1
|
Carli D, Rondot F, Luca M, Campello A, Vallero SG, Tirtei E, Gazzin A, Cardaropoli S, Montanari F, Graziano C, Quarello P, Saadat A, Sparago A, Ferrero GB, Fagioli F, Mussa A. Molecular and Clinical Features of Adrenocortical Tumors in Beckwith-Wiedemann Spectrum. Cancers (Basel) 2024; 16:3967. [PMID: 39682154 DOI: 10.3390/cancers16233967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Adrenocortical tumors (ACTs), including adrenocortical adenoma (ACA) and carcinoma (ACC), represent 0.3-0.4% of pediatric tumors. Beckwith-Wiedemann spectrum (BWSp) confer an increased risk of ACTs, but prognosis, management, and associated molecular characteristics are unclear. METHODS This paper combines a literature review of 54 published cases of BWSp-ACT with a report of one newly identified patient, totaling 55 cases with a confirmed BWSp clinical and/or molecular diagnosis. RESULTS Nineteen patients with ACA, 33 with ACC, and 3 with ACT of uncertain malignant potential (umACT) were included. Twenty patients had uniparental disomy of chromosome 11p15.5 (patUPD11), 11imprinting Center 2 Loss-of-methylation (IC2-LoM), and had 2 11p15 locus duplication. Eleven patients were diagnosed during cancer screening procedures, including two metastatic at diagnosis ACC. CONCLUSIONS Almost half of ACC patients reached the minimum score for clinical BWSp diagnosis only after ACC onset, suggesting that the BWSp score has limited value for the early diagnosis in such a setting. Two patients with metastatic ACC had a histopathological Wieneke score ≤2, not correlating with clinical malignancy and confirming limitations of the current histopathological classification, as previously documented. Ultrasound screening failed identifying the ACC before metastasis in two cases, indicating an urgent need to develop new strategies for screening of ACTs in BWSp. Furthermore, some cases of metastatic ACC exhibited unexpectedly indolent behavior despite being malignant.
Collapse
Affiliation(s)
- Diana Carli
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
- Immunogenetics and Transplant Biology Unit, Città della Salute e della Scienza University Hospital, 10126 Torino, Italy
| | - Federico Rondot
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Maria Luca
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Anna Campello
- Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza University Hospital, 10126 Torino, Italy
| | - Stefano Gabriele Vallero
- Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza University Hospital, 10126 Torino, Italy
| | - Elisa Tirtei
- Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza University Hospital, 10126 Torino, Italy
| | - Andrea Gazzin
- Department of Public Health and Pediatrics, University of Torino, 10126 Torino, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatrics, University of Torino, 10126 Torino, Italy
| | - Francesca Montanari
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | - Paola Quarello
- Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza University Hospital, 10126 Torino, Italy
- Department of Public Health and Pediatrics, University of Torino, 10126 Torino, Italy
| | - Abu Saadat
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | | | - Franca Fagioli
- Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza University Hospital, 10126 Torino, Italy
- Department of Public Health and Pediatrics, University of Torino, 10126 Torino, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, University of Torino, 10126 Torino, Italy
- Clinical Genetics Unit, Regina Margherita Children's Hospital, Città della Salute e della Scienza University Hospital, 10126 Torino, Italy
| |
Collapse
|
2
|
Sassi H, Elaribi Y, Jilani H, Rejeb I, Hizem S, Sebai M, Kasdallah N, Bouthour H, Hannachi S, Beygo J, Saad A, Buiting K, H'mida Ben-Brahim D, BenJemaa L. Beckwith-Wiedemann syndrome: Clinical, histopathological and molecular study of two Tunisian patients and review of literature. Mol Genet Genomic Med 2021; 9:e1796. [PMID: 34510813 PMCID: PMC8580078 DOI: 10.1002/mgg3.1796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Background Beckwith–Wiedemann syndrome (BWS) is a rare overgrowth syndrome characterized by congenital malformations and predisposition to embryonic tumors. Loss of methylation of imprinting center 2 (IC2) is the most frequent alteration and rarely associated with tumors compared to paternal uniparental disomy of chromosome 11 (UPD(11)pat) and gain of methylation of imprinting center 1. Methods Our study aimed to describe the clinical, histopathological and genetic characteristics of two patients and establish genotype‐phenotype correlations. The clinical diagnosis was based on the criteria defined by the international expert consensus of BWS. Molecular study of 11p15.5 methylation status was assessed using methylation‐specific‐multiplex ligation probe amplification (MS‐MLPA). Results Patients were aged 12 months and 3 months and fulfilled the clinical score of BWS. MS‐MLPA showed molecular alterations consisting of loss of methylation in IC2 (IC2‐LOM) at the maternal allele for one patient and a mosaic UPD(11)pat for the second patient in whom follow‐up at 6months revealed adrenocortical carcinoma (ACC) with low grade of malignancy. Molecular subtypes guide the follow‐up and tumor surveillance, our major concern. Conclusion We have to take into account the psychological impact of a possible tumor whatever the underlying mechanism is. Nevertheless, the tumor risk remains high for UPD(11)pat. Our study extended the phenotype of BWS with absence of macrosomia in Tunisian patients, contrasting with literature, and added a supplementary case of ACC in the tumor spectrum of BWS patients with UPD(11)pat.
