1
|
Shulman DS, DuBois SG. The Evolving Diagnostic and Treatment Landscape of NTRK-Fusion-Driven Pediatric Cancers. Paediatr Drugs 2020; 22:189-197. [PMID: 31965543 DOI: 10.1007/s40272-020-00380-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neurotrophin receptor tyrosine kinase (NTRK1-3) genes have been identified as key fusion partners in a range of pediatric cancers. In childhood cancers, ETV6-NTRK3 fusions are found in the majority of infantile fibrosarcomas and congenital mesoblastic nephromas. NTRK fusions are also found in mammary analog secretory carcinomas (MASC), secretory breast carcinomas, and with modest frequency in high-grade gliomas in very young children. While there are a range of multi-receptor tyrosine kinase inhibitors that show efficacy against TRK kinases, there are now multiple highly selective TRK inhibitors in clinical evaluation. Entrectinib and larotrectinib have been evaluated in early-phase clinical trials for children and demonstrated high response rates with good durability of response. Both agents are now approved in the United States in an age and histology agnostic manner for children (age > 12 years for entrectinib; all ages for larotrectinib) for the treatment of solid tumors harboring NTRK fusions without an option for complete surgical resection, with relapsed disease, or without a viable alternative systemic option. More recently, two second-generation TRK inhibitors, selitrectinib and repotrectinib, have been developed and are currently being evaluated in pediatric early phase trials. The Children's Oncology Group has also launched a phase II trial of larotrectinib as a neoadjuvant agent for patients with newly diagnosed infantile fibrosarcoma. While the clinical use of these agents has developed rapidly, many questions remain in terms of duration of therapy, treatment of CNS disease, and long-term toxicities. Further development of this class of agents will continue to require multi-center trials for these rare tumors. Tumor sequencing and potentially sequencing of circulating tumor DNA will improve our understanding of patterns of resistance and the most effective treatment strategies for these patients.
Collapse
Affiliation(s)
- David S Shulman
- Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Steven G DuBois
- Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Abstract
There are several forms of brain-derived neurotrophic factor (BDNF), the precursor of BDNF, mature BDNF, and BDNF propeptide. They exert different effects through different transmembrane receptor signaling systems. Precursor of BDNF is enzymatically cleaved, either by intracellular or by extracellular proteases, to generate mature BDNF and its propeptide (BDNF propeptide). The aim of this study was to evaluate the potential molecular mechanisms that underlie the inhibition of glioma cell growth by the BDNF propeptide. To achieve this, we examined the expression of BDNF propeptide in C6 glioma cells. The 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay and the apoptosis assay were used to assess the effects of the BDNF propeptide on the growth and apoptosis of glioma cells. We found that the BDNF propeptide promoted C6 glioma cell apoptosis and decreased in-vitro cell growth. We also found using western blot that cleaved caspase3 and B cell lymphoma 2 (Bcl2)-associated X protein abundances increased, whereas Bcl2 abundance decreased. Our data suggest that the BDNF propeptide may have an inhibitory effect on glioma through activation of the caspase3 pathway.
Collapse
|
3
|
Song D, Diao J, Yang Y, Chen Y. MicroRNA‑382 inhibits cell proliferation and invasion of retinoblastoma by targeting BDNF‑mediated PI3K/AKT signalling pathway. Mol Med Rep 2017; 16:6428-6436. [PMID: 28901408 DOI: 10.3892/mmr.2017.7396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/16/2017] [Indexed: 11/06/2022] Open
Abstract
It has previously been demonstrated that multiple microRNAs (miRNAs or miRs) are aberrantly expressed in retinoblastoma (RB) and contribute to RB initiation and progression. miR‑382 has been revealed to be aberrantly expressed and therefore exhibits a key role in the progression of various types of cancer. However, the expression pattern, functional roles and underlying molecular mechanism of miR‑382 in RB remain unknown. The present study investigated the expression levels of miR‑382 and its effects on RB cells and the underlying regulatory mechanism of its action. It was demonstrated that miR‑382 was downregulated in RB tissues and cell lines. Upregulation of miR‑382 inhibited RB cell proliferation and invasion in vitro. Additionally, brain‑derived neurotrophic factor (BDNF) was identified as a novel target of miR‑382 in RB. BDNF was upregulated in RB tissues and negatively associated with miR‑382 expression levels. Furthermore, BDNF overexpression rescued the tumour‑suppressing effects on RB cells induced by miR‑382. miR‑382 inactivated the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signalling pathway in RB. These findings suggested that miR‑382 serves as a tumour suppressor in RB, in part, by targeting the BDNF‑mediated PI3K/AKT signalling pathway. The results of the present study suggest a potential therapeutic strategy for treating RB patients in the future.
