1
|
Chi W, Xiu B, Xiong M, Wang X, Li P, Zhang Q, Hou J, Sang Y, Zhou X, Chen M, Zheng S, Zhang L, Xue J, Chi Y, Wu J. MNX1 Promotes Anti-HER2 Therapy Sensitivity via Transcriptional Regulation of CD-M6PR in HER2-Positive Breast Cancer. Int J Mol Sci 2023; 25:221. [PMID: 38203393 PMCID: PMC10778903 DOI: 10.3390/ijms25010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Although targeted therapy for human epidermal growth factor receptor 2 (HER2)-positive breast cancer has significantly prolonged survival time and improved patients' quality of life, drug resistance has gradually emerged. This study explored the mechanisms underlying the effect of the motor neuron and pancreatic homeobox 1 (MNX1) genes on drug sensitivity in HER2-positive breast cancer. From July 2017 to 2018, core needle biopsies of HER2-positive breast cancer were collected from patients who received paclitaxel, carboplatin, and trastuzumab neoadjuvant therapy at our center. Based on treatment efficacy, 81 patients were divided into pathological complete response (pCR) and non-pCR groups. High-throughput RNA sequencing results were analyzed along with the GSE181574 dataset. MNX1 was significantly upregulated in the pCR group compared with the non-pCR group in both sequencing datasets, suggesting that MNX1 might be correlated with drug sensitivity in HER2-positive breast cancer. Meanwhile, tissue array results revealed that high MNX1 expression corresponded to a good prognosis. In vitro functional tests showed that upregulation of MNX1 significantly increased the sensitivity of HER2-positive breast cancer cells to lapatinib and pyrotinib. In conclusion, MNX1 may serve as a prognostic marker for patients with HER2-positive breast cancer, and its expression may facilitate clinical screening of patients sensitive to anti-HER2-targeted therapy.
Collapse
Affiliation(s)
- Weiru Chi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bingqiu Xiu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min Xiong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuliren Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Pei Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianjing Hou
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuting Sang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xujie Zhou
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ming Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shuyue Zheng
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jingyan Xue
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yayun Chi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiong Wu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China (L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Ragusa D, Dijkhuis L, Pina C, Tosi S. Mechanisms associated with t(7;12) acute myeloid leukaemia: from genetics to potential treatment targets. Biosci Rep 2023; 43:BSR20220489. [PMID: 36622782 PMCID: PMC9894016 DOI: 10.1042/bsr20220489] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Acute myeloid leukaemia (AML), typically a disease of elderly adults, affects 8 children per million each year, with the highest paediatric incidence in infants aged 0-2 of 18 per million. Recurrent cytogenetic abnormalities contribute to leukaemia pathogenesis and are an important determinant of leukaemia classification. The t(7;12)(q36;p13) translocation is a high-risk AML subtype exclusively associated with infants and represents the second most common abnormality in this age group. Mechanisms of t(7;12) leukaemogenesis remain poorly understood. The translocation relocates the entire MNX1 gene within the ETV6 locus, but a fusion transcript is present in only half of the patients and its significance is unclear. Instead, research has focused on ectopic MNX1 expression, a defining feature of t(7;12) leukaemia, which has nevertheless failed to produce transformation in conventional disease models. Recently, advances in genome editing technologies have made it possible to recreate the t(7;12) rearrangement at the chromosomal level. Together with recent studies of MNX1 involvement using murine in vivo, in vitro, and organoid-based leukaemia models, specific investigation on the biology of t(7;12) can provide new insights into this AML subtype. In this review, we provide a comprehensive up-to-date analysis of the biological features of t(7;12), and discuss recent advances in mechanistic understanding of the disease which may deliver much-needed therapeutic opportunities to a leukaemia of notoriously poor prognosis.
