1
|
Lashkari HP, Andey NVS, Kumar N, Girisha KM. Myelomonocytic leukaemia (JMML) in a child with intellectual disability and chromosome 4q deletion. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2021. [DOI: 10.1016/j.phoj.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
2
|
A Case of Uveitis in a Patient With Juvenile Myelomonocytic Leukemia Successfully Treated With Adalimumab. J Pediatr Hematol Oncol 2020; 42:e373-e376. [PMID: 30807392 DOI: 10.1097/mph.0000000000001448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Patients with juvenile myelomonocytic leukemia due to germline CBL mutation (10% to 15%) may have a subacute course occasionally associated with autoimmune disorders, which may resemble RAS-associated autoimmune lymphoproliferative disorder. In both conditions, prognosis and standard treatment for autoimmune phenomena remain poorly understood. We report the case of a 7-year-old boy with juvenile myelomonocytic leukemia with severe steroid-dependent uveitis, who did not respond to several therapeutic attempts with immunosuppressant agents, including sirolimus, and was finally successfully treated with adalimumab. This case offers further insight into the management of autoimmune disorders in the context of predisposing genetic conditions.
Collapse
|
3
|
Zhang R, Zhang Y, Lu X, Xu W, Wang H, Mo W, Pang H, Tang R, Li S, Yan X, Li Y. SPRED1 Is Downregulated and a Prognostic Biomarker in Adult Acute Myeloid Leukemia. Front Oncol 2020; 10:204. [PMID: 32175275 PMCID: PMC7056905 DOI: 10.3389/fonc.2020.00204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/06/2020] [Indexed: 11/13/2022] Open
Abstract
We report herein that Sprouty-Related EVH1 Domain-Containing Protein1 (SPRED1) is downregulated and a prognostic biomarker in adult acute myeloid leukemia (AML). We determined mRNA levels of SPRED1 in the bone marrow mononuclear cells from adult patients, including 113 AMLs and 22 acute lymphoblastic leukemias (ALLs), as well as in 37 healthy control subjects. Significantly decreased SPRED1 mRNA expression was found in AML patients comparing to those in ALL patients and healthy controls, which was confirmed by immunocytochemistry analysis of SPRED1 protein and ELISA measurement of serum SPRED1 level. Further analysis demonstrated that SPRED1 expression was significantly higher for most patients at complete remission after induction treatment than at diagnosis. Moreover, SPRED1 expression was significantly downregulated in M2 and M3 types. Non-acute promyelocytic leukemia (non-APL) patients with decreased SPRED1 had significantly lower 2-year progression-free survival and event-free survival rates. In vitro, ectopic overexpression of SPRED1 leads to a decrease of extracellular signal-regulated kinase (ERK) phosphorylation, induction of apoptosis and reduction of proliferation of THP-1 cells. Our findings suggest SPRED1 is not only a predictor of treatment response, but also an independent prognostic factor for non-APL, and targeting Ras- Mitogen-activated protein kinase (MAPK) signaling may be a promising strategy for the treatment of AML with downregulation of SPRED1.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xianglan Lu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Weihong Xu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - He Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenbin Mo
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui Pang
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rurong Tang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Xiaojing Yan
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Li
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Hochstetler CL, Feng Y, Sacma M, Davis AK, Rao M, Kuan CY, You LR, Geiger H, Zheng Y. KRas G12D expression in the bone marrow vascular niche affects hematopoiesis with inflammatory signals. Exp Hematol 2019; 79:3-15.e4. [PMID: 31669153 DOI: 10.1016/j.exphem.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
The bone marrow (BM) niche is an important milieu where hematopoietic stem and progenitor cells (HSPCs) are maintained. Previous studies have indicated that genetic mutations in various components of the niche can affect hematopoiesis and promote hematologic abnormalities, but the impact of abnormal BM endothelial cells (BMECs), a crucial niche component, on hematopoiesis remains incompletely understood. To dissect how genetic alterations in BMECs could affect hematopoiesis, we have employed a novel inducible Tie2-CreERT2 mouse model, with a tdTomato fluorescent reporter, to introduce an oncogenic KRasG12D mutation specifically in the adult endothelial cells. Tie2-CreERT2;KRasG12D mice had significantly more leukocytes and myeloid cells in the blood with mostly normal BM HSPC populations and developed splenomegaly. Genotyping polymerase chain reaction revealed KRasG12D activation in BMECs but not hematopoietic cells, confirming that the phenotype is due to the aberrant BMECs. Competitive transplant assays revealed that BM cells from the KRasG12D mice contained significantly fewer functional hematopoietic stem cells, and immunofluorescence imaging showed that the hematopoietic stem cells in the mutant mice were localized farther away from BM vasculature and closer to the endosteal area. RNA sequencing analyses found an inflammatory gene network, especially tumor necrosis factor α, as a possible contributor. Together, our results implicate an abnormal endothelial niche in compromising normal hematopoiesis.
Collapse
Affiliation(s)
- Cindy L Hochstetler
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Yuxin Feng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mehmet Sacma
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Ashley K Davis
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mahil Rao
- Division of Pediatric Critical Care, Department of Pediatrics, Stanford University, Stanford, California
| | - Chia-Yi Kuan
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Hartmut Geiger
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
5
|
USP22 deficiency leads to myeloid leukemia upon oncogenic Kras activation through a PU.1-dependent mechanism. Blood 2018; 132:423-434. [PMID: 29844011 DOI: 10.1182/blood-2017-10-811760] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
Ras mutations are commonly observed in juvenile myelomonocytic leukemia (JMML) and chronic myelomonocytic leukemia (CMML). JMML and CMML transform into acute myeloid leukemia (AML) in about 10% and 50% of patients, respectively. However, how additional events cooperate with Ras to promote this transformation are largely unknown. We show that absence of the ubiquitin-specific peptidase 22 (USP22), a component of the Spt-Ada-GCN5-acetyltransferase chromatin-remodeling complex that is linked to cancer progression, unexpectedly promotes AML transformation in mice expressing oncogenic KrasG12D/+ USP22 deficiency in KrasG12D/+ mice resulted in shorter survival compared with control mice. This was due to a block in myeloid cell differentiation leading to the generation of AML. This effect was cell autonomous because mice transplanted with USP22-deficient KrasG12D/+ cells developed an aggressive disease and died rapidly. The transcriptome profile of USP22-deficient KrasG12D/+ progenitors resembled leukemic stem cells and was highly correlated with genes associated with poor prognosis in AML. We show that USP22 functions as a PU.1 deubiquitylase by positively regulating its protein stability and promoting the expression of PU.1 target genes. Reconstitution of PU.1 overexpression in USP22-deficient KrasG12D/+ progenitors rescued their differentiation. Our findings uncovered an unexpected role for USP22 in Ras-induced leukemogenesis and provide further insights into the function of USP22 in carcinogenesis.
Collapse
|
6
|
Wandler A, Shannon K. Mechanistic and Preclinical Insights from Mouse Models of Hematologic Cancer Characterized by Hyperactive Ras. Cold Spring Harb Perspect Med 2018; 8:a031526. [PMID: 28778967 PMCID: PMC5880163 DOI: 10.1101/cshperspect.a031526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RAS genes are mutated in 5%-40% of a spectrum of myeloid and lymphoid cancers with NRAS affected 2-3 times more often than KRAS Genomic analysis indicates that RAS mutations generally occur as secondary events in leukemogenesis, but are integral to the disease phenotype. The tractable nature of the hematopoietic system has facilitated generating accurate mouse models of hematologic malignancies characterized by hyperactive Ras signaling. These strains provide robust platforms for addressing how oncogenic Ras expression perturbs proliferation, differentiation, and self-renewal programs in stem and progenitor cell populations, for testing potential therapies, and for investigating mechanisms of drug response and resistance. This review summarizes recent insights from key studies in mouse models of hematologic cancer that are broadly relevant for understanding Ras biology and for ongoing efforts to implement rational therapeutic strategies for cancers with oncogenic RAS mutations.
