1
|
Mehrmal S, Mojica R, Guo AM, Missall TA. Diagnostic Methods and Management Strategies of Herpes Simplex and Herpes Zoster Infections. Clin Geriatr Med 2024; 40:147-175. [PMID: 38000858 DOI: 10.1016/j.cger.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Herpesviruses are medium-sized double-stranded DNA viruses. Of more than 80 herpesviruses identified, only 9 human herpesviruses have been found to cause infection in humans. These include herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), human cyto-megalovirus (HCMV), Epstein-Barr virus (EBV), and human herpesvirus (HHV-6A, HHV-6B, HHV-7, HHV-8). HSV-1, HSV-2, and VZV can be problematic given their characteristic neurotropism which is the ability to invade via fusion of its plasma membrane and reside within neural tissue. HSV and VZV primarily infect mucocutaneous surfaces and remain latent in the dorsal root ganglia for a host's entire life. Reactivation causes either asymptomatic shedding of virus or clinical manifestation of vesicular lesions. The clinical presentation is influenced by the portal of entry, the immune status of the host, and whether the infection is primary or recurrent. Affecting 60% to 95% of adults, herpesvirus-associated infections include gingivostomatitis, orofacial and genital herpes,and primary varicella and herpes zoster. Symptomatology, treatment, and potential complications vary based on primary and recurrent infections as well as the patient's immune status.
Collapse
Affiliation(s)
- Sino Mehrmal
- Department of Dermatology, Saint Louis University School of Medicine, 1225 South Grand Boulevard, Saint Louis, MO 63104, USA
| | - Rafael Mojica
- Department of Dermatology, University of Florida College of Medicine, 4037 Northwest 86th Terrace, Gainesville, FL 32606, USA
| | - Aibing Mary Guo
- Department of Dermatology, Saint Louis University School of Medicine, 1225 South Grand Boulevard, Saint Louis, MO 63104, USA
| | - Tricia A Missall
- Department of Dermatology, University of Florida College of Medicine, 4037 Northwest 86th Terrace, Gainesville, FL 32606, USA.
| |
Collapse
|
2
|
Moghadamnia M, Eshaghi H, Alimadadi H, Dashti-Khavidaki S. A quick algorithmic review on management of viral infectious diseases in pediatric solid organ transplant recipients. Front Pediatr 2023; 11:1252495. [PMID: 37732007 PMCID: PMC10507262 DOI: 10.3389/fped.2023.1252495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Pediatric solid organ transplant is a life-saving procedure for children with end-stage organ failure. Viral infections are a common complication following pediatric solid organ transplantation (SOT), which can lead to increased morbidity and mortality. Pediatric solid organ transplant recipients are at an increased risk of viral infections due to their immunosuppressed state. The most commonly encountered viruses include cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus (HSV), varicella-zoster virus (VZV), adenoviruses, and BK polyomavirus. Prevention strategies include vaccination prior to transplantation, post-transplant prophylaxis with antiviral agents, and preemptive therapy. Treatment options vary depending on the virus and may include antiviral therapy and sometimes immunosuppression modification. This review provides a Quick Algorithmic overview of prevention and treatment strategies for viral infectious diseases in pediatric solid organ transplant recipient.
Collapse
Affiliation(s)
- Marjan Moghadamnia
- Department of Pharmacotherapy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Eshaghi
- Department of Infectious Diseases, Pediatrics’ Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Alimadadi
- Department of Gastroenterology, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Simin Dashti-Khavidaki
- Department of Pharmacotherapy, Liver Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Abstract
Recipients of solid organ and hematopoietic stem cell transplantation undergo substantial immune suppression, placing them at risk for opportunistic viral infection. Few randomized controlled trials have been dedicated to the treatment of viral infections in children, and current practices are extrapolated from data generated from adult patients. Here we discuss the prevention and treatment of viral infections using available antiviral drugs, as well as novel agents that may provide benefit to pediatric patients in the future.