Collapse
Affiliation(s)
- Denise Ragusa
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Kingston Lane, UB8 3PH, U.K
| | - Liza Dijkhuis
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
| | - Cristina Pina
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Kingston Lane, UB8 3PH, U.K
| | - Sabrina Tosi
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Kingston Lane, UB8 3PH, U.K
| |
Collapse
|
3
|
Adami R, Bottai D. NSC Physiological Features in Spinal Muscular Atrophy: SMN Deficiency Effects on Neurogenesis. Int J Mol Sci 2022; 23:ijms232315209. [PMID: 36499528 PMCID: PMC9736802 DOI: 10.3390/ijms232315209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/08/2022] Open
Abstract
While the U.S. Food and Drug Administration and the European Medicines Evaluation Agency have recently approved new drugs to treat spinal muscular atrophy 1 (SMA1) in young patients, they are mostly ineffective in older patients since many motor neurons have already been lost. Therefore, understanding nervous system (NS) physiology in SMA patients is essential. Consequently, studying neural stem cells (NSCs) from SMA patients is of significant interest in searching for new treatment targets that will enable researchers to identify new pharmacological approaches. However, studying NSCs in these patients is challenging since their isolation damages the NS, making it impossible with living patients. Nevertheless, it is possible to study NSCs from animal models or create them by differentiating induced pluripotent stem cells obtained from SMA patient peripheral tissues. On the other hand, therapeutic interventions such as NSCs transplantation could ameliorate SMA condition. This review summarizes current knowledge on the physiological properties of NSCs from animals and human cellular models with an SMA background converging on the molecular and neuronal circuit formation alterations of SMA fetuses and is not focused on the treatment of SMA. By understanding how SMA alters NSC physiology, we can identify new and promising interventions that could help support affected patients.
Collapse
|
4
|
Maretina MA, Valetdinova KR, Tsyganova NA, Egorova AA, Ovechkina VS, Schiöth HB, Zakian SM, Baranov VS, Kiselev AV. Identification of specific gene methylation patterns during motor neuron differentiation from spinal muscular atrophy patient-derived iPSC. Gene 2022; 811:146109. [PMID: 34871761 DOI: 10.1016/j.gene.2021.146109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 05/08/2021] [Accepted: 11/16/2021] [Indexed: 11/04/2022]
Abstract
Spinal muscular atrophy is a progressive motor neuron disorder caused by deletions or point mutations in the SMN1 gene. It is not known why motor neurons are particularly sensitive to a decrease in SMN protein levels and what factors besides SMN2 underlie the high clinical heterogeneity of the disease. Here we studied the methylation patterns of genes on sequential stages of motor neuron differentiation from induced pluripotent stem cells derived from the patients with SMA type I and II. The genes involved in the regulation of pluripotency, neural differentiation as well as those associated with spinal muscular atrophy development were included. The results show that the PAX6, HB9, CHAT, ARHGAP22, and SMN2 genes are differently methylated in cells derived from SMA patients compared to the cells of healthy individuals. This study clarifies the specificities of the disease pathogenesis and extends the knowledge of pathways involved in the SMA progression.
Collapse
Affiliation(s)
- M A Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - K R Valetdinova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novsibirsk, Russia
| | - N A Tsyganova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - A A Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - V S Ovechkina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novsibirsk, Russia; Novosibirsk State University, 630090 Novosibirsk, Russia
| | - H B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, S-75124 Uppsala, Sweden; Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - S M Zakian
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novsibirsk, Russia; Meshalkin National Medical Research Center, Ministry of Healthcare of the Russian Federation, 630055 Novosibirsk, Russia
| | - V S Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - A V Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| |
Collapse
|
5
|
Federico C, Owoka T, Ragusa D, Sturiale V, Caponnetto D, Leotta CG, Bruno F, Foster HA, Rigamonti S, Giudici G, Cazzaniga G, Bridger JM, Sisu C, Saccone S, Tosi S. Deletions of Chromosome 7q Affect Nuclear Organization and HLXB9Gene Expression in Hematological Disorders. Cancers (Basel) 2019; 11:cancers11040585. [PMID: 31027247 PMCID: PMC6521283 DOI: 10.3390/cancers11040585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022] Open
Abstract
The radial spatial positioning of individual gene loci within interphase nuclei has been associated with up- and downregulation of their expression. In cancer, the genome organization may become disturbed due to chromosomal abnormalities, such as translocations or deletions, resulting in the repositioning of genes and alteration of gene expression with oncogenic consequences. In this study, we analyzed the nuclear repositioning of HLXB9 (also called MNX1), mapping at 7q36.3, in patients with hematological disorders carrying interstitial deletions of 7q of various extents, with a distal breakpoint in 7q36. We observed that HLXB9 remains at the nuclear periphery, or is repositioned towards the nuclear interior, depending upon the compositional properties of the chromosomal regions involved in the rearrangement. For instance, a proximal breakpoint leading the guanine-cytosine (GC)-poor band 7q21 near 7q36 would bring HLXB9 to the nuclear periphery, whereas breakpoints that join the GC-rich band 7q22 to 7q36 would bring HLXB9 to the nuclear interior. This nuclear repositioning is associated with transcriptional changes, with HLXB9 in the nuclear interior becoming upregulated. Here we report an in cis rearrangement, involving one single chromosome altering gene behavior. Furthermore, we propose a mechanistic model for chromatin reorganization that affects gene expression via the influences of new chromatin neighborhoods.