Collapse
Affiliation(s)
- Anica Wandler
- Department of Pediatrics, Helen Diller Family Cancer Research Building, University of California, San Francisco, San Francisco, California 94158-9001
| | - Kevin Shannon
- Department of Pediatrics, Helen Diller Family Cancer Research Building, University of California, San Francisco, San Francisco, California 94158-9001
- Comprehensive Cancer Center, Helen Diller Family Cancer Research Building, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
7
|
Tafazoli A, Eshraghi P, Pantaleoni F, Vakili R, Moghaddassian M, Ghahraman M, Muto V, Paolacci S, Golyan FF, Abbaszadegan MR. Novel mutations and their genotype-phenotype correlations in patients with Noonan syndrome, using next-generation sequencing. Adv Med Sci 2018; 63:87-93. [PMID: 28957739 DOI: 10.1016/j.advms.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 11/18/2022]
Abstract
PURPOSE Noonan Syndrome (NS) is an autosomal dominant disorder with many variable and heterogeneous conditions. The genetic basis for 20-30% of cases is still unknown. This study evaluates Iranian Noonan patients both clinically and genetically for the first time. MATERIALS/METHODS Mutational analysis of PTPN11 gene was performed in 15 Iranian patients, using PCR and Sanger sequencing at phase one. Then, as phase two, Next Generation Sequencing (NGS) in the form of targeted resequencing was utilized for analysis of exons from other related genes. Homology modelling for the novel founded mutations was performed as well. The genotype, phenotype correlation was done according to the molecular findings and clinical features. RESULTS Previously reported mutation (p.N308D) in some patients and a novel mutation (p.D155N) in one of the patients were identified in phase one. After applying NGS methods, known and new variants were found in four patients in other genes, including: CBL (p. V904I), KRAS (p. L53W), SOS1 (p. I1302V), and SOS1 (p. R552G). Structural studies of two deduced novel mutations in related genes revealed deficiencies in the mutated proteins. Following genotype, phenotype correlation, a new pattern of the presence of intellectual disability in two patients was registered. CONCLUSIONS NS shows strong variable expressivity along the high genetic heterogeneity especially in distinct populations and ethnic groups. Also possibly unknown other causative genes may be exist. Obviously, more comprehensive and new technologies like NGS methods are the best choice for detection of molecular defects in patients for genotype, phenotype correlation and disease management.
Collapse
Affiliation(s)
- Alireza Tafazoli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peyman Eshraghi
- Department of Pediatrics, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Francesca Pantaleoni
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy; Research Center, Genetic and Rare Diseases, Ospedale Pediatrico Bambino Gesù, IRCSS, Rome, Italy
| | - Rahim Vakili
- Department of Pediatrics, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Moghaddassian
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, Faculty of Applied Science and Engineering, University of Toronto, ON, Canada
| | - Martha Ghahraman
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran
| | - Valentina Muto
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Paolacci
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Fatemeh Fardi Golyan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
8
|
Smith FO, Dvorak CC, Braun BS. Myelodysplastic Syndromes and Myeloproliferative Neoplasms in Children. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Castagna J, Clerc J, Dupond AS, Laresche C. [Multiple granular cell tumours in a patient with Noonan's syndrome and juvenile myelomonocytic leukaemia]. Ann Dermatol Venereol 2017; 144:705-711. [PMID: 28728859 DOI: 10.1016/j.annder.2017.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/16/2017] [Accepted: 06/12/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Granular cell tumour (GCT) is a rare form of tumour comprising Schwann cells. Herein, we report a case of a child presenting Noonan syndrome complicated by juvenile myelomonocytic leukaemia (JMML) and who also developed a multiple form of GCT. We discussed the molecular mechanisms that might account for this association. PATIENTS AND METHODS A six-year-old boy with Noonan syndrome complicated by JMML presented three asymptomatic subcutaneous nodules on his back, forearm and neck. Histological analysis revealed GCT. A literature review revealed seven cases of Noonan syndrome presenting GCT, none of which were associated with JMML. Mutation of gene PTPN11, via hyperactivation of intracellular Ras signalling may cause the development of GCT and JMML in children presenting Noonan syndrome. DISCUSSION Detailed clinical examination is recommended in children presenting GCT to screen for multiple forms and for signs of malformation suggestive of a genetic syndrome. Ours is the first case to be described of Noonan syndrome complicated by JMML associated with multiple GCT. This association once again raises the important question of the role of the Ras-MAPK signalling pathway in the development of benign and malignant tumours of solid organs or blood, associated with genetic syndromes.
Collapse
Affiliation(s)
- J Castagna
- Service de dermatologie, hôpital Nord Franche-Comté, 2, rue du Dr-Flamand, 25200 Montbeliard, France.
| | - J Clerc
- Service d'anatomie et cytologie pathologiques, hôpital Nord Franche-Comté, 2, rue du Dr-Flamand, 25200 Montbeliard, France
| | - A-S Dupond
- Service de dermatologie, hôpital Nord Franche-Comté, 2, rue du Dr-Flamand, 25200 Montbeliard, France
| | - C Laresche
- Service de dermatologie, hôpital Nord Franche-Comté, 2, rue du Dr-Flamand, 25200 Montbeliard, France
| |
Collapse
|
10
|
Blakeley JO, Bakker A, Barker A, Clapp W, Ferner R, Fisher MJ, Giovannini M, Gutmann DH, Karajannis MA, Kissil JL, Legius E, Lloyd AC, Packer RJ, Ramesh V, Riccardi VM, Stevenson DA, Ullrich NJ, Upadhyaya M, Stemmer-Rachamimov A. The path forward: 2015 International Children's Tumor Foundation conference on neurofibromatosis type 1, type 2, and schwannomatosis. Am J Med Genet A 2017; 173:1714-1721. [PMID: 28436162 DOI: 10.1002/ajmg.a.38239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/22/2017] [Indexed: 01/16/2023]
Abstract
The Annual Children's Tumor Foundation International Neurofibromatosis Meeting is the premier venue for connecting discovery, translational and clinical scientists who are focused on neurofibromatosis types 1 and 2 (NF1 and NF2) and schwannomatosis (SWN). The meeting also features rare tumors such as glioma, meningioma, sarcoma, and neuroblastoma that occur both within these syndromes and spontaneously; associated with somatic mutations in NF1, NF2, and SWN. The meeting addresses both state of the field for current clinical care as well as emerging preclinical models fueling discovery of new therapeutic targets and discovery science initiatives investigating mechanisms of tumorigenesis. Importantly, this conference is a forum for presenting work in progress and bringing together all stakeholders in the scientific community. A highlight of the conference was the involvement of scientists from the pharmaceutical industry who presented growing efforts for rare disease therapeutic development in general and specifically, in pediatric patients with rare tumor syndromes. Another highlight was the focus on new investigators who presented new data about biomarker discovery, tumor pathogenesis, and diagnostic tools for NF1, NF2, and SWN. This report summarizes the themes of the meeting and a synthesis of the scientific discoveries presented at the conference in order to make the larger research community aware of progress in the neurofibromatoses.
Collapse
Affiliation(s)
| | | | | | - Wade Clapp
- Indiana University, Indianapolis, Indiana
| | - Rosalie Ferner
- Guy's Hospital and St. Thomas' Hospital, London, United Kingdom
| | | | | | - David H Gutmann
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Eric Legius
- Center for Human Genetics-University Hospital, Leuven, Belgium
| | - Alison C Lloyd
- MRC Laboratory for Molecular Cell Biology, University College, London, United Kingdom
| | - Roger J Packer
- Children's National Medical Center, Washington, District of Columbia
| | | | | | | | - Nicole J Ullrich
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Meena Upadhyaya
- Institute of Cancer Genetics, Cardiff University, Wales, United Kingdom
| | | |
Collapse
|
11
|
KRAS Engages AGO2 to Enhance Cellular Transformation. Cell Rep 2016; 14:1448-1461. [PMID: 26854235 DOI: 10.1016/j.celrep.2016.01.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 12/17/2015] [Accepted: 01/07/2016] [Indexed: 01/06/2023] Open
Abstract
Oncogenic mutations in RAS provide a compelling yet intractable therapeutic target. Using co-immunoprecipitation mass spectrometry, we uncovered an interaction between RAS and Argonaute 2 (AGO2). Endogenously, RAS and AGO2 co-sediment and co-localize in the endoplasmic reticulum. The AGO2 N-terminal domain directly binds the Switch II region of KRAS, agnostic of nucleotide (GDP/GTP) binding. Functionally, AGO2 knockdown attenuates cell proliferation in mutant KRAS-dependent cells and AGO2 overexpression enhances KRAS(G12V)-mediated transformation. Using AGO2-/- cells, we demonstrate that the RAS-AGO2 interaction is required for maximal mutant KRAS expression and cellular transformation. Mechanistically, oncogenic KRAS attenuates AGO2-mediated gene silencing. Overall, the functional interaction with AGO2 extends KRAS function beyond its canonical role in signaling.