Collapse
Affiliation(s)
- Dan Song
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Jiandong Diao
- Department of Oncology and Hematology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yongjing Yang
- Department of Thoracic Oncology, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Yahong Chen
- Department of Colorectal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
4
|
Sun CY, Chu ZB, Huang J, Chen L, Xu J, Xu AS, Li JY, Hu Y. siRNA-mediated inhibition of endogenous brain‑derived neurotrophic factor gene modulates the biological behavior of HeLa cells. Oncol Rep 2017; 37:2751-2760. [PMID: 28405685 DOI: 10.3892/or.2017.5569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/16/2016] [Indexed: 11/06/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is expressed in a number of neural and non-neuronal tumors. The present study investigated the effect of endogenous BDNF on the biological behavior of cervix cancer cells using small interfering RNA (siRNA). HeLa, a cervix cancer cell line with high expression of BDNF, was used as a living model to screen out the effective sequences of short hairpin RNA of the BDNF gene, and the effects of RNA interference on proliferation, apoptosis, migration and invasion of these cells were evaluated. Among the 4 siRNAs examined, siRNA1 caused a 99% reduction in the relative BDNF mRNA level, while a 58% decrease in the relative BDNF protein level (p<0.01) was noted, and thus this siRNA was selected as the most efficient for use in the present study. In subsequent experiments, MTT assay revealed that BDNF silencing caused marked inhibition of HeLa cell proliferation while Hoechst 33258 staining assay demonstrated apoptosis-related changes in cell morphology. Downregulation of BDNF expression induced cell cycle arrest in the G1 phase as shown by flow cytometry. As indicated by Transwell migration and invasion assays, downregulation of BDNF expression suppressed the migratory and invasive capabilities of the HeLa cells. Together, our data revealed that BDNF modulates the proliferation, apoptosis, migratory and invasive capabilities of HeLa cells. BDNF siRNA may represent a novel therapy or drug target for preventing the tumorigenesis of cervical cancer.
Collapse
Affiliation(s)
- Chun-Yan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Zhang-Bo Chu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jing Huang
- Department of Hematology, Hongkong University-Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Lei Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jian Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ao-Shuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jun-Ying Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
5
|
Long noncoding RNA BDNF-AS is a potential biomarker and regulates cancer development in human retinoblastoma. Biochem Biophys Res Commun 2017; 497:1142-1148. [PMID: 28131827 DOI: 10.1016/j.bbrc.2017.01.134] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNA) have been shown to play important roles in human cancer. We examined expression, prognostic potential and functional roles of lncRNA, brain-derived neurotrophic factor antisense (BDNF-AS) in human retinoblastoma (RB). METHODS BDNF-AS expression in RB tumors was characterized according to the clinicopathological parameters of patients. BDNF-AS mRNA level was compared between RB tumors and normal retinas, as well as RB cell lines and normal retinal epithelial cells. RB patients' overall survival was compared between those with low and high BDNF-AS tumor expressions. Statistical analysis was performed to examine the independence of BDNF-AS being cancer biomarker in RB. In Y79 and WERI-Rb-1 cells, BDNF-AS was upregulated. It's effect on cancer proliferation, migration and cell-cycle transition were assessed. RESULTS BDNF-AS is downregulated in RB tumors and cell lines. Low BDNF-AS expression in RB tumors is correlated with patients' advanced clinical stage and tumor differentiation status. Low BDNF-AS expression is associated with shorter overall survival and may be acting as an independent marker in RB. In Y79 and WERI-Rb-1 cells, forced overexpression of BDNF-AS inhibited cancer proliferation and migration. It also induced cell-cycle arrest at G0/G1 phase by downregulating CDC42, Cyclin E and BDNF. CONCLUSION BDNF-AS is lowly expressed, and may be used as a prognostic biomarker in RB. Upregulating BDNF-AS has inhibitory effect on RB development, probably through the suppression of cell-cycle transition.