Collapse
Affiliation(s)
- Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Temitayo Owoka
- Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Denise Ragusa
- Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Valentina Sturiale
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Domenica Caponnetto
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Claudia Giovanna Leotta
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Helen A Foster
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
- College of Health and Life Science, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Silvia Rigamonti
- Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP), Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Giovanni Giudici
- Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP), Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Giovanni Cazzaniga
- Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP), Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Joanna M Bridger
- Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Cristina Sisu
- College of Health and Life Science, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Sabrina Tosi
- Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane UB8 3PH, UK.
| |
Collapse
|
6
|
Tian T, Wang M, Zhu Y, Zhu W, Yang T, Li H, Lin S, Dai C, Deng Y, Song D, Li N, Zhai Z, Dai ZJ. Expression, Clinical Significance, and Functional Prediction of MNX1 in Breast Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:399-406. [PMID: 30368216 PMCID: PMC6205149 DOI: 10.1016/j.omtn.2018.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 09/16/2018] [Accepted: 09/23/2018] [Indexed: 12/24/2022]
Abstract
Motor neuron and pancreas homeobox 1 (MNX1) is a key developmental gene. Previous studies found that it was upregulated in several tumors, but its role in breast cancer (BC) remains unclear. In order to have a better understanding of this gene in BC, we examined the expression of MNX1 in BC tissues and normal breast tissues by qRT-PCR and by analyzing data from The Cancer Genome Atlas (TCGA) database. We also assessed the association of MNX1 expression with BC clinicopathological features and investigated the impact of MNX1 on BC survival. Potential molecular function of MNX1 was predicted through protein-protein interactions and functional enrichment. The results showed that the expression of MNX1 was significantly increased in BC tissues, especially in the HER2-positive subtype, and MNX1 expression was associated with several clinical characteristics, including menopause status, receptor status, subtypes, tumor size, lymph node metastasis, and race. In addition, patients with higher MNX1 expression had poorer survival. Enrichment analysis suggested that MNX1 is probably involved in biological processes and pathways related to nuclear division, cell cycle, and p53 signaling. In conclusion, our study suggests that MNX1 may act as a tumor promoter in BC. We hope these findings will draw more attention to MNX1 in future cancer studies.
Collapse
Affiliation(s)
- Tian Tian
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Meng Wang
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuyao Zhu
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC 20052, USA
| | - Tielin Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongtao Li
- Department of Breast, Head and Neck Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumchi 830000, China
| | - Shuai Lin
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Cong Dai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yujiao Deng
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Dingli Song
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Na Li
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhen Zhai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhi-Jun Dai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
7
|
Chen M, Wu R, Li G, Liu C, Tan L, Xiao K, Ye Y, Qin Z. Motor neuron and pancreas homeobox 1/HLXB9 promotes sustained proliferation in bladder cancer by upregulating CCNE1/2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:154. [PMID: 30012177 PMCID: PMC6048799 DOI: 10.1186/s13046-018-0829-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/05/2018] [Indexed: 11/29/2022]
Abstract
Background Uncontrolled proliferation is thought to be the most fundamental characteristic of cancer. Detailed knowledge of cancer cell proliferation mechanisms would not only benefit understanding of cancer progression, but may also provide new clues for developing novel therapeutic strategies. Methods In vitro function of MNX1 (Motor neuron and pancreas homeobox 1) in bladder cancer cell was evaluated using MTT assay, colony formation assay, and bromodeoxyuridine incorporation assay. Real-time PCR and western blotting were performed to detect MNX1 and CCNE1/2 expressions. In vivo tumor growth was conducted in BALB/c-nu mice. Results We reported that MNX1 is responsible for sustaining bladder cancer cell proliferation. Abnormal MNX1 upregulation in bladder cancer cell lines and 167 human tissue specimens; high MNX1 expression levels correlated significantly with shorter 5-year overall and relapse-free survival in the bladder cancer patients. Furthermore, MNX1 overexpression accelerated bladder cancer cell proliferation and tumorigenicity both in vitro and in vivo, whereas MNX1 downregulation arrested it. In addition, MNX1 transcriptionally upregulated CCNE1 and CCNE2 by directly bounding to their promoters, which promoted G1–S transition in the bladder cancer cells. Conclusion These findings reveal an oncogenic role and novel regulatory mechanism of MNX1 in bladder cancer progression and suggest that MNX1 is a potential prognostic biomarker and therapeutic target. Electronic supplementary material The online version of this article (10.1186/s13046-018-0829-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingkun Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Rongpei Wu
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Gang Li
- Department of Urology, Guangzhou Red Cross Hospital, The Affiliated Hospital of Medical College of Ji-Nan University, Guangzhou, 510220, Guangdong, China
| | - Cundong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Lei Tan
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Kanghua Xiao
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Yunlin Ye
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China. .,Department of Urology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.