Collapse
Affiliation(s)
- William R Otto
- Division of Infectious Diseases, Department of Pediatrics, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104-4399, USA
| | - Abby Green
- Division of Infectious Diseases, Department of Pediatrics, Washington University, 425 S. Euclid Avenue, McDonnell Pediatric Research Building, #5105, St Louis, MO 63106, USA.
| |
Collapse
|
4
|
Romero‐Cordero S, Noguera‐Julian A, Cardellach F, Fortuny C, Morén C. Mitochondrial changes associated with viral infectious diseases in the paediatric population. Rev Med Virol 2021; 31:e2232. [PMID: 33792105 PMCID: PMC9286481 DOI: 10.1002/rmv.2232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022]
Abstract
Infectious diseases occur worldwide with great frequency in both adults and children, causing 350,000 deaths in 2017, according to the latest World Health Organization reports. Both infections and their treatments trigger mitochondrial interactions at multiple levels: (i) incorporation of damaged or mutated proteins into the complexes of the electron transport chain; (ii) impact on mitochondrial genome (depletion, deletions and point mutations) and mitochondrial dynamics (fusion and fission); (iii) membrane potential impairment; (iv) apoptotic regulation; and (v) generation of reactive oxygen species, among others. Such alterations may result in serious adverse clinical events with considerable impact on the quality of life of the children and could even cause death. Herein, we use a systematic review to explore the association between mitochondrial alterations in paediatric infections including human immunodeficiency virus, cytomegalovirus, herpes viruses, various forms of hepatitis, adenovirus, T-cell lymphotropic virus and influenza. We analyse how these paediatric viral infectious processes may cause mitochondrial deterioration in this especially vulnerable population, with consideration for the principal aspects of research and diagnosis leading to improved disease understanding, management and surveillance.
Collapse
Affiliation(s)
- Sonia Romero‐Cordero
- Faculty of MedicinePompeu Fabra UniversityBarcelonaSpain
- Faculty of MedicineUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Antoni Noguera‐Julian
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en PediatriaUnitat d´InfeccionsServei de PediatriaInstitut de Recerca Pediàtrica Hospital Sant Joan de DéuBarcelonaSpain
- Departament de PediatriaUniversitat de BarcelonaBarcelonaSpain
- CIBER de Epidemiología y Salud Pública, CIBERESP (ISCIII)MadridSpain
- Red de Investigación Translacional en Infectología PediátricaRITIPMadridSpain
| | - Francesc Cardellach
- Faculty of Medicine and Health SciencesMuscle Research and Mitochondrial Function LaboratoryCellex‐IDIBAPSUniversity of BarcelonaBarcelonaSpain
- CIBER de Enfermedades RarasCIBERER (ISCIII)MadridSpain
- Internal Medicine DepartmentHospital Clínic of Barcelona (HCB)BarcelonaSpain
| | - Clàudia Fortuny
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en PediatriaUnitat d´InfeccionsServei de PediatriaInstitut de Recerca Pediàtrica Hospital Sant Joan de DéuBarcelonaSpain
- Departament de PediatriaUniversitat de BarcelonaBarcelonaSpain
- CIBER de Epidemiología y Salud Pública, CIBERESP (ISCIII)MadridSpain
- Red de Investigación Translacional en Infectología PediátricaRITIPMadridSpain
| | - Constanza Morén
- Faculty of Medicine and Health SciencesMuscle Research and Mitochondrial Function LaboratoryCellex‐IDIBAPSUniversity of BarcelonaBarcelonaSpain
- CIBER de Enfermedades RarasCIBERER (ISCIII)MadridSpain
- Internal Medicine DepartmentHospital Clínic of Barcelona (HCB)BarcelonaSpain
| |
Collapse
|
5
|
Kieran MW, Goumnerova L, Manley P, Chi SN, Marcus KJ, Manzanera AG, Polanco MLS, Guzik BW, Aguilar-Cordova E, Diaz-Montero CM, DiPatri AJ, Tomita T, Lulla R, Greenspan L, Aguilar LK, Goldman S. Phase I study of gene-mediated cytotoxic immunotherapy with AdV-tk as adjuvant to surgery and radiation for pediatric malignant glioma and recurrent ependymoma. Neuro Oncol 2020; 21:537-546. [PMID: 30883662 DOI: 10.1093/neuonc/noy202] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gene-mediated cytotoxic immunotherapy (GMCI) is a tumor-specific immune stimulatory strategy implemented through local delivery of aglatimagene besadenovec (AdV-tk) followed by anti-herpetic prodrug. GMCI induces T-cell dependent tumor immunity and synergizes with radiotherapy. Clinical trials in adult malignant gliomas demonstrated safety and potential efficacy. This is the first trial of GMCI in pediatric brain tumors. METHODS This phase I dose escalation study was conducted to evaluate GMCI in patients 3 years of age or older with malignant glioma or recurrent ependymoma. AdV-tk at doses of 1 × 1011 and 3 × 1011 vector particles (vp) was injected into the tumor bed at the time of surgery followed by 14 days of valacyclovir. Radiation started within 8 days of surgery, and if indicated, chemotherapy began after completion of valacyclovir. RESULTS Eight patients (6 glioblastoma, 1 anaplastic astrocytoma, 1 recurrent ependymoma) were enrolled and completed