Collapse
|
6
|
Gao Y, Jing M, Ge R, Lang L. Induction of hypoxia-inducible factor-1α by BDNF protects retinoblastoma cells against chemotherapy-induced apoptosis. Mol Cell Biochem 2016; 414:77-84. [PMID: 26868822 DOI: 10.1007/s11010-016-2660-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
Abstract
Alternations of environment signals such as neurotrophins may be the basis for malignant transformation of retinoblastoma (Rb), the most common primary intraocular malignancy in children. The aim of this study is to investigate the ability of brain-derived neurotrophic factor (BDNF) to decrease the chemosensitivity of Rb cells to the common chemotherapeutic agents and to explore the role of hypoxia-inducible factor-1α (HIF-1α) in such cellular process. The results showed that BDNF could induce higher expression of HIF-1α via activation of TrkB in human Y-79 retinoblastoma cells, which consequently contributed to its effect against chemotherapeutic agent-induced cytotoxicity and cell apoptosis. However, this protective effect could be potently reversed by knockdown of HIF-1α. Furthermore, BDNF strikingly prevented chemotherapeutic agent-induced alternations of apoptosis-related molecules, which could also be attenuated by silencing HIF-1α. Therefore, our findings demonstrated that BDNF could contribute to chemoresistance of Rb via modulation of HIF-1α expression, indicating that targeting at the BDNF-TrkB/HIF-1α signaling pathway might be a promising strategy for the treatment of retinoblastoma in the future.
Collapse
Affiliation(s)
- Yu Gao
- Department of Ophthalmology, No. 411 Hospital of CPLA, Shanghai, 200081, China
| | - Ming Jing
- Department of Ophthalmology, No. 411 Hospital of CPLA, Shanghai, 200081, China
| | - Rongrong Ge
- Department of Ophthalmology, No. 411 Hospital of CPLA, Shanghai, 200081, China
| | - Lili Lang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200081, China.
| |
Collapse
|
7
|
Li J, Di C, Jing J, Di Q, Nakhla J, Adamson DC. OTX2 is a therapeutic target for retinoblastoma and may function as a common factor between C-MYC, CRX, and phosphorylated RB pathways. Int J Oncol 2015; 47:1703-10. [PMID: 26397460 DOI: 10.3892/ijo.2015.3179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/19/2014] [Indexed: 11/06/2022] Open
Abstract
The homeobox transcription factor orthodenticle homeobox 2 (OTX2) plays a critical role in very early neurogenesis, but can become oncogenic when aberrantly expressed later in life. We previously discovered its novel oncogenic role in the malignant childhood brain tumor medulloblastoma and hypothesize an oncogenic role in retinoblastoma. Primary retinoblastoma tumors and cell lines were analyzed by quantitative-PCR, immunoblotting and immunohistochemistry for OTX2. The effect of modulating OTX2 expression on tumorigenesis was tested pharmacologically and by siRNA. A lentiviral shRNA-engineered vector was used for conditional knockdown studies on tumor growth in vivo. A luciferase reporter assay was used to analyze ATRA's effect on OTX2's promoter. In this study on retinoblastoma, OTX2 was frequently amplified and/or overexpressed in primary tumors and cell lines. Knockdown of OTX2 expression by siRNA or pharmacologic inhibition by all-trans retinoic acid (ATRA) repressed OTX2 expression and cell proliferation and significantly decreased tumor growth in vivo. Loss of OTX2 expression also resulted in decreased expression of C-MYC and CRX, genes previously implicated in retinoblastoma tumorigenesis. Loss of OTX2 expression increased the phosphorylation of RB, a potential mechanism of modulating cell proliferation. Aberrant expression of OTX2 may contribute to the development of retinoblastoma. OTX2 may serve as a common transcription factor that interlinks multiple tumor-driving pathways. These results also show that OTX2 can be genetically and pharmacologically targeted, providing an exciting new therapeutic option that may be less toxic and more efficacious than current treatments.