| | - Zike Qin
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China. .,Department of Urology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
8
|
Huang R, Liao X, Li Q. Identification of key pathways and genes in TP53 mutation acute myeloid leukemia: evidence from bioinformatics analysis. Onco Targets Ther 2017; 11:163-173. [PMID: 29343974 PMCID: PMC5749383 DOI: 10.2147/ott.s156003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Tumor protein p53 (TP53) mutations are not only a risk factor in acute myeloid leukemia (AML) but also a potential biomarker for individualized treatment options. This study aimed to investigate potential pathways and genes associated with TP53 mutations in adult de novo AML. Methods An RNA sequencing dataset of adult de novo AML was downloaded from The Cancer Genome Atlas database. Differentially expressed genes (DEGs) were identified by edgeR of the R platform. Key pathways and genes were identified using the following bioinformatics tools: gene set enrichment analysis (GSEA), gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), Search Tool for the Retrieval of Interacting Genes/Proteins, and Molecular Complex Detection. Results GSEA suggested that TP53 mutations were significantly associated with cell differentiation, proliferation, cell adhesion biological processes, and MAPK pathway. In total, 1,287 genes were identified as DEGs. GO and KEGG analysis suggested that upregulation of DEGs was significantly enriched in categories associated with cell adhesion biological processes, Ras-associated protein 1, PI3K-Akt pathway, and cell adhesion molecules. The top ten genes ranked by degree, CDH1, BMP2, KDR, LEP, CASR, ITGA2B, APOE, MNX1, NMU, and TRH, were identified as hub genes from the protein-protein interaction network. Survival analysis suggested that patients with TP53 mutations had a significantly increased risk of death, while the mRNA expression level in patients with TP53 mutation was similar to those carrying TP53 wild type. Conclusion Our findings have indicated that multiple genes and pathways may play a crucial role in TP53 mutation AML, offering candidate targets and strategies for TP53 mutation AML individualized treatment.
Collapse
Affiliation(s)
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | | |
Collapse
|
9
|
Tosi S, Mostafa Kamel Y, Owoka T, Federico C, Truong TH, Saccone S. Paediatric acute myeloid leukaemia with the t(7;12)(q36;p13) rearrangement: a review of the biological and clinical management aspects. Biomark Res 2015; 3:21. [PMID: 26605042 PMCID: PMC4657620 DOI: 10.1186/s40364-015-0041-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/25/2015] [Indexed: 12/05/2022] Open
Abstract
The presence of chromosomal abnormalities is one of the most important criteria for leukaemia diagnosis and management. Infant leukaemia is a rare disease that affects children in their first year of life. It has been estimated that approximately one third of infants with acute myeloid leukaemia harbour the t(7;12)(q36;p13) rearrangement in their leukaemic blasts. However, the WHO classification of acute myeloid leukaemia does not yet include the t(7;12) as a separate entity among the different genetic subtypes, although the presence of this chromosomal abnormality has been associated with an extremely poor clinical outcome. Currently, there is no consensus treatment for t(7;12) leukaemia patients. However, with the inferior outcome with the standard induction therapy, stem cell transplantation may offer a better chance for disease control. A better insight into the chromosome biology of this entity might shed some light into the pathogenic mechanisms arising from this chromosomal translocation, that at present are not fully understood. Further work is needed to improve our understanding of the molecular and genetic basis of this disorder. This will hopefully open some grounds for possible tailored treatment for this subset of very young patients with inferior disease outcome. This review aims at highlighting the cytogenetic features that characterise the t(7;12) leukaemias for a better detection of the abnormality in the diagnostic setting. We also review treatment and clinical outcome in the cases reported to date.