therapy: 3 on dose level 1 and 5 on dose level 2. Median age was 12.5 years (range 7-17) and Lansky/Karnofsky performance scores were 60-100. Five patients had multifocal/extensive tumors that could not be resected completely and 3 had gross total resection. There were no dose-limiting toxicities. The most common possibly GMCI-related adverse events included Common Terminology Criteria for Adverse Events grade 1-2 fever, fatigue, and nausea/vomiting. Three patients, in dose level 2, lived more than 24 months, with 2 alive without progression 37.3 and 47.7 months after AdV-tk injection. CONCLUSIONS GMCI can be safely combined with radiation therapy with or without temozolomide in pediatric patients with brain tumors and the present results strongly support further investigation. CLINICAL TRIAL REGISTRY ClinicalTrials.gov NCT00634231.
Collapse
Affiliation(s)
- Mark W Kieran
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Pediatric Hematology/Oncology, Boston Children's Hospital
| | - Liliana Goumnerova
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Pediatric Hematology/Oncology, Boston Children's Hospital.,Department of Neurosurgery, Boston Children's Hospital
| | - Peter Manley
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Pediatric Hematology/Oncology, Boston Children's Hospital
| | - Susan N Chi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Pediatric Hematology/Oncology, Boston Children's Hospital
| | - Karen J Marcus
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Pediatric Hematology/Oncology, Boston Children's Hospital.,Department of Radiation Therapy, Dana-Farber Cancer Institute
| | - Andrea G Manzanera
- Harvard Medical School, Boston, Massachusetts.,Advantagene, Inc, Auburndale, Massachusetts
| | | | - Brian W Guzik
- Harvard Medical School, Boston, Massachusetts.,Advantagene, Inc, Auburndale, Massachusetts
| | | | | | - Arthur J DiPatri
- Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tadanori Tomita
- Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rishi Lulla
- Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lianne Greenspan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Pediatric Hematology/Oncology, Boston Children's Hospital
| | - Laura K Aguilar
- Harvard Medical School, Boston, Massachusetts.,Advantagene, Inc, Auburndale, Massachusetts
| | - Stewart Goldman
- Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
6
|
Tailoring acyclovir prodrugs with enhanced antiviral activity: rational design, synthesis, human plasma stability and in vitro evaluation. Amino Acids 2018; 50:1131-1143. [DOI: 10.1007/s00726-018-2590-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/12/2018] [Indexed: 12/14/2022]
|
7
|
Nicolas JM, Bouzom F, Hugues C, Ungell AL. Oral drug absorption in pediatrics: the intestinal wall, its developmental changes and current tools for predictions. Biopharm Drug Dispos 2017; 38:209-230. [PMID: 27976409 PMCID: PMC5516238 DOI: 10.1002/bdd.2052] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 12/14/2022]
Abstract
The dissolution, intestinal absorption and presystemic metabolism of a drug depend on its physicochemical characteristics but also on numerous physiological (e.g. gastrointestinal pH, volume, transit time, morphology) and biochemical factors (e.g. luminal enzymes and flora, intestinal wall enzymes and transporters). Over the past decade, evidence has accumulated indicating that these factors may differ in children and adults resulting in age-related changes in drug exposure and drug response. Thus, drug dosage may require adjustment for the pediatric population to ensure the desired therapeutic outcome and to avoid side-effects. Although tremendous progress has been made in understanding the effects of age on intestinal physiology and function, significant knowledge gaps remain. Studying and predicting pharmacokinetics in pediatric patients remains challenging due to ethical concerns associated with clinical trials in this vulnerable population, and because of the paucity of predictive in vitro and in vivo animal assays. This review details the current knowledge related to developmental changes determining intestinal drug absorption and pre-systemic metabolism. Supporting experimental approaches as well as physiologically based pharmacokinetic modeling are also discussed together with their limitations and challenges. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jean-Marie Nicolas
- Non-Clinical Development Department, UCB Biopharma sprl, Braine-l'Alleud, Belgium
| | - François Bouzom
- Non-Clinical Development Department, UCB Biopharma sprl, Braine-l'Alleud, Belgium
| | - Chanteux Hugues
- Non-Clinical Development Department, UCB Biopharma sprl, Braine-l'Alleud, Belgium
| | - Anna-Lena Ungell
- Non-Clinical Development Department, UCB Biopharma sprl, Braine-l'Alleud, Belgium
| |
Collapse
|
8
|
Kim SK, Kim MC, Han SB, Kim SK, Lee JW, Chung NG, Cho B, Jeong DC, Kang JH, Kim HK. Clinical characteristics and outcomes of varicella zoster virus infection in children with hematologic malignancies in the acyclovir era. Blood Res 2016; 51:249-255. [PMID: 28090487 PMCID: PMC5234238 DOI: 10.5045/br.2016.51.4.249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/08/2016] [Accepted: 08/29/2016] [Indexed: 01/17/2023] Open
