1
|
ERDOĞAN G, ÖZEŞ ON, KÜPESİZ A, YOLDAŞ ŞB. Investigating the physiological role of S199A and S199D mutants of PHF6 protein in T-cell acute lymphoblastic leukemia. Turk J Med Sci 2023; 53:1234-1243. [PMID: 38812997 PMCID: PMC10763810 DOI: 10.55730/1300-0144.5689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/26/2023] [Accepted: 08/11/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim T-cell acute lymphoblastic leukemia (T-ALL) is a form of leukemia characterized by the proliferation of immature T lymphocytes. NOTCH1 is one of the most frequently mutated genes in T-ALL. NOTCH1 expression in T-cell development depends on plant homeodomain finger protein 6 (PHF6), which plays a tumor suppressor role in T-ALL. Several studies have shown that PHF6 expression is essential for NOTCH1 expression. Therefore, whether posttranslational modification of PHF6 plays a role in the regulation of NOTCH1 expression and T-ALL cell line proliferation was investigated herein. Materials and methods The amino acid sequence of PHF6 was analyzed and it was found that a putative protein kinase A (PKA) phosphorylation motif RDRS199 was conserved in several vertebrate species and the S199 site was expected to be phosphorylated according to the PhosphoSite database. Therefore, an eukaryotic expression vector of human PHF6 was constructed, and the codon 199 was changed to the codon encoding the nonphosphorylatable alanine and the phosphorylation-mimicking aspartic acid via site-directed mutagenesis. After confirming the ectopic expressions of the PHF6 vectors by western blot analysis, the effects of these proteins were identified on the NOTCH1 expression using western blot analysis, leukemic cell proliferation using MTT assay, and expressions of the cell surface markers of T-cells using flow cytometry. Results The ectopic expression of wild-type PHF6 stimulated the formation of CD4 + T-cells. While the expression of the wild-type PHF6 suppressed the growth of the leukemic cell line, this effect was diminished in both the alanine and aspartic acid mutants of PHF6. In addition, both mutants also seemed to negatively affect the NOTCH1 expression, although the effect of the alanine mutant was more severe. Conclusion Taken together, the different biological activities exerted by the conserved S199 phosphorylation-site mutants shown in this study implicate that signaling pathway(s) leading to differential phosphorylation of this residue may have a substantial effect on the activity of PHF6, and thus may constitute a potential therapeutic target in T-ALL.
Collapse
Affiliation(s)
- Gökçe ERDOĞAN
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya,
Turkiye
| | - Osman Nidai ÖZEŞ
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya,
Turkiye
| | - Alphan KÜPESİZ
- Department of Pediatrics, Faculty of Medicine, Akdeniz University, Antalya,
Turkiye
| | - Şükran Burçak YOLDAŞ
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya,
Turkiye
| |
Collapse
|
2
|
Chen TC, Yao CY, Chen YR, Yuan CT, Lin CC, Hsu YC, Chuang PH, Kao CJ, Li YH, Hou HA, Chou WC, Tien HF. Oncogenesis induced by combined Phf6 and Idh2 mutations through increased oncometabolites and impaired DNA repair. Oncogene 2022; 41:1576-1588. [PMID: 35091680 DOI: 10.1038/s41388-022-02193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
Abstract
The pathogenesis of acute leukemia involves interaction among genetic alterations. Mutations of IDH1/2 and PHF6 are common and co-exist in some patients of hematopoietic malignancies, but their cooperative effects remain unexplored. In this study, we addressed the question by characterizing the hematopoietic phenotypes of mice harboring neither, Phf6 knockout, Idh2 R172K, or combined mutations. We found that the combined Phf6KOIdh2R172K mice showed biased hematopoietic differentiation toward myeloid lineages and reduced long-term hematopoietic stem cells. They rapidly developed neoplasms of myeloid and lymphoid lineages, with much shorter survival compared with single mutated and wild-type mice. The marrow and spleen cells of the combined mutated mice produced a drastically increased amount of 2-hydroxyglutarate compared with mice harboring Idh2 R172K. Single-cell RNA sequencing revealed distinct patterns of transcriptome of the hematopoietic stem/progenitor cells from the combined mutated mice, including aberrant expression of metabolic enzymes, increased expression of several oncogenes, and impairment of DNA repairs, as confirmed by the enhanced γH2AX expression in the marrow and spleen cells. We conclude that Idh2 and Phf6 mutations are synergistic in leukemogenesis, at least through overproduction of 2-hydroxyglutarate and impairment of DNA repairs.
Collapse
Affiliation(s)
- Tsung-Chih Chen
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Yuan Yao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Ren Chen
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Tsu Yuan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chin Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yueh-Chwen Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Han Chuang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chein-Jun Kao
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hung Li
- Department of Animal Science, Chinese Culture University, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chien Chou
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan.
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|