Collapse
Affiliation(s)
- Jing Li
- Preston Robert Tisch Brain Tumor Center, Duke Medical Center, Durham, NC, USA
| | - Chunhui Di
- Preston Robert Tisch Brain Tumor Center, Duke Medical Center, Durham, NC, USA
| | - Jenny Jing
- Preston Robert Tisch Brain Tumor Center, Duke Medical Center, Durham, NC, USA
| | - Qun Di
- Preston Robert Tisch Brain Tumor Center, Duke Medical Center, Durham, NC, USA
| | - Jonathan Nakhla
- Preston Robert Tisch Brain Tumor Center, Duke Medical Center, Durham, NC, USA
| | - David Cory Adamson
- Preston Robert Tisch Brain Tumor Center, Duke Medical Center, Durham, NC, USA
| |
Collapse
|
8
|
Xiong J, Zhou LI, Lim Y, Yang M, Zhu YH, Li ZW, Fu DL, Zhou XF. Mature brain-derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues. Oncol Lett 2015; 10:223-227. [PMID: 26171003 DOI: 10.3892/ol.2015.3181] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 04/17/2015] [Indexed: 12/20/2022] Open
Abstract
There are two forms of brain-derived neurotrophic factor (BDNF), precursor of BDNF (proBDNF) and mature BDNF, which each exert opposing effects through two different transmembrane receptor signaling systems, consisting of p75 neurotrophin receptor (p75NTR) and tyrosine receptor kinase B (TrkB). Previous studies have demonstrated that proBDNF promotes cell death and inhibits the growth and migration of C6 glioma cells through p75NTR in vitro, while mature BDNF has opposite effects on C6 glioma cells. It is hypothesized that mature BDNF is essential in the development of malignancy in gliomas. However, histological data obtained in previous studies were unable distinguish mature BDNF from proBDNF due to the lack of specific antibodies. The present study investigated the expression of mature BDNF using a specific sheep monoclonal anti-mature BDNF antibody in 42 human glioma tissues of different grades and 10 control tissues. The correlation between mature BDNF and TrkB was analyzed. Mature BDNF expression was significantly increased in high-grade gliomas, and was positively correlated with the malignancy of the tumor and TrkB receptor expression. The present data have demonstrated that increased levels of mature BDNF contribute markedly to the development of malignancy of human gliomas through the primary BDNF receptor TrkB.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Neurology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - L I Zhou
- The First People's Hospital of Yunnan, Kunming, Yunnan 650000, P.R. China
| | - Yoon Lim
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Miao Yang
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Yu-Hong Zhu
- Department of Neurology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Zhi-Wei Li
- Department of Neurology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Deng-Li Fu
- Department of Neurology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia ; Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
9
|
|
10
|
Xiong J, Zhou L, Yang M, Lim Y, Zhu YH, Fu DL, Li ZW, Zhong JH, Xiao ZC, Zhou XF. ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro. Neuro Oncol 2013; 15:990-1007. [PMID: 23576602 DOI: 10.1093/neuonc/not039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High-grade glioma is incurable, with a short survival time and poor prognosis. The increased expression of p75 neurotrophin receptor (NTR) is a characteristic of high-grade glioma, but the potential significance of increased p75NTR in this tumor is not fully understood. Since p75NTR is the receptor for the precursor of brain-derived neurotrophic factor (proBDNF), it is suggested that proBDNF may have an impact on glioma. METHODS In this study we investigated the expression of proBDNF and its receptors p75NTR and sortilin in 52 cases of human glioma and 13 cases of controls by immunochemistry, quantitative real-time PCR, and Western blot methods. Using C6 glioma cells as a model, we investigated the roles of proBDNF on C6 glioma cell differentiation, growth, apoptosis, and migration in vitro. RESULTS We found that the expression levels of proBDNF, p75NTR, and sortilin were significantly increased in high-grade glioma and were positively correlated with the malignancy of the tumor. We also observed that tumors expressed proBDNF, p75NTR, and sortilin in the same cells with different subcellular distributions, suggesting an autocrine or paracrine loop. The ratio of proBDNF to mature BDNF was decreased in high-grade glioma tissues and was negatively correlated with tumor grade. Using C6 glioma cells as a model, we found that proBDNF increased apoptosis and differentiation and decreased cell growth and migration in vitro via p75NTR. CONCLUSIONS Our data indicate that proBDNF and its receptors are upregulated in high-grade glioma and might play an inhibitory effect on glioma.