Abstract
Background Although intravenous acyclovir therapy is recommended for varicella zoster virus (VZV) infection in immunocompromised children, the clinical characteristics and outcomes of VZV infection in the acyclovir era have rarely been reported. Methods The medical records of children diagnosed with varicella or herpes zoster virus, who had underlying hematologic malignancies, were retrospectively reviewed, and the clinical characteristics and outcomes of VZV infection were evaluated. Results Seventy-six episodes of VZV infection (herpes zoster in 57 and varicella in 19) were identified in 73 children. The median age of children with VZV infection was 11 years (range, 1-17), and 35 (46.1%) episodes occurred in boys. Acute lymphoblastic leukemia was the most common underlying malignancy (57.9%), and 90.8% of the episodes occurred during complete remission of the underlying malignancy. Acyclovir was administered for a median of 10 days (range, 4-97). Severe VZV infection occurred in 16 (21.1%) episodes. Although the finding was not statistically significant, a previous history of hematopoietic cell transplantation (HCT) appeared to be associated with the development of more severe episodes of herpes zoster (P=0.075). Conclusion Clinical characteristics of VZV infection in immunocompromised children were not significantly different from those without it, and clinical outcomes improved after the introduction of acyclovir therapy. However, risk factors for severe VZV infection require further investigation in a larger population and a prospective setting.
Collapse
Affiliation(s)
- Seul-Ki Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Chae Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Beom Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea.; The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seong Koo Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea.; The Catholic Blood and Marrow Transplantation Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae Wook Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea.; The Catholic Blood and Marrow Transplantation Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nack-Gyun Chung
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea.; The Catholic Blood and Marrow Transplantation Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bin Cho
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea.; The Catholic Blood and Marrow Transplantation Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dae Chul Jeong
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea.; The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Han Kang
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea.; The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hack-Ki Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea.; The Catholic Blood and Marrow Transplantation Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
9
|
Development of a paediatric population pharmacokinetic model for valacyclovir from literature non-compartmental values originating from sparse studies and Bayesian priors: a simulation study. J Pharmacokinet Pharmacodyn 2015; 42:237-50. [PMID: 25821006 DOI: 10.1007/s10928-015-9412-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
A preliminary population pharmacokinetic (PopPK) model of valacyclovir in children was developed from non-compartmental analysis (NCA) parameter values from literature, including several age groups, combined with Bayesian priors from a PopPK model of acyclovir, the active metabolite of valacyclovir, from literature too. Also a simulation study was carried out to evaluate the performance of various modelling choices related to the estimation of model parameters from NCA parameters originating from sparse PK studies. Assuming a one-compartment model with first order absorption, a mixed effects, meta-analysis approach was utilized which allows accounting the random intergroup variability, the detection of covariates and the application of informative Bayesian priors on the parameters. The conclusions from the simulation study calculating bias and precision for various cases, were that a model which takes explicitly into account the sampling schedule, performs better than a model using the theoretical expressions of calculating the NCA parameters. Also by using the geometric rather than the arithmetic means of NCA parameters, less biased results are obtained. These findings guided the choices for the valacyclovir model, for which informative priors from a PopPK model of acyclovir were applied for some of the parameters, in order to include a richer covariate model for clearance, not supported by the NCA dataset and a value for bioavailability. This preliminary valacyclovir model can be used in simulations to provide dosage recommendations for children of various ages and to help design more efficiently prospective clinical trials.