Collapse
Affiliation(s)
- Sabrina Tosi
- Leukaemia and Chromosome Research Laboratory, Division of Biosciences, Brunel University London, Middlesex, UB8 3PH UK
| | - Yasser Mostafa Kamel
- Leukaemia and Chromosome Research Laboratory, Division of Biosciences, Brunel University London, Middlesex, UB8 3PH UK
| | - Temitayo Owoka
- Leukaemia and Chromosome Research Laboratory, Division of Biosciences, Brunel University London, Middlesex, UB8 3PH UK
| | - Concetta Federico
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Biologia Animale, University of Catania, Catania, Italy
| | - Tony H Truong
- Division of Pediatric Oncology, Blood and Marrow Transplant, Alberta Children's Hospital, University of Calgary, Calgary, Canada
| | - Salvatore Saccone
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Biologia Animale, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Gautrey HE, van Otterdijk SD, Cordell HJ, Mathers JC, Strathdee G. DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells. FASEB J 2014; 28:3261-72. [PMID: 24858281 DOI: 10.1096/fj.13-246173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abnormal patterns of DNA methylation are one of the hallmarks of cancer cells. The process of aging has also been associated with similar, albeit less dramatic, changes in methylation patterns, leading to the hypothesis that age-related changes in DNA methylation may partially underlie the increased risk of cancer in the elderly. Here we studied 377 participants aged 85 yr from the Newcastle 85+ Study to investigate the extent of, and interindividual variation in, age-related changes in DNA methylation at specific CpG islands. Using highly quantitative pyrosequencing analysis, we found extensive and highly variable methylation of promoter-associated CpG islands with levels ranging from 4% to 35%, even at known tumor suppressor genes such as TWIST2. Furthermore, the interindividual differences in methylation seen across this elderly population phenocopies multiple features of the altered methylation patterns seen in cancer cells. Both aging- and cancer-related methylation can occur at similar sets of genes, both result in the formation of densely methylated, and likely transcriptionally repressed, alleles, and both exhibit coordinate methylation across multiple loci. In addition, high methylation levels were associated with subsequent diagnosis of leukemia or lymphoma during a 3-yr follow-up period (P=0.00008). These data suggest that the accumulation of age-related changes in promoter-associated CpG islands may contribute to the increased cancer risk seen during aging.-Gautrey, H. E., van Otterdijk, S. D., Cordell, H. J., Newcastle 85+ study core team, Mathers, J. C., Strathdee, G. DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - John C Mathers
- Human Nutrition Research Centre, Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, UK; and
| | | |
Collapse
|
11
|
Vauléon E, Tony A, Hamlat A, Etcheverry A, Chiforeanu DC, Menei P, Mosser J, Quillien V, Aubry M. Immune genes are associated with human glioblastoma pathology and patient survival. BMC Med Genomics 2012; 5:41. [PMID: 22980038 PMCID: PMC3507656 DOI: 10.1186/1755-8794-5-41] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 08/06/2012] [Indexed: 01/07/2023] Open
Abstract
Background Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults. Several recent transcriptomic studies in GBM have identified different signatures involving immune genes associated with GBM pathology, overall survival (OS) or response to treatment. Methods In order to clarify the immune signatures found in GBM, we performed a co-expression network analysis that grouped 791 immune-associated genes (IA genes) in large clusters using a combined dataset of 161 GBM specimens from published databases. We next studied IA genes associated with patient survival using 3 different statistical methods. We then developed a 6-IA gene risk predictor which stratified patients into two groups with statistically significantly different survivals. We validated this risk predictor on two other Affymetrix data series, on a local Agilent data series, and using RT-Q-PCR on a local series of GBM patients treated by standard chemo-radiation therapy. Results The co-expression network analysis of the immune genes disclosed 6 powerful modules identifying innate immune system and natural killer cells, myeloid cells and cytokine signatures. Two of these modules were significantly enriched in genes associated with OS. We also found 108 IA genes linked to the immune system significantly associated with OS in GBM patients. The 6-IA gene risk predictor successfully distinguished two groups of GBM patients with significantly different survival (OS low risk: 22.3 months versus high risk: 7.3 months; p < 0.001). Patients with significantly different OS could even be identified among those with known good prognosis (methylated MGMT promoter-bearing tumor) using Agilent (OS 25 versus 8.1 months; p < 0.01) and RT-PCR (OS 21.8 versus 13.9 months; p < 0.05) technologies. Interestingly, the 6-IA gene risk could also distinguish proneural GBM subtypes. Conclusions This study demonstrates the immune signatures found in previous GBM genomic analyses and suggests the involvement of immune cells in GBM biology. The robust 6-IA gene risk predictor should be helpful in establishing prognosis in GBM patients, in particular in those with a proneural GBM subtype, and even in the well-known good prognosis group of patients with methylated MGMT promoter-bearing tumors.