Collapse
|
12
|
Ding CB, Yu WN, Feng JH, Luo JM. Structure and function of Gab2 and its role in cancer (Review). Mol Med Rep 2015; 12:4007-4014. [PMID: 26095858 PMCID: PMC4526075 DOI: 10.3892/mmr.2015.3951] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 05/19/2015] [Indexed: 12/30/2022] Open
Abstract
The docking proteins of the Grb-associated binder (Gab) family transduce cellular signals between receptors and intracellular downstream effectors, and provide a platform for protein-protein interactions. Gab2, a key member of the Gab family of proteins, is involved in the amplification and integration of signal transduction, evoked by a variety of extracellular stimuli, including growth factors, cytokines and antigen receptors. Gab2 protein lacks intrinsic catalytic activity; however, when phosphorylated by protein-tyrosine kinases (PTKs), Gab2 recruits several Src homology-2 (SH2) domain-containing proteins, including the SH2-containing protein tyrosine phosphatase 2 (SHP2), the p85 subunit of phosphoinositide-3 kinase (PI3K), phospholipase C-γ (PLCγ)1, Crk, and GC-GAP. Through these interactions, the Gab2 protein triggers various downstream signal effectors, including SHP2/rat sarcoma viral oncogene/RAF/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase and PI3K/AKT, involved in cell growth, differentiation, migration and apoptosis. It has been previously reported that aberrant Gab2 and/or Gab2 signaling is closely associated with human tumorigenesis, particularly in breast cancer, leukemia and melanoma. The present review aimed to focus on the structure and effector function of Gab2, its role in cancer and its potential for use as an effective therapeutic target.
Collapse
Affiliation(s)
- Chen-Bo Ding
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Wei-Na Yu
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Ji-Hong Feng
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Jun-Min Luo
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| |
Collapse
|
13
|
Maioli MC, Fernandez TDS, Campos MM, Diamond HR, Veranio-Silva GAC, de Souza AM, da Costa ES, Ornellas MH, Thiago LS. Flow cytometry as a diagnostic support tool in juvenile myelomonocytic leukemia. Leuk Lymphoma 2015; 57:233-6. [DOI: 10.3109/10428194.2015.1049164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood 2015; 125:1857-65. [PMID: 25624319 DOI: 10.1182/blood-2014-10-607341] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN) are hematologically diverse stem cell malignancies sharing phenotypic features of both myelodysplastic syndromes and myeloproliferative neoplasms. There are currently no standard treatment recommendations for most adult patients with MDS/MPN. To optimize efforts to improve the management and disease outcomes, it is essential to identify meaningful clinical and biologic end points and standardized response criteria for clinical trials. The dual dysplastic and proliferative features in these stem cell malignancies define their uniqueness and challenges. We propose response assessment guidelines to harmonize future clinical trials with the principal objective of establishing suitable treatment algorithms. An international panel comprising laboratory and clinical experts in MDS/MPN was established involving 3 independent academic MDS/MPN workshops (March 2013, December 2013, and June 2014). These recommendations are the result of this collaborative project sponsored by the MDS Foundation.
Collapse
|
15
|
Ueda S, Sakata N, Muramatsu H, Sakaguchi H, Wang X, Xu Y, Kojima S, Yamaguchi T, Higa T, Takemura T. Clinical course of juvenile myelomonocytic leukemia in the blast crisis phase treated by acute myeloid leukemia-oriented chemotherapy and allogeneic hematopoietic stem cell transplantation. Int J Hematol 2014; 100:502-6. [DOI: 10.1007/s12185-014-1638-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 01/10/2023]
|
16
|
Targeting components of the alternative NHEJ pathway sensitizes KRAS mutant leukemic cells to chemotherapy. Blood 2014; 123:2355-66. [PMID: 24505083 DOI: 10.1182/blood-2013-01-477620] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Activating KRAS mutations are detected in a substantial number of hematologic malignancies. In a murine T-cell acute lymphoblastic leukemia (T-ALL) model, we previously showed that expression of oncogenic Kras induced a premalignant state accompanied with an arrest in T-cell differentiation and acquisition of somatic Notch1 mutations. These findings prompted us to investigate whether the expression of oncogenic KRAS directly affects DNA damage repair. Applying divergent, but complementary, genetic approaches, we demonstrate that the expression of KRAS mutants is associated with increased expression of DNA ligase 3α, poly(ADP-ribose) polymerase 1 (PARP1), and X-ray repair cross-complementing protein 1 (XRCC1), all essential components of the error-prone, alternative nonhomologous end-joining (alt-NHEJ) pathway. Functional studies revealed delayed repair kinetics, increased misrepair of DNA double-strand breaks, and the preferential use of microhomologous DNA sequences for end joining. Similar effects were observed in primary murine T-ALL blasts. We further show that KRAS-mutated cells, but not KRAS wild-type cells, rely on the alt-NHEJ repair pathway on genotoxic stress. RNA interference-mediated knockdown of DNA ligase 3α abolished resistance to apoptotic cell death in KRAS-mutated cells. Our data indicate that targeting components of the alt-NHEJ pathway sensitizes KRAS-mutated leukemic cells to standard chemotherapeutics and represents a promising approach for inducing synthetic lethal vulnerability in cells harboring otherwise nondruggable KRAS mutations.
Collapse
|
17
|
Modulation of Ras signaling alters the toxicity of hydroquinone, a benzene metabolite and component of cigarette smoke. BMC Cancer 2014; 14:6. [PMID: 24386979 PMCID: PMC3898384 DOI: 10.1186/1471-2407-14-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/27/2013] [Indexed: 01/30/2023] Open
Abstract
Background Benzene is an established human leukemogen, with a ubiquitous environmental presence leading to significant population exposure. In a genome-wide functional screen in the yeast Saccharomyces cerevisiae, inactivation of IRA2, a yeast ortholog of the human tumor suppressor gene NF1 (Neurofibromin), enhanced sensitivity to hydroquinone, an important benzene metabolite. Increased Ras signaling is implicated as a causal factor in the increased pre-disposition to leukemia of individuals with mutations in NF1. Methods Growth inhibition of yeast by hydroquinone was assessed in mutant strains exhibiting varying levels of Ras activity. Subsequently, effects of hydroquinone on both genotoxicity (measured by micronucleus formation) and proliferation of WT and Nf1 null murine hematopoietic precursors were assessed. Results Here we show that the Ras status of both yeast and mammalian cells modulates hydroquinone toxicity, indicating potential synergy between Ras signaling and benzene toxicity. Specifically, enhanced Ras signaling increases both hydroquinone-mediated growth inhibition in yeast and genotoxicity in mammalian hematopoetic precursors as measured by an in vitro erythroid micronucleus assay. Hydroquinone also increases proliferation of CFU-GM progenitor cells in mice with Nf1 null bone marrow relative to WT, the same cell type associated with benzene-associated leukemia. Conclusions Together our findings show that hydroquinone toxicity is modulated by Ras signaling. Individuals with abnormal Ras signaling could be more vulnerable to developing myeloid diseases after exposure to benzene. We note that hydroquinone is used cosmetically as a skin-bleaching agent, including by individuals with cafe-au-lait spots (which may be present in individuals with neurofibromatosis who have a mutation in NF1), which could be unadvisable given our findings.
Collapse
|
18
|
Diaz-Flores E, Goldschmidt H, Depeille P, Ng V, Akutagawa J, Krisman K, Crone M, Burgess MR, Williams O, Houseman B, Shokat K, Sampath D, Bollag G, Roose JP, Braun BS, Shannon K. PLC-γ and PI3K link cytokines to ERK activation in hematopoietic cells with normal and oncogenic Kras. Sci Signal 2013; 6:ra105. [PMID: 24300897 DOI: 10.1126/scisignal.2004125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Oncogenic K-Ras proteins, such as K-Ras(G12D), accumulate in the active, guanosine triphosphate (GTP)-bound conformation and stimulate signaling through effector kinases. The presence of the K-Ras(G12D) oncoprotein at a similar abundance to that of endogenous wild-type K-Ras results in only minimal phosphorylation and activation of the canonical Raf-mitogen-activated or extracellular signal-regulated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling cascades in primary hematopoietic cells, and these pathways remain dependent on growth factors for efficient activation. We showed that phospholipase C-γ (PLC-γ), PI3K, and their generated second messengers link activated cytokine receptors to Ras and ERK signaling in differentiated bone marrow cells and in a cell population enriched for leukemia stem cells. Cells expressing endogenous oncogenic K-Ras(G12D) remained dependent on the second messenger diacylglycerol for the efficient activation of Ras-ERK signaling. These data raise the unexpected possibility of therapeutically targeting proteins that function upstream of oncogenic Ras in cancer.