Collapse
Affiliation(s)
- Jing Xiong
- Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, Yunnan Province, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Parsi S, Soltani BM, Hosseini E, Tousi SE, Mowla SJ. Experimental verification of a predicted intronic microRNA in human NGFR gene with a potential pro-apoptotic function. PLoS One 2012; 7:e35561. [PMID: 22558167 PMCID: PMC3338703 DOI: 10.1371/journal.pone.0035561] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/20/2012] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins (NTs) are a family of secreted growth factor proteins primarily involved in the regulation of survival and appropriate development of neural cells, functioning by binding to their specific (TrkA, TtkB, and TrkC) and/or common NGFR receptor. NGFR is the common receptor of NTs, binding with low-affinity to all members of the family. Among different functions assigned to NGFR, it is also involved in apoptosis induction and tumorigenesis processes. Interestingly, some of the functions of NGFR appear to be ligand-independent, suggesting a probable involvement of non-coding RNA residing within the sequence of the gene. Here, we are reporting the existence of a conserved putative microRNA, named Hsa-mir-6165 [EBI accession#: FR873488]. Transfection of a DNA segment corresponding to the pre-mir-6165 sequence in Hela cell line caused the generation of mature exogenous mir-6165 (a ∼200,000 fold overexpression). Furthermore, using specific primers, we succeeded to detect the endogenous expression of mir-6165 in several glioma cell lines and glioma primary tumors known to express NGFR. Similar to the pro-apoptotic role of NGFR in some cell types, overexpression of pre-mir-6165 in U87 cell line resulted in an elevated rate of apoptosis. Moreover, coordinated with the increased level of mir-6165 in the transfected U87 cell line, two of its predicted target genes (Pkd1 and DAGLA) were significantly down-regulated. The latter findings suggest that some of the previously attributed functions of NGFR could be explained indirectly by co-transcription of mir-6165 in the cells.
Collapse
Affiliation(s)
- Sepideh Parsi
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M. Soltani
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ebrahim Hosseini
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh E. Tousi
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed J. Mowla
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Schulte JH, Pentek F, Hartmann W, Schramm A, Friedrichs N, Øra I, Koster J, Versteeg R, Kirfel J, Buettner R, Eggert A. The low-affinity neurotrophin receptor, p75, is upregulated in ganglioneuroblastoma/ganglioneuroma and reduces tumorigenicity of neuroblastoma cells in vivo. Int J Cancer 2009; 124:2488-94. [PMID: 19142969 DOI: 10.1002/ijc.24204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neuroblastoma, the most common extracranial tumor of childhood, is derived from neural crest progenitor cells that fail to differentiate along their predefined route to sympathetic neurons or sympatho-adrenergic adrenal cells. Although expression of the high-affinity neurotrophin receptors, TrkA and TrkB, is of major importance in neuroblastoma, the significance of the expression of the low-affinity neurotrophin receptor, p75, is unclear. Here, we analyzed immunohistochemically expression of p75 on a tissue microarray of 93 primary neuroblastic tumors and assessed the functional consequences of p75 expression in neuroblastoma cell lines. We found the p75 receptor protein to be expressed in neuroblastic cells of ganglioneuromas/ganglioneuroblastomas as well as differentiating neuroblastomas, but not in poorly differentiated neuroblastomas. In an unrelated cohort of 110 neuroblastic tumors, p75 mRNA expression levels correlated with differentiation, and patients with tumors that expressed p75 at high levels had an increased event-free and overall survival. In addition, we did not detect p75 expression in 8 established neuroblastoma cell lines examined with FACS analysis. These cell lines exhibited an undifferentiated morphology, and were all derived from aggressive, high-stage neuroblastomas. Ectopic p75 expression in the SH-SY5Y neuroblastoma cell line significantly reduced proliferation, increased the fraction of apoptotic cells in vitro and resulted in a loss of tumorigenicity in nude mice. Taken together, our data suggest that expression of the p75 low-affinity neurotrophin receptor is correlated with a reduced level of tumorigenicity, and that induction of p75 expression may be an option to revert features of an aggressive tumor phenotype.