Collapse
|
10
|
Barker CIS, Germovsek E, Hoare RL, Lestner JM, Lewis J, Standing JF. Pharmacokinetic/pharmacodynamic modelling approaches in paediatric infectious diseases and immunology. Adv Drug Deliv Rev 2014; 73:127-39. [PMID: 24440429 PMCID: PMC4076844 DOI: 10.1016/j.addr.2014.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 12/09/2013] [Accepted: 01/11/2014] [Indexed: 02/02/2023]
Abstract
Pharmacokinetic/pharmacodynamic (PKPD) modelling is used to describe and quantify dose-concentration-effect relationships. Within paediatric studies in infectious diseases and immunology these methods are often applied to developing guidance on appropriate dosing. In this paper, an introduction to the field of PKPD modelling is given, followed by a review of the PKPD studies that have been undertaken in paediatric infectious diseases and immunology. The main focus is on identifying the methodological approaches used to define the PKPD relationship in these studies. The major findings were that most studies of infectious diseases have developed a PK model and then used simulations to define a dose recommendation based on a pre-defined PD target, which may have been defined in adults or in vitro. For immunological studies much of the modelling has focused on either PK or PD, and since multiple drugs are usually used, delineating the relative contributions of each is challenging. The use of dynamical modelling of in vitro antibacterial studies, and paediatric HIV mechanistic PD models linked with the PK of all drugs, are emerging methods that should enhance PKPD-based recommendations in the future.
Collapse
Affiliation(s)
- Charlotte I S Barker
- Paediatric Infectious Diseases Research Group, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK
| | - Eva Germovsek
- Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK
| | - Rollo L Hoare
- Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK; CoMPLEX, University College London, Physics Building, Gower Street, London WC1E 6BT, UK
| | - Jodi M Lestner
- Paediatric Infectious Diseases Research Group, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Faculty of Medicine, Imperial College London, London, UK
| | - Joanna Lewis
- Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK; CoMPLEX, University College London, Physics Building, Gower Street, London WC1E 6BT, UK
| | - Joseph F Standing
- Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK; CoMPLEX, University College London, Physics Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Ender KL, DeBellis RH, Erlanger BF, Billote GB, Brittenham GM. Safety of short-term valacyclovir as an anti-sickling agent in sickle-cell anemia. Pediatr Blood Cancer 2011; 56:843-5. [PMID: 21370420 PMCID: PMC3138867 DOI: 10.1002/pbc.22809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/02/2010] [Indexed: 11/07/2022]
Abstract
To assess safety and tolerability, we administered valacyclovir, an oral anti-viral medication that inhibits erythrocyte sickling in vitro, to 14 subjects with sickle-cell anemia for 1 week at a standard dose of 1,000 mg every 8 hr. No clinically significant adverse effects occurred. In 11 subjects in steady state, the mean hemoglobin concentration was almost constant while the absolute reticulocyte count decreased in eight (P = 0.1) and the overall mean fell slightly although not significantly (10%, P = 0.2). These results suggest that valacyclovir is safe and well tolerated in patients with sickle-cell anemia and that a longer duration of therapy merits investigation.
Collapse
Affiliation(s)
- Katherine L. Ender
- Division of Pediatric Hematology, Columbia University Medical Center, New York, New York,Correspondence to: Katherine L. Ender, 3959 Broadway, New York, NY 10032.
| | - Robert H. DeBellis
- Division of Medical Hematology/Oncology, Columbia University Medical Center, New York, New York
| | - Bernard F. Erlanger
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York
| | - Genia B. Billote
- Division of Pediatric Hematology, Columbia University Medical Center, New York, New York
| | - Gary M. Brittenham
- Division of Pediatric Hematology, Columbia University Medical Center, New York, New York
| |
Collapse
|