Collapse
Affiliation(s)
- Ernesto Diaz-Flores
- 1Department of Pediatrics and Benniof Children's Hospital, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Adaptor or scaffolding proteins mediate protein-protein interactions that drive the formation of protein complexes. Grb2-associated binding protein 2 (GAB2) scaffolding protein is an intermediary molecule that links plasma membrane receptor signaling including receptor tyrosine kinases with the downstream effectors, such as protein tyrosine phosphatase, nonreceptor type 11 (SHP2), p85 subunit of phosphoinositide-3 kinase (PI3-K), phospholipase C-gamma 1 (PLC-γ), v-crk sarcoma virus CT10 (CRK), Src homology 2 domain containing transforming protein 1 (SHC), and SH2 containing inositol phosphatase (SHIP). Although, well described in signal transduction, its role in cancer has recently been emerging especially in leukemia, breast and ovarian cancer, and melanoma. GAB2 is essential for two major signal transduction pathways in cancer, the PI3-K-AKT and extracellular signal-regulated kinase (ERK) signaling pathways, and thus regulates a number of key cellular processes. This review focuses on structure and function of GAB2, its regulatory proteins, emerging role in cancer, and potential as a therapeutic target.
Collapse
Affiliation(s)
- Sarah J Adams
- Department of Dermatology, Columbia University Medical Center, New York 10032, USA
| | | | | |
Collapse
|
20
|
Mosaiktrisomie 8p11.21q11.21 als Prädisposition für myeloische Leukämien. MED GENET-BERLIN 2012. [DOI: 10.1007/s11825-012-0316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Zusammenfassung
Bei der juvenilen myelomonozytären Leukämie (JMML) handelt es sich um eine myeloproliferative Erkrankung der frühen Kindheit. Bei vielen Patienten lassen sich zugrunde liegende somatische, aber auch konstitutionelle Mutationen in NRAS, KRAS, PTPN11, NF1 und CBL nachweisen. Zur Identifizierung submikroskopischer Veränderungen, die für die leukämische Transformation von Bedeutung sein können, wurden 20 JMML-Proben mittels hochauflösender Oligo-Microarray-basierter komparativer genomischer Hybridisierung (aCGH) untersucht. Bei 2 von 10 Patienten mit submikroskopischen Aberrationen konnte ein nahezu identischer Zugewinn von Chromosom 8 gezeigt werden, der sich in weiteren Untersuchungen als konstitutionelles Mosaik darstellte. Eine Übersicht von 27 Patienten mit einem konstitutionellen Trisomie-8-Mosaik (cT8M) und maligner Neoplasie zeigte, dass es sich meist um myeloische Neoplasien, auch JMML, handelt. Durch unsere Untersuchungen konnte die kritische Region auf Chromosom 8, deren Loci mutmaßlich an der Leukämieentstehung und/oder Progression beteiligt sein können, dramatisch reduziert werden: 8p11.21q11.21. Es bleibt zu klären in welcher Form das partielle Trisomie-8-Mosaik an der Leukämieentstehung beteiligt ist und in welcher Weise dies für verschiedenen Mutationssubtypen der JMML eine Rolle spielt.
Collapse
|
21
|
Aberrant expression of RasGRP1 cooperates with gain-of-function NOTCH1 mutations in T-cell leukemogenesis. Leukemia 2011; 26:1038-45. [PMID: 22116551 DOI: 10.1038/leu.2011.328] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ras guanyl nucleotide-releasing proteins (RasGRPs) are activators of Ras. Previous studies have indicated the possible involvement of RasGRP1 and RasGRP4 in leukemogenesis. Here, the predominant role of RasGRP1 in T-cell leukemogenesis is clarified. Notably, increased expression of RasGRP1, but not RasGRP4, was frequently observed in human T-cell malignancies. In a mouse bone marrow transplantation model, RasGRP1 exclusively induced T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) after a shorter latency when compared with RasGRP4. Accordingly, Ba/F3 cells transduced with RasGRP1 survived longer under growth factor withdrawal or phorbol ester stimulation than those transduced with RasGRP4, presumably due to the efficient activation of Ras. Intriguingly, NOTCH1 mutations resulting in a gain of function were found in 77% of the RasGRP1-mediated mouse T-ALL samples. In addition, gain-of-function NOTCH1 mutation was found in human T-cell malignancy with elevated expression of RasGRP1. Importantly, RasGRP1 and NOTCH1 signaling cooperated in the progression of T-ALL in the murine model. The leukemogenic advantage of RasGRP1 over RasGRP4 was attenuated by the disruption of a protein kinase C phosphorylation site (RasGRP1(Thr184)) not present on RasGRP4. In conclusion, cooperation between aberrant expression of RasGRP1, a strong activator of Ras, and secondary gain-of-function mutations of NOTCH1 have an important role in T-cell leukemogenesis.
Collapse
|
22
|
Olayemi EE, Benneh AA, Acquah ME, Mensah PK. Chronic myeloid leukemia in an adult ghanaian with sporadic neurofibromatosis 1. Indian J Dermatol 2011; 56:423-5. [PMID: 21965854 PMCID: PMC3179009 DOI: 10.4103/0019-5154.84747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Patients with neurofibromatosis type 1 (NF1), a common, progressive, autosomal dominant neurocutaneous disorder, are predisposed to malignancies. Several types of hematologic malignancies have been described in them. However, to date there has been no report to the best of our knowledge of a patient with NF1 developing chronic myeloid leukemia (CML). We present an adult Ghanaian with NF1, who subsequently developed CML. Relevance of the case report is discussed.
Collapse
|
23
|
Ripperger T, Tauscher M, Praulich I, Pabst B, Teigler-Schlegel A, Yeoh A, Göhring G, Schlegelberger B, Flotho C, Niemeyer CM, Steinemann D. Constitutional trisomy 8p11.21-q11.21 mosaicism: a germline alteration predisposing to myeloid leukaemia. Br J Haematol 2011; 155:209-17. [PMID: 21848520 DOI: 10.1111/j.1365-2141.2011.08817.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Juvenile myelomonocytic leukaemia (JMML) is a unique myeloproliferative disorder of early childhood. Frequently, mutations in NRAS, KRAS, PTPN11, NF1 or CBL are found in these patients. Monosomy 7 is the most common cytogenetic aberration. To identify submicroscopic genomic copy number alterations, 20 JMML samples were analysed by comparative genomic hybridization. Ten out of 20 samples displayed additional submicroscopic alterations. In two patients, an almost identical gain of chromosome 8 was identified. In both patients, fluorescence in situ hybridization confirmed a constitutional partial trisomy 8 mosaic (cT8M). A survey on 27 cT8M patients with neoplasms showed that 21 had myeloid malignancies, and five of these had a JMML. Notably, the region gained in our cases is the smallest gain of chromosome 8 reported in cT8M cases with malignancies so far. Our results dramatically reduce the critical region to 8p11.21q11.21 harbouring 31 protein coding genes and two non-coding RNAs, e.g. MYST3, IKBKB, UBE2V2, GOLGA7, FNTA and MIR486--a finding with potential implications for the role of somatic trisomy 8 in myeloid malignancies. Further investigations are required to more comprehensively determine how constitutional partial trisomy 8 mosaicisms may contribute to leukaemogenesis in different mutational subtypes of JMML and other myeloid malignancies.
Collapse
Affiliation(s)
- Tim Ripperger
- Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
McMaster ML, Goldstein AM, Parry DM. Clinical features distinguish childhood chordoma associated with tuberous sclerosis complex (TSC) from chordoma in the general paediatric population. J Med Genet 2011; 48:444-9. [PMID: 21266383 PMCID: PMC3235000 DOI: 10.1136/jmg.2010.085092] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Chordoma, an age-dependent rare cancer, arises from notochordal remnants. Fewer than 5% of chordomas occur in children. Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous syndrome characterised by abnormal tissue growths in multiple organ systems. Reports of chordoma in children with TSC suggest that TSC1 and TSC2 mutations may contribute to chordoma aetiology. METHODS To determine whether the 10 TSC-associated childhood chordomas reported in the literature are representative of chordoma in the general paediatric population, the authors compared age at diagnosis, primary site and outcome in them with results from a systematic assessment of 65 paediatric chordoma cases reported to the US population-based cancer registries contributing to the SEER Program of the National Cancer Institute. RESULTS TSC-associated paediatric chordomas differed from chordomas in the general paediatric population: median age at diagnosis (6.2 months, TSC, vs 12.5 years, SEER); anatomical site (40% sacral, TSC, vs 9.4% sacral, SEER); and site-specific age at diagnosis (all four sacral chordomas diagnosed during the fetal or neonatal period, TSC, vs all six sacral chordomas diagnosed at >15 years, SEER). Finally, three of four patients with TSC-associated sacral chordoma were alive and tumour-free at 2.2, 8 and 19 years after diagnosis versus a median survival of 36 months among paediatric patients with sacral chordoma in SEER. CONCLUSIONS These results strengthen the association between paediatric chordoma and TSC. Future clinical and molecular studies documenting the magnitude and clinical spectrum of the joint occurrence of these two diseases should provide the basis for delineating the biological relationship between them.