Collapse
Affiliation(s)
- Johannes H Schulte
- Department of Pediatric Oncology and Haematology, University Children's Hospital Essen, 45122 Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cimmino F, Schulte JH, Zollo M, Koster J, Versteeg R, Iolascon A, Eggert A, Schramm A. Galectin-1 is a major effector of TrkB-mediated neuroblastoma aggressiveness. Oncogene 2009; 28:2015-23. [PMID: 19363525 DOI: 10.1038/onc.2009.70] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Expression of Trk receptors is an important prognostic factor in neuroblastoma (NB) and other cancers. TrkB and its ligand brain-derived neurotrophic factor (BDNF) are preferentially expressed in NB with poor prognosis, conferring invasive and metastatic potential to the tumor cells as well as enhancing therapy resistance. Galectin-1 (Gal-1) has emerged as an interesting cancer target, as it is involved in modulating cell proliferation, cell death and cell migration, all of which are linked to cancer initiation and progression. We previously identified Gal-1 mRNA to be upregulated in patients with aggressive, relapsing NB and found that Gal-1 protein was upregulated in human SY5Y NB cells on activation of ectopically expressed TrkB (SY5Y-TrkB), but not TrkA (SY5Y-TrkA). Here, we report that Gal-1 mRNA levels positively correlated with TrkB expression and anticorrelated with TrkA expression in a cohort of 102 primary NB. Immunohistochemical analyses of 92 primary NB specimens revealed high Gal-1 expression in stromal septae and in neuroblasts. BDNF-mediated activation of TrkB enhanced invasiveness and migration in vitro, which could be impaired by transient transfection using Gal-1-specific siRNA or a neutralizing antibody directed against Gal-1. The addition of recombinant Gal-1 (rGal-1) in the absence of BDNF partially restored migration and invasive capacity. Using the Trk inhibitor K252a, we could show that the upregulation of Gal-1 protein strictly depended on activated TrkB. Our data suggest that targeting Gal-1 might be a promising strategy for the treatment of aggressive NB.
Collapse
Affiliation(s)
- F Cimmino
- University Children's Hospital Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Retinoblastoma (Rb), the most common intraocular tumor in childhood, is caused by the loss of function of both retinoblastoma susceptibility gene (RB1 or Rb1) alleles. In 1971, Alfred Knudson proposed his "two-hit" theory based upon empiric observations of the clinical genetics of Rb, revealing the role of tumor-suppressor genes in human cancer. Knudson proposed that: "In the dominant inherited form of Rb, one mutation is inherited via germ line and the second occurs in somatic cells. In the nonhereditary form, both mutations occur in somatic cells." The Knudson hypothesis was validated later with the cloning of RB1, the first tumor-suppressor gene to be identified. A few years later, Harbour extended these findings to small-cell lung cancer, showing that the RB1 locus was disrupted in tumors other than Rb and osteosarcoma. Since then, it has been found that most, if not all, tumors have defects in their RB1 pathway through genetic lesions in the RB1 gene itself or other genes in the pathway. The history of Rb research highlights how basic research on a rare childhood cancer can have a much broader effect on a disease that affects millions of people each year worldwide.
Collapse
Affiliation(s)
- C Sábado Alvarez
- Servei d'Oncologia i Hematologia Pediàtrica, Hospital Materno Infantil Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|