, Dang Z, Kuang X, Xiong Y, Zhu J, Huang Z, Li M. Pan-cancer analysis of chromothripsis-related gene expression patterns indicates an association with tumor immune and therapeutic agent responses. Front Oncol 2023; 13:1074955. [PMID: 36761982 PMCID: PMC9902954 DOI: 10.3389/fonc.2023.1074955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Chromothripsis is a catastrophic event involving numerous chromosomal rearrangements in confined genomic regions of one or a few chromosomes, causing complex effects on cells via the extensive structural variation. The development of whole-genome sequencing (WGS) has promoted great progress in exploring the mechanism and effect of chromothripsis. However, the gene expression characteristics of tumors undergone chromothripsis have not been well characterized. In this study, we found that the transcriptional profile of five tumor types experiencing chromothripsis is associated with an immune evasion phenotype. A gene set variation analysis (GSVA) was used to develop a CHP score, which is based on differentially expressed gene sets in the TCGA database, revealing that chromothripsis status in multiple cancers is consistent with an abnormal tumor immune microenvironment and immune cell cytotoxicity. Evaluation using four immunotherapy datasets uncovered the ability of the CHP score to predict immunotherapy response in diverse tumor types. In addition, the CHP score was found to be related to resistance against a variety of anti-tumor drugs, including anti-angiogenesis inhibitors and platinum genotoxins, while EGFR pathway inhibitors were found to possibly be sensitizers for high CHP score tumors. Univariate COX regression analysis indicated that the CHP score can be prognostic for several types of tumors. Our study has defined gene expression characteristics of tumors with chromothripsis, supporting the controversial link between chromothripsis and tumor immunity. We also describe the potential value of the CHP score in predicting the efficacy of immunotherapy and other treatments, elevating chromothripsis as a tool in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhou Huang
- *Correspondence: Zhou Huang, ; Mengxia Li,
| | - Mengxia Li
- *Correspondence: Zhou Huang, ; Mengxia Li,
| |
Collapse
|
9
|
Herrington CS, Poulsom R, Pillay N, Bankhead P, Coates PJ. Recent Advances in Pathology: the 2022 Annual Review Issue of The Journal of Pathology. J Pathol 2022; 257:379-382. [PMID: 35635736 DOI: 10.1002/path.5972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022]
Abstract
The 2022 Annual Review Issue of The Journal of Pathology, Recent Advances in Pathology, contains 15 invited reviews on research areas of growing importance in pathology. This year, the articles include those that focus on digital pathology, employing modern imaging techniques and software to enable improved diagnostic and research applications to study human diseases. This subject area includes the ability to identify specific genetic alterations through the morphological changes they induce, as well as integrating digital and computational pathology with 'omics technologies. Other reviews in this issue include an updated evaluation of mutational patterns (mutation signatures) in cancer, the applications of lineage tracing in human tissues, and single cell sequencing technologies to uncover tumour evolution and tumour heterogeneity. The tissue microenvironment is covered in reviews specifically dealing with proteolytic control of epidermal differentiation, cancer-associated fibroblasts, field cancerisation, and host factors that determine tumour immunity. All of the reviews contained in this issue are the work of invited experts selected to discuss the considerable recent progress in their respective fields and are freely available online (https://onlinelibrary.wiley.com/journal/10969896). © 2022 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- C Simon Herrington
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Richard Poulsom
- The Pathological Society of Great Britain and Ireland, London, UK
| | - Nischalan Pillay
- Sarcoma Biology and Genomics Group, UCL Cancer Institute, London, UK
- Department of Histopathology, The Royal National Orthopaedic Hospital NHS Trust, London, UK
| | - Peter Bankhead
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|