Collapse
Affiliation(s)
- Mary L. McMaster
- Genetic Epidemiology Branch, Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
- Commissioned Corps of the United States Public Health Service, Department of Health and Human Services, Washington, DC
| | - Alisa M. Goldstein
- Genetic Epidemiology Branch, Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Dilys M. Parry
- Genetic Epidemiology Branch, Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| |
Collapse
|
25
|
Sill H, Olipitz W, Zebisch A, Schulz E, Wölfler A. Therapy-related myeloid neoplasms: pathobiology and clinical characteristics. Br J Pharmacol 2011; 162:792-805. [PMID: 21039422 DOI: 10.1111/j.1476-5381.2010.01100.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Therapy-related myeloid neoplasms (t-MNs) are serious long-term consequences of cytotoxic treatments for an antecedent disorder. t-MNs are observed after ionizing radiation as well as conventional chemotherapy including alkylating agents, topoisomerase-II-inhibitors and antimetabolites. In addition, adjuvant use of recombinant human granulocyte-colony stimulating factor may also increase the risk of t-MNs. There is clinical and biological overlap between t-MNs and high-risk de novo myelodysplastic syndromes and acute myeloid leukaemia suggesting similar mechanisms of leukaemogenesis. Human studies and animal models point to a prominent role of genetic susceptibilty in the pathogenesis of t-MNs. Common genetic variants have been identified that modulate t-MN risk, and t-MNs have been observed in some cancer predisposition syndromes. In either case, establishing a leukaemic phenotype requires acquisition of somatic mutations - most likely induced by the cytotoxic treatment. Knowledge of the specific nature of the initiating exposure has allowed the identification of crucial pathogenetic mechanisms and for these to be modelled in vitro and in vivo. Prognosis of patients with t-MNs is dismal and at present, the only curative approach for the majority of these individuals is haematopoietic stem cell transplantation, which is characterized by high transplant-related mortality rates. Novel transplantation strategies using reduced intensity conditioning regimens as well as novel drugs - demethylating agents and targeted therapies - await clinical testing and may improve outcome. Ultimately, individual assessment of genetic risk factors may translate into tailored therapies and establish a strategy for reducing t-MN incidences without jeopardizing therapeutic success rates for the primary disorders.
Collapse
Affiliation(s)
- H Sill
- Department of Internal Medicine, Division of Haematology, Medical University of Graz, Graz, Austria.
| | | | | | | | | |
Collapse
|
26
|
Abstract
The Ras/Raf/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway is often implicated in sensitivity and resistance to leukemia therapy. Dysregulated signaling through the Ras/Raf/MEK/ERK pathway is often the result of genetic alterations in critical components in this pathway as well as mutations at upstream growth factor receptors. Unrestricted leukemia proliferation and decreased sensitivity to apoptotic-inducing agents and chemoresistance are typically associated with activation of pro-survival pathways. Mutations in this pathway and upstream signaling molecules can alter sensitivity to small molecule inhibitors targeting components of this cascade as well as to inhibitors targeting other key pathways (for example, phosphatidylinositol 3 kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome 10 (PTEN)/Akt/mammalian target of rapamycin (mTOR)) activated in leukemia. Similarly, PI3K mutations can result in resistance to inhibitors targeting the Ras/Raf/MEK/ERK pathway, indicating important interaction points between the pathways (cross-talk). Furthermore, the Ras/Raf/MEK/ERK pathway can be activated by chemotherapeutic drugs commonly used in leukemia therapy. This review discusses the mechanisms by which abnormal expression of the Ras/Raf/MEK/ERK pathway can contribute to drug resistance as well as resistance to targeted leukemia therapy. Controlling the expression of this pathway could improve leukemia therapy and ameliorate human health.
Collapse
|
27
|
Jongmans MCJ, van der Burgt I, Hoogerbrugge PM, Noordam K, Yntema HG, Nillesen WM, Kuiper RP, Ligtenberg MJL, van Kessel AG, van Krieken JHJM, Kiemeney LALM, Hoogerbrugge N. Cancer risk in patients with Noonan syndrome carrying a PTPN11 mutation. Eur J Hum Genet 2011; 19:870-4. [PMID: 21407260 PMCID: PMC3172922 DOI: 10.1038/ejhg.2011.37] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Noonan syndrome (NS) is characterized by short stature, facial dysmorphisms and congenital heart defects. PTPN11 mutations are the most common cause of NS. Patients with NS have a predisposition for leukemia and certain solid tumors. Data on the incidence of malignancies in NS are lacking. Our objective was to estimate the cancer risk and spectrum in patients with NS carrying a PTPN11 mutation. In addition, we have investigated whether specific PTPN11 mutations result in an increased malignancy risk. We have performed a cohort study among 297 Dutch NS patients with a PTPN11 mutation (mean age 18 years). The cancer histories were collected from the referral forms for DNA diagnostics, and by consulting the Dutch national registry of pathology and the Netherlands Cancer Registry. The reported frequencies of cancer among NS patients were compared with the expected frequencies using population-based incidence rates. In total, 12 patients with NS developed a malignancy, providing a cumulative risk for developing cancer of 23% (95% confidence interval (CI), 8–38%) up to age 55 years, which represents a 3.5-fold (95% CI, 2.0–5.9) increased risk compared with that in the general population. Hematological malignancies occurred most frequently. Two malignancies, not previously observed in NS, were found: a malignant mastocytosis and malignant epithelioid angiosarcoma. No correlation was found between specific PTPN11 mutations and cancer occurrence. In conclusion, this study provides first evidence of an increased risk of cancer in patients with NS and a PTPN11 mutation, compared with that in the general population. Our data do not warrant specific cancer surveillance.
Collapse
Affiliation(s)
- Marjolijn C J Jongmans
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pérez B, Kosmider O, Cassinat B, Renneville A, Lachenaud J, Kaltenbach S, Bertrand Y, Baruchel A, Chomienne C, Fontenay M, Preudhomme C, Cavé H. Genetic typing of CBL, ASXL1, RUNX1, TET2 and JAK2 in juvenile myelomonocytic leukaemia reveals a genetic profile distinct from chronic myelomonocytic leukaemia. Br J Haematol 2010; 151:460-8. [DOI: 10.1111/j.1365-2141.2010.08393.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
A germline gain-of-function mutation in Ptpn11 (Shp-2) phosphatase induces myeloproliferative disease by aberrant activation of hematopoietic stem cells. Blood 2010; 116:3611-21. [PMID: 20651068 DOI: 10.1182/blood-2010-01-265652] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Germline and somatic gain-of-function mutations in tyrosine phosphatase PTPN11 (SHP-2) are associated with juvenile myelomonocytic leukemia (JMML), a myeloproliferative disease (MPD) of early childhood. The mechanism by which PTPN11 mutations induce this disease is not fully understood. Signaling partners that mediate the pathogenic effects of PTPN11 mutations have not been explored. Here we report that germ line mutation Ptpn11(D61G) in mice aberrantly accelerates hematopoietic stem cell (HSC) cycling, increases the stem cell pool, and elevates short-term and long-term repopulating capabilities, leading to the development of MPD. MPD is reproduced in primary and secondary recipient mice transplanted with Ptpn11(D61G/+) whole bone marrow cells or purified Lineage(-)Sca-1(+)c-Kit(+) cells, but not lineage committed progenitors. The deleterious effects of Ptpn11(D61G) mutation on HSCs are attributable to enhancing cytokine/growth factor signaling. The aberrant HSC activities caused by Ptpn11(D61G) mutation are largely corrected by deletion of Gab2, a prominent interacting protein and target of Shp-2 in cell signaling. As a result, MPD phenotypes are markedly ameliorated in Ptpn11(D61G/+)/Gab2(-/-) double mutant mice. Collectively, our data suggest that oncogenic Ptpn11 induces MPD by aberrant activation of HSCs. This study also identifies Gab2 as an important mediator for the pathogenic effects of Ptpn11 mutations.