Collapse
Affiliation(s)
- Hela Sassi
- Department of Congenital and Hereditary Diseases, Mongi Slim Hospital Marsa, Tunis, Tunisia.,Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Yasmina Elaribi
- Department of Congenital and Hereditary Diseases, Mongi Slim Hospital Marsa, Tunis, Tunisia.,Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Houweyda Jilani
- Department of Congenital and Hereditary Diseases, Mongi Slim Hospital Marsa, Tunis, Tunisia.,Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Imen Rejeb
- Department of Congenital and Hereditary Diseases, Mongi Slim Hospital Marsa, Tunis, Tunisia
| | - Syrine Hizem
- Department of Congenital and Hereditary Diseases, Mongi Slim Hospital Marsa, Tunis, Tunisia.,Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Molka Sebai
- Department of Congenital and Hereditary Diseases, Mongi Slim Hospital Marsa, Tunis, Tunisia.,Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Nadia Kasdallah
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia.,Paediatric Department, Military Hospital of Tunis, Tunis, Tunisia
| | - Habib Bouthour
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia.,Department of Paediatric Surgery, Tunis, Tunisia
| | - Samia Hannachi
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Pathology Anatomy and Cytology, Tunis, Tunisia
| | - Jasmin Beygo
- Institute for Human Genetics, Essen University Hospital, Essen, Germany
| | - Ali Saad
- Department of Cytogenetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia.,Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
| | - Karin Buiting
- Institute for Human Genetics, Essen University Hospital, Essen, Germany
| | - Dorra H'mida Ben-Brahim
- Department of Cytogenetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia.,Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
| | - Lamia BenJemaa
- Department of Congenital and Hereditary Diseases, Mongi Slim Hospital Marsa, Tunis, Tunisia.,Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
3
|
Pinto EM, Rodriguez-Galindo C, Lam CG, Ruiz RE, Zambetti GP, Ribeiro RC. Adrenocortical Tumors in Children With Constitutive Chromosome 11p15 Paternal Uniparental Disomy: Implications for Diagnosis and Treatment. Front Endocrinol (Lausanne) 2021; 12:756523. [PMID: 34803919 PMCID: PMC8602920 DOI: 10.3389/fendo.2021.756523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Pediatric adrenocortical tumors (ACTs) are rare and heterogeneous. Approximately 50% of children with ACT carry a germline TP53 variant; however, the genetic underpinning of remaining cases has not been elucidated. In patients having germline TP53 variants, loss of maternal chromosome 11 and duplication of the paternal copy [paternal uniparental disomy, (UPD)] occurs early in tumorigenesis and explains the overexpression of IGF2, the hallmark of pediatric ACT. Beckwith-Wiedemann syndrome (BWS) is also associated with overexpression of IGF2 due to disruption of the 11p15 loci, including segmental UPD. Here, we report six children with ACT with wild type TP53 and germline paternal 11p15 UPD. Median age of five girls and one boy was 3.2 years (range 0.5-11 years). Two patients met the criteria for BWS before diagnosis of ACT. However, ACT was the first and only manifestation of paternal 11p15 UPD in four children. Tumor weight ranged from 21.5 g to 550 g. Despite poor prognostic features at presentation, such as pulmonary metastasis, bilateral adrenal involvement, and large tumors, all patients are alive 8-21 years after cancer diagnosis. Our observations suggest that children with ACT and wild type TP53, irrespective of their age, should be screened for germline abnormalities in chromosome 11p15.
Collapse
Affiliation(s)
- Emilia Modolo Pinto
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- *Correspondence: Emilia Modolo Pinto,
| | - Carlos Rodriguez-Galindo
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Catherine G. Lam
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Robert E. Ruiz
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Gerard P. Zambetti
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Raul C. Ribeiro
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
4
|
Papulino C, Chianese U, Nicoletti MM, Benedetti R, Altucci L. Preclinical and Clinical Epigenetic-Based Reconsideration of Beckwith-Wiedemann Syndrome. Front Genet 2020; 11:563718. [PMID: 33101381 PMCID: PMC7522569 DOI: 10.3389/fgene.2020.563718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetics has achieved a profound impact in the biomedical field, providing new experimental opportunities and innovative therapeutic strategies to face a plethora of diseases. In the rare diseases scenario, Beckwith-Wiedemann syndrome (BWS) is a pediatric pathological condition characterized by a complex molecular basis, showing alterations in the expression of different growth-regulating genes. The molecular origin of BWS is associated with impairments in the genomic imprinting of two domains at the 11p15.5 chromosomal region. The first domain contains three different regions: insulin growth like factor gene (IGF2), H19, and abnormally methylated DMR1 region. The second domain consists of cell proliferation and regulating-genes such as CDKN1C gene encoding for cyclin kinase inhibitor its role is to block cell proliferation. Although most cases are sporadic, about 5-10% of BWS patients have inheritance characteristics. In the 11p15.5 region, some of the patients have maternal chromosomal rearrangements while others have Uniparental Paternal Disomy UPD(11)pat. Defects in DNA methylation cause alteration of genes and the genomic structure equilibrium leading uncontrolled cell proliferation, which is a typical tumorigenesis event. Indeed, in BWS patients an increased childhood tumor predisposition is observed. Here, we summarize the latest knowledge on BWS and focus on the impact of epigenetic alterations to an increased cancer risk development and to metabolic disorders. Moreover, we highlight the correlation between assisted reproductive technologies and this rare disease. We also discuss intriguing aspects of BWS in twinning. Epigenetic therapies in clinical trials have already demonstrated effectiveness in oncological and non-oncological diseases. In this review, we propose a potential "epigenetic-based" approaches may unveil new therapeutic options for BWS patients. Although the complexity of the syndrome is high, patients can be able to lead a normal life but tumor predispositions might impair life expectancy. In this sense epigenetic therapies should have a supporting role in order to guarantee a good prognosis.