Collapse
Affiliation(s)
- Elodie Vauléon
- Department of Medical Oncology, Eugène Marquis Cancer Institute, rue de la bataille Flandres Dunkerque, Rennes 35042, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hu C, Wei W, Chen X, Woodman CB, Yao Y, Nicholls JM, Joab I, Sihota SK, Shao JY, Derkaoui KD, Amari A, Maloney SL, Bell AI, Murray PG, Dawson CW, Young LS, Arrand JR. A global view of the oncogenic landscape in nasopharyngeal carcinoma: an integrated analysis at the genetic and expression levels. PLoS One 2012; 7:e41055. [PMID: 22815911 PMCID: PMC3398876 DOI: 10.1371/journal.pone.0041055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/17/2012] [Indexed: 12/22/2022] Open
Abstract
Previous studies have reported that the tumour cells of nasopharyngeal carcinoma (NPC) exhibit recurrent chromosome abnormalities. These genetic changes are broadly assumed to lead to changes in gene expression which are important for the pathogenesis of this tumour. However, this assumption has yet to be formally tested at a global level. Therefore a genome wide analysis of chromosome copy number and gene expression was performed in tumour cells micro-dissected from the same NPC biopsies. Cellular tumour suppressor and tumour-promoting genes (TSG, TPG) and Epstein-Barr Virus (EBV)-encoded oncogenes were examined. The EBV-encoded genome maintenance protein EBNA1, along with the putative oncogenes LMP1, LMP2 and BARF1 were expressed in the majority of NPCs that were analysed. Significant downregulation of expression in an average of 76 cellular TSGs per tumour was found, whilst a per-tumour average of 88 significantly upregulated, TPGs occurred. The expression of around 60% of putative TPGs and TSGs was both up-and down-regulated in different types of cancer, suggesting that the simplistic classification of genes as TSGs or TPGs may not be entirely appropriate and that the concept of context-dependent onco-suppressors may be more extensive than previously recognised. No significant enrichment of TPGs within regions of frequent genomic gain was seen but TSGs were significantly enriched within regions of frequent genomic loss. It is suggested that loss of the FHIT gene may be a driver of NPC tumourigenesis. Notwithstanding the association of TSGs with regions of genomic loss, on a gene by gene basis and excepting homozygous deletions and high-level amplification, there is very little correlation between chromosomal copy number aberrations and expression levels of TSGs and TPGs in NPC.
Collapse
Affiliation(s)
- Chunfang Hu
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Wenbin Wei
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Xiaoyi Chen
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Pathology, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Ciaran B. Woodman
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yunhong Yao
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Pathology, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - John M. Nicholls
- Department of Pathology, University of Hong Kong, Hong Kong, China
| | - Irène Joab
- UMR542 Inserm-Université Paris Sud, Villejuif, France
| | - Sim K. Sihota
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jian-Yong Shao
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - K. Dalia Derkaoui
- Laboratoire de Biologie du Développement et de la Différenciation, Faculté des Sciences, Université d’Oran, Oran, Algeria
| | - Aicha Amari
- ORL Centre Hospitalier et Universitaire, Oran, Algeria
| | | | - Andrew I. Bell
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul G. Murray
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Lawrence S. Young
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - John R. Arrand
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|