Collapse
|
30
|
Steinemann D, Arning L, Praulich I, Stuhrmann M, Hasle H, Stary J, Schlegelberger B, Niemeyer CM, Flotho C. Mitotic recombination and compound-heterozygous mutations are predominant NF1-inactivating mechanisms in children with juvenile myelomonocytic leukemia and neurofibromatosis type 1. Haematologica 2009; 95:320-3. [PMID: 20015894 DOI: 10.3324/haematol.2009.010355] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Children with neurofibromatosis type 1 (NF-1), being constitutionally deficient for one allele of the NF1 gene, are at greatly increased risk of juvenile myelomonocytic leukemia (JMML). NF1 is a negative regulator of RAS pathway activity, which has a central role in JMML. To further clarify the role of biallelic NF1 gene inactivation in the pathogenesis of JMML, we investigated the somatic NF1 lesion in 10 samples from children with JMML/NF-1. We report that two-thirds of somatic events involved loss of heterozygosity (LOH) at the NF1 locus, predominantly caused by segmental uniparental disomy of large parts of chromosome arm 17q. One-third of leukemias showed compound-heterozygous NF1-inactivating mutations. A minority of cases exhibited somatic interstitial deletions. The findings reinforce the emerging role of somatic mitotic recombination as a leukemogenic mechanism. In addition, they support the concept that biallelic NF1 inactivation in hematopoietic progenitor cells is required for transformation to JMML in children with NF-1.
Collapse
Affiliation(s)
- Doris Steinemann
- Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mutations of an E3 ubiquitin ligase c-Cbl but not TET2 mutations are pathogenic in juvenile myelomonocytic leukemia. Blood 2009; 115:1969-75. [PMID: 20008299 DOI: 10.1182/blood-2009-06-226340] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare pediatric myeloid neoplasm characterized by excessive proliferation of myelomonocytic cells. When we investigated the presence of recurrent molecular lesions in a cohort of 49 children with JMML, neurofibromatosis phenotype (and thereby NF1 mutation) was present in 2 patients (4%), whereas previously described PTPN11, NRAS, and KRAS mutations were found in 53%, 4%, and 2% of cases, respectively. Consequently, a significant proportion of JMML patients without identifiable pathogenesis prompted our search for other molecular defects. When we applied single nucleotide polymorphism arrays to JMML patients, somatic uniparental disomy 11q was detected in 4 of 49 patients; all of these cases harbored RING finger domain c-Cbl mutations. In total, c-Cbl mutations were detected in 5 (10%) of 49 patients. No mutations were identified in Cbl-b and TET2. c-Cbl and RAS pathway mutations were mutually exclusive. Comparison of clinical phenotypes showed earlier presentation and lower hemoglobin F levels in patients with c-Cbl mutations. Our results indicate that mutations in c-Cbl may represent key molecular lesions in JMML patients without RAS/PTPN11 lesions, suggesting analogous pathogenesis to those observed in chronic myelomonocytic leukemia (CMML) patients.
Collapse
|
32
|
Lauchle JO, Kim D, Le DT, Akagi K, Crone M, Krisman K, Warner K, Bonifas JM, Li Q, Coakley KM, Diaz-Flores E, Gorman M, Przybranowski S, Tran M, Kogan SC, Roose JP, Copeland NG, Jenkins NA, Parada L, Wolff L, Sebolt-Leopold J, Shannon K. Response and resistance to MEK inhibition in leukaemias initiated by hyperactive Ras. Nature 2009; 461:411-4. [PMID: 19727076 PMCID: PMC4119783 DOI: 10.1038/nature08279] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 07/07/2009] [Indexed: 11/09/2022]
Abstract
The cascade comprising Raf, mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) is a therapeutic target in human cancers with deregulated Ras signalling, which includes tumours that have inactivated the Nf1 tumour suppressor. Nf1 encodes neurofibromin, a GTPase-activating protein that terminates Ras signalling by stimulating hydrolysis of Ras-GTP. We compared the effects of inhibitors of MEK in a myeloproliferative disorder (MPD) initiated by inactivating Nf1 in mouse bone marrow and in acute myeloid leukaemias (AMLs) in which cooperating mutations were induced by retroviral insertional mutagenesis. Here we show that MEK inhibitors are ineffective in MPD, but induce objective regression of many Nf1-deficient AMLs. Drug resistance developed because of outgrowth of AML clones that were present before treatment. We cloned clone-specific retroviral integrations to identify candidate resistance genes including Rasgrp1, Rasgrp4 and Mapk14, which encodes p38alpha. Functional analysis implicated increased RasGRP1 levels and reduced p38 kinase activity in resistance to MEK inhibitors. This approach represents a robust strategy for identifying genes and pathways that modulate how primary cancer cells respond to targeted therapeutics and for probing mechanisms of de novo and acquired resistance.
Collapse
Affiliation(s)
- Jennifer O Lauchle
- Department of Pediatrics, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Xu J, Ismat FA, Wang T, Lu MM, Antonucci N, Epstein JA. Cardiomyocyte-specific loss of neurofibromin promotes cardiac hypertrophy and dysfunction. Circ Res 2009; 105:304-11. [PMID: 19574548 DOI: 10.1161/circresaha.109.201509] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder with a broad array of clinical manifestations, including benign and malignant tumors, and characteristic cutaneous findings. NF1 patients also have an increased incidence of cardiovascular diseases, including obstructive vascular disorders and hypertension. The disease gene, NF1, encodes neurofibromin, a ubiquitously expressed protein that acts, in part, as a Ras-GAP (GTP-ase activating protein), downregulating the activity of activated Ras protooncogenes. In animal models, endothelial and smooth muscle expression of the disease gene is critical for normal heart development and the prevention of vascular disease, respectively. OBJECTIVE To determine the role of NF1 in the postnatal and adult heart. METHODS AND RESULTS We generated mice with homozygous loss of the murine homolog Nf1 in myocardium (Nf1mKO) and evaluated their hearts for biochemical, structural, and functional changes. Nf1mKO mice have normal embryonic cardiovascular development but have marked cardiac hypertrophy, progressive cardiomyopathy, and fibrosis in the adult. Hyperactivation of Ras and downstream pathways are seen in the heart with the loss of Nf1, along with activation of a fetal gene program. CONCLUSIONS This report describes a critical role of Nf1 in the regulation of cardiac growth and function. Activation of pathways known to be involved in cardiac hypertrophy and dysfunction are seen with the loss of myocardial neurofibromin.
Collapse
Affiliation(s)
- Junwang Xu
- Department of Cell and Developmental Biology and the Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Juvenile myelomonocytic leukemia is an aggressive myeloproliferative disorder characterized by malignant transformation in the hematopoietic stem cell compartment with proliferation of differentiated progeny. Seventy-five percent of patients harbor mutations in the NF1, NRAS, KRAS, or PTPN11 genes, which encode components of Ras signaling networks. Using single nucleotide polymorphism arrays, we identified a region of 11q isodisomy that contains the CBL gene in several JMML samples, and subsequently identified CBL mutations in 27 of 159 JMML samples. Thirteen of these mutations alter codon Y371. In this report, we also demonstrate that CBL and RAS/PTPN11 mutations were mutually exclusive in these patients. Moreover, the exclusivity of CBL mutations with respect to other Ras pathway-associated mutations indicates that CBL may have a role in deregulating this key pathway in JMML.
Collapse
|
35
|
Oncogenic Kras initiates leukemia in hematopoietic stem cells. PLoS Biol 2009; 7:e59. [PMID: 19296721 PMCID: PMC2656550 DOI: 10.1371/journal.pbio.1000059] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 01/30/2009] [Indexed: 02/07/2023] Open
Abstract
How oncogenes modulate the self-renewal properties of cancer-initiating cells is incompletely understood. Activating KRAS and NRAS mutations are among the most common oncogenic lesions detected in human cancer, and occur in myeloproliferative disorders (MPDs) and leukemias. We investigated the effects of expressing oncogenic KrasG12D from its endogenous locus on the proliferation and tumor-initiating properties of murine hematopoietic stem and progenitor cells. MPD could be initiated by KrasG12D expression in a highly restricted population enriched for hematopoietic stem cells (HSCs), but not in common myeloid progenitors. KrasG12D HSCs demonstrated a marked in vivo competitive advantage over wild-type cells. KrasG12D expression also increased the fraction of proliferating HSCs and reduced the overall size of this compartment. Transplanted KrasG12D HSCs efficiently initiated acute T-lineage leukemia/lymphoma, which was associated with secondary Notch1 mutations in thymocytes. We conclude that MPD-initiating activity is restricted to the HSC compartment in KrasG12D mice, and that distinct self-renewing populations with cooperating mutations emerge during cancer progression. Ras proteins act as molecular switches that relay growth signals from outside the cell. This mechanism is often subverted in cancer, and Ras proteins are activated directly by RAS gene mutations in approximately one-third of human malignancies. We have modeled this in mice engineered to have a Ras mutation. These mice develop a disease similar to chronic leukemias in humans called myeloproliferative disorders. It is marked by a fatal accumulation of mature and immature cells in the blood and bone marrow. We investigated whether some or all of these neoplastic cells were immortal. In agreement with the “cancer stem cell” hypothesis, we found that immortal cells were extremely rare in the bone marrow of diseased mice. They were found only in the same cell populations that contain normal bone marrow stem cells. However, these cells had high rates of replication and produced large numbers of daughter cells. Furthermore, many mice went on to develop acute lymphoid leukemia after acquiring additional mutations in maturing lymphoid cells. These studies exemplify the evolution of malignant stem cells during cancer progression. They also highlight the importance of rare, long-lived cells in the genesis and, potentially, therapy of high-risk chronic leukemias caused by abnormal Ras proteins. TheKrasG12D oncogene causes excessive proliferation of stem cells, promoting their preferential expansion and initiating myeloproliferative disease.KrasG12D does not alter self-renewal, but secondary mutations in lymphoid progenitors allow progression to acute leukemia.
Collapse
|
36
|
Yoshida N, Yagasaki H, Xu Y, Matsuda K, Yoshimi A, Takahashi Y, Hama A, Nishio N, Muramatsu H, Watanabe N, Matsumoto K, Kato K, Ueyama J, Inada H, Goto H, Yabe M, Kudo K, Mimaya J, Kikuchi A, Manabe A, Koike K, Kojima S. Correlation of clinical features with the mutational status of GM-CSF signaling pathway-related genes in juvenile myelomonocytic leukemia. Pediatr Res 2009; 65:334-40. [PMID: 19047918 DOI: 10.1203/pdr.0b013e3181961d2a] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mutations in RAS, neurofibromatosis type 1 (NF1), and PTPN11, constituents of the granulocyte-macrophage colony-stimulating factor signaling pathway, have been recognized in patients with juvenile myelomonocytic leukemia (JMML). We assessed 71 children with JMML for NRAS, KRAS, and PTPN11 mutations and evaluated their clinical significance. Of the 71 patients, three had been clinically diagnosed with neurofibromatosis type 1, and PTPN11 and NRAS/KRAS mutations were found in 32 (45%) and 13 (18%) patients, respectively. No simultaneous aberrations were found. Compared with patients with RAS mutation or without any aberrations, patients with PTPN11 mutation were significantly older at diagnosis and had higher fetal Hb levels, both of which have been recognized as poor prognostic factors. As was expected, overall survival was lower for patients with the PTPN11 mutation than for those without (25 versus 64%; p = 0.0029). In an analysis of 48 patients who received hematopoietic stem cell transplantation, PTPN11 mutations were also associated with poor prognosis for survival. Mutation in PTPN11 was the only unfavorable factor for relapse after hematopoietic stem cell transplantation (p = 0.001). All patients who died after relapse had PTPN11 mutation. These results suggest that JMML with PTPN11 mutation might be a distinct subgroup with specific clinical characteristics and poor outcome.
Collapse
Affiliation(s)
- Nao Yoshida
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
High-throughput sequencing screen reveals novel, transforming RAS mutations in myeloid leukemia patients. Blood 2008; 113:1749-55. [PMID: 19075190 DOI: 10.1182/blood-2008-04-152157] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming mutations in NRAS and KRAS are thought to play a causative role in the development of numerous cancers, including myeloid malignancies. Although mutations at amino acids 12, 13, or 61 account for the majority of oncogenic Ras variants, we hypothesized that less frequent mutations at alternate residues may account for disease in some patients with cancer of unexplained genetic etiology. To search for additional, novel RAS mutations, we sequenced all coding exons in NRAS, KRAS, and HRAS in 329 acute myeloid leukemia (AML) patients, 32 chronic myelomonocytic leukemia (CMML) patients, and 96 healthy individuals. We detected 4 "noncanonical" point mutations in 7 patients: N-Ras(G60E), K-Ras(V14I), K-Ras(T74P), and K-Ras(A146T). All 4 Ras mutants exhibited oncogenic properties in comparison with wild-type Ras in biochemical and functional assays. The presence of transforming RAS mutations outside of positions 12, 13, and 61 reveals that alternate mechanisms of transformation by RAS may be overlooked in screens designed to detect only the most common RAS mutations. Our results suggest that RAS mutations may play a greater role in leukemogenesis than currently believed and indicate that high-throughput screening for mutant RAS alleles in cancer should include analysis of the entire RAS coding region.
Collapse
|
38
|
Liu YL, Castleberry RP, Emanuel PD. PTEN deficiency is a common defect in juvenile myelomonocytic leukemia. Leuk Res 2008; 33:671-7. [PMID: 19010541 DOI: 10.1016/j.leukres.2008.09.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 09/23/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
Abstract
The biological hallmark of juvenile myelomonocytic leukemia (JMML) is selective GM-CSF hypersensitivity. We hypothesized that PTEN protein deficiency might lead to insufficient negative growth signals to counter the hyperactive Ras signaling and therefore aid in the acceleration of the malignant transformation of JMML. In screening 34 JMML patients we found: (1) decreased PTEN protein in 67% of patients; (2) significantly lower PTEN mRNA levels in patients compared to controls (p<0.01); (3) a hypermethylated PTEN promoter in 77% of patients; and (4) constitutive-hyperactive Akt and MAPK in 55% and 73% of patients, respectively. These findings suggest that PTEN deficiency is very common in JMML and is in part due to hypermethylation of the PTEN gene promoter.
Collapse
Affiliation(s)
- Yunying Lucy Liu
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, slot #623, Little Rock, AR 72205-7199, USA
| | | | | |
Collapse
|
39
|
Gelsi-Boyer V, Trouplin V, Adélaïde J, Aceto N, Remy V, Pinson S, Houdayer C, Arnoulet C, Sainty D, Bentires-Alj M, Olschwang S, Vey N, Mozziconacci MJ, Birnbaum D, Chaffanet M. Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes. BMC Cancer 2008; 8:299. [PMID: 18925961 PMCID: PMC2588460 DOI: 10.1186/1471-2407-8-299] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 10/16/2008] [Indexed: 11/19/2022] Open
Abstract
Background Chronic myelomonocytic leukemia (CMML) is a hematological disease close to, but separate from both myeloproliferative disorders (MPD) and myelodysplastic syndromes and may show either myeloproliferative (MP-CMML) or myelodysplastic (MD-CMML) features. Not much is known about the molecular biology of this disease. Methods We studied a series of 30 CMML samples (13 MP- and 11 MD-CMMLs, and 6 acutely transformed cases) from 29 patients by using Agilent high density array-comparative genomic hybridization (aCGH) and sequencing of 12 candidate genes. Results Two-thirds of samples did not show any obvious alteration of aCGH profiles. In one-third we observed chromosome abnormalities (e.g. trisomy 8, del20q) and gain or loss of genes (e.g. NF1, RB1 and CDK6). RAS mutations were detected in 4 cases (including an uncommon codon 146 mutation in KRAS) and PTPN11 mutations in 3 cases. We detected 11 RUNX1 alterations (9 mutations and 2 rearrangements). The rearrangements were a new, cryptic inversion of chromosomal region 21q21-22 leading to break and fusion of RUNX1 to USP16. RAS and RUNX1 alterations were not mutually exclusive. RAS pathway mutations occurred in MP-CMMLs (~46%) but not in MD-CMMLs. RUNX1 alterations (mutations and cryptic rearrangement) occurred in both MP and MD classes (~38%). Conclusion We detected RAS pathway mutations and RUNX1 alterations. The latter included a new cryptic USP16-RUNX1 fusion. In some samples, two alterations coexisted already at this early chronic stage.
Collapse
Affiliation(s)
- Véronique Gelsi-Boyer
- Centre de Recherche en Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, UMR891 Inserm, Institut Paoli-Calmettes, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
K-RasG12D-induced T-cell lymphoblastic lymphoma/leukemias harbor Notch1 mutations and are sensitive to gamma-secretase inhibitors. Blood 2008; 112:3373-82. [PMID: 18663146 DOI: 10.1182/blood-2008-03-147587] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To study the impact of oncogenic K-Ras on T-cell leukemia/lymphoma development and progression, we made use of a conditional K-Ras(G12D) murine knockin model, in which oncogenic K-Ras is expressed from its endogenous promoter. Transplantation of whole bone marrow cells that express oncogenic K-Ras into wild-type recipient mice resulted in a highly penetrant, aggressive T-cell leukemia/lymphoma. The lymphoblasts were composed of a CD4/CD8 double-positive population that aberrantly expressed CD44. Thymi of primary donor mice showed reduced cellularity, and immunophenotypic analysis demonstrated a block in differentiation at the double-negative 1 stage. With progression of disease, approximately 50% of mice acquired Notch1 mutations within the PEST domain. Of note, primary lymphoblasts were hypersensitive to gamma-secretase inhibitor treatment, which is known to impair Notch signaling. This inhibition was Notch-specific as assessed by down-regulation of Notch1 target genes and intracellular cleaved Notch. We also observed that the oncogenic K-Ras-induced T-cell disease was responsive to rapamycin and inhibitors of the RAS/MAPK pathway. These data indicate that patients with T-cell leukemia with K-Ras mutations may benefit from therapies that target the NOTCH pathway alone or in combination with inhibition of the PI3K/AKT/MTOR and RAS/MAPK pathways.
Collapse
|
41
|
Tyner JW, Loriaux MM, Erickson H, Eide CA, Deininger J, MacPartlin M, Willis SG, Lange T, Druker BJ, Kovacsovics T, Maziarz R, Gattermann N, Deininger MW. High-throughput mutational screen of the tyrosine kinome in chronic myelomonocytic leukemia. Leukemia 2008; 23:406-9. [PMID: 18615102 DOI: 10.1038/leu.2008.187] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Tefferi A. Mutant molecules of interest in myeloproliferative neoplasms: introduction. Acta Haematol 2008; 119:192-3. [PMID: 18566535 DOI: 10.1159/000140629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
|
44
|
Yoshida N, Yagasaki H, Takahashi Y, Kudo K, Manabe A, Kojima S. Mutation analysis of SIPA1 in patients with juvenile myelomonocytic leukemia. Br J Haematol 2008; 142:850-1. [PMID: 18492118 DOI: 10.1111/j.1365-2141.2008.07249.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Niemeyer CM, Kratz CP. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. Br J Haematol 2008; 140:610-24. [DOI: 10.1111/j.1365-2141.2007.06958.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Miyamoto D, Miyamoto M, Takahashi A, Yomogita Y, Higashi H, Kondo S, Hatakeyama M. Isolation of a distinct class of gain-of-function SHP-2 mutants with oncogenic RAS-like transforming activity from solid tumors. Oncogene 2008; 27:3508-15. [PMID: 18223690 DOI: 10.1038/sj.onc.1211019] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SHP-2 protein tyrosine phosphatase plays an important role in activation of the RAS-dependent signaling. Gain-of-function mutations in the PTPN11 gene, which encodes SHP-2, have been found in the leukemia-prone developmental disorder Noonan syndrome as well as sporadic childhood leukemias, indicating that SHP-2 is a bona fide human oncoprotein. However, the role of SHP-2 mutations in non-hematological malignancies remains obscure. Here, we screened for PTPN11 mutations in primary solid tumors and identified a 1520C>A mutation that causes threonine-507 to lysine (T507K) substitution in the phosphatase domain of SHP-2 in a case of hepatocellular carcinoma. T507K SHP-2 exhibited altered substrate specificity with slightly elevated basal phosphatase activity. Upon expression in NIH3T3 cells, T507K SHP-2 induced transformed foci, which was not observed with wild type, Noonan-specific or leukemia-specific SHP-2. Furthermore, NIH3T3 cells transformed by T507K SHP-2 showed anchorage-independent growth and developed tumors in nude mice. These results indicate that quantitative and/or qualitative alteration in phosphatase activity determines the transforming potential as well as target cell/tissue spectrum of individual SHP-2 mutants as oncoproteins. Although rare in solid tumors, the identified T507K SHP-2 represents a distinct class of SHP-2 mutants with oncogenic RAS-like transforming activity, which could contribute to the development of solid tumors.
Collapse
Affiliation(s)
- D Miyamoto
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Marques-Salles TDJ, Soares-Ventura EM, Oliveira NLD, Silva M, Assis R, Morais VLLD, Otero L, Fernandez T, Pombo-de-Oliveira MDS, Muniz MTC, Santos N. Myeloproliferative syndrome of monosomy 7: a brief report. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Affiliation(s)
- Ernesto Diaz-Flores
- Department of Pediatrics, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
49
|
Ren Y, Chen Z, Chen L, Woods NT, Reuther GW, Cheng JQ, Wang HG, Wu J. Shp2E76K mutant confers cytokine-independent survival of TF-1 myeloid cells by up-regulating Bcl-XL. J Biol Chem 2007; 282:36463-73. [PMID: 17942397 DOI: 10.1074/jbc.m705789200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Shp2 has been known to mediate growth factor-stimulated cell proliferation, but its role in cell survival is less clear. Gain-of-function Shp2 mutants such as Shp2E76K are associated with myeloid leukemias. We found that Shp2E76K could transform cytokine-dependent human TF-1 myeloid cells into cytokine independence and further characterized the Shp2E76K-induced cell survival mechanism in this study. Expression of Shp2E76K suppressed the cytokine withdrawal-induced intrinsic/mitochondrial apoptosis pathway, which is controlled by the Bcl-2 family proteins. Analysis of Bcl-2 family proteins showed that Bcl-XL and Mcl-1 were up-regulated in Shp2E76K-transformed TF-1 (TF-1/Shp2E76K) cells. Knockdown of Bcl-XL but not Mcl-1 with short hairpin RNAs prevented Shp2E76K-induced cytokine-independent survival. Roscovitine, which down-regulated Mcl-1, also did not prevent cytokine-independent survival of TF-1/Shp2E76K cells, whereas the Bcl-XL inhibitor HA14-1 did. Ras and mitogen-activated protein kinases Erk1 and Erk2 (Erk1/2) were constitutively activated in TF-1/Shp2E76K cells, whereas little active Akt was detected under cytokine-free conditions. Shp2E76K-induced Bcl-XL expression was suppressed by Mek inhibitors and by a dominant-negative Mek1 mutant but not by the phosphoinositide 3-phosphate inhibitor LY294002 and the Akt inhibitor API-2. Inhibition of Erk1/2 blocked cytokine-independent survival of TF-1/Shp2E76K cells, whereas inhibition of Akt had a minimal effect on cytokine-independent survival of TF-1/Shp2E76K cells. These results show that Shp2E76K can evoke constitutive Erk1/2 activation in TF-1 cells. Furthermore, Shp2E76K induces cytokine-independent survival of TF-1 cells by a novel mechanism involving up-regulation of Bcl-XL through the Erk1/2 pathway.
Collapse
Affiliation(s)
- Yuan Ren
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Department of Interdisciplinary Oncology, University of South Florida, Tampa 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bergstraesser E, Hasle H, Rogge T, Fischer A, Zimmermann M, Noellke P, Niemeyer CM. Non-hematopoietic stem cell transplantation treatment of juvenile myelomonocytic leukemia: a retrospective analysis and definition of response criteria. Pediatr Blood Cancer 2007; 49:629-33. [PMID: 16991133 DOI: 10.1002/pbc.21038] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative disease of infancy. Allogeneic hematopoietic stem cell transplantation (HSCT) is currently the only curative treatment modality, while the role of anti-leukemic therapy prior to HSCT is uncertain. A comparative evaluation of the efficacy of different clinical protocols and great variety of anti-neoplastic drugs applied pre-HSCT is hampered by the lack of uniform criteria of response. Classification schemas applied in other forms of leukemia are of little value, because in JMML therapy may result in divergent responses in solid organs compared to peripheral blood (PB). PROCEDURE We therefore defined separate response criteria for white blood count (WBC), platelet count, liver size, and spleen size. We then retrospectively evaluated the efficacy of 129 treatment courses other than HSCT administered to 63 children with JMML. Treatment consisted of intensive therapy according to AML-type chemotherapy, maintenance-type combination therapy, and single agent therapy. To account for the variability observed in the natural course of disease, we also evaluated 32 episodes of "no therapy." RESULTS Best responses within 3 months of initiation of therapy were highly variable for the four response criteria. In contrast to platelet count and liver size, there was a significant correlation between WBC or spleen size and therapy. Response rates for WBC and spleen size were best for purine analogs, etoposide, and cytarabine as single agents or for maintenance-type combination therapy. CONCLUSION To rigorously test future therapeutic strategies in this rare disease an international consensus on the definition of response criteria will be helpful.
Collapse
Affiliation(s)
- Eva Bergstraesser
- Division of Pediatric Hematology and Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|