Collapse
Affiliation(s)
- Chiara Papulino
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Nicoletti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
5
|
Eltan M, Arslan Ates E, Cerit K, Menevse TS, Kaygusuz SB, Eker N, Bagci P, Ergelen R, Turan S, Bereket A, Guran T. Adrenocortical carcinoma in atypical Beckwith-Wiedemann syndrome due to loss of methylation at imprinting control region 2. Pediatr Blood Cancer 2020; 67:e28042. [PMID: 31612591 DOI: 10.1002/pbc.28042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Mehmet Eltan
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Esra Arslan Ates
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Kivilcim Cerit
- Department of Paediatric Surgery, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tuba Seven Menevse
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Sare Betul Kaygusuz
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Nursah Eker
- Department of Paediatric Oncology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Pelin Bagci
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Rabia Ergelen
- Department of Radiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Serap Turan
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Abdullah Bereket
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tulay Guran
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
6
|
Wang J, Zhang X, Chen W, Hu X, Li J, Liu C. Regulatory roles of long noncoding RNAs implicated in cancer hallmarks. Int J Cancer 2019; 146:906-916. [PMID: 30873588 DOI: 10.1002/ijc.32277] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/18/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
Abstract
Cancer cells acquire numerous biological properties (designated "cancer hallmarks"), such as cell survival and energy metabolism, that facilitate tumor growth and metastatic dissemination during development. To date, eight hallmarks of cancer have been identified that provide a logical framework for understanding the remarkable diversity of neoplastic diseases, as proposed by Douglas Hanahan and Robert A. Weinberg. Long noncoding RNAs (lncRNAs), a category of transcripts widely demonstrated to exert significant regulatory effects on biological processes, have attracted considerable research attention due to their association with the occurrence and development of cancer. The mechanisms by which lncRNAs exert their functions require elucidation to optimize their potential utility as alternative biomarkers and therapeutic targets during tumor occurrence and progression. In this review, we have discussed recent research progress on lncRNAs involved in various cancer hallmarks and their related mechanisms of action, with a view to providing an updated picture of their immense therapeutic potential in the fight against cancer.
Collapse
Affiliation(s)
- Jun Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
7
|
Wang Z, Yang B, Zhang M, Guo W, Wu Z, Wang Y, Jia L, Li S, Xie W, Yang D. lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. Cancer Cell 2018; 33:706-720.e9. [PMID: 29622465 PMCID: PMC6143179 DOI: 10.1016/j.ccell.2018.03.006] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 02/13/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023]
Abstract
We characterized the epigenetic landscape of genes encoding long noncoding RNAs (lncRNAs) across 6,475 tumors and 455 cancer cell lines. In stark contrast to the CpG island hypermethylation phenotype in cancer, we observed a recurrent hypomethylation of 1,006 lncRNA genes in cancer, including EPIC1 (epigenetically-induced lncRNA1). Overexpression of EPIC1 is associated with poor prognosis in luminal B breast cancer patients and enhances tumor growth in vitro and in vivo. Mechanistically, EPIC1 promotes cell-cycle progression by interacting with MYC through EPIC1's 129-283 nt region. EPIC1 knockdown reduces the occupancy of MYC to its target genes (e.g., CDKN1A, CCNA2, CDC20, and CDC45). MYC depletion abolishes EPIC1's regulation of MYC target and luminal breast cancer tumorigenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Zehua Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bo Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Weiwei Guo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zhiyuan Wu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yue Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lin Jia
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
8
|
Sun X, Xin Y, Wang M, Li S, Miao S, Xuan Y, Wang Y, Lu T, Liu J, Jiao W. Overexpression of long non-coding RNA KCNQ1OT1 is related to good prognosis via inhibiting cell proliferation in non-small cell lung cancer. Thorac Cancer 2018; 9:523-531. [PMID: 29504267 PMCID: PMC5928359 DOI: 10.1111/1759-7714.12599] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/02/2018] [Accepted: 01/02/2018] [Indexed: 01/05/2023] Open
Abstract
Background Lung cancer (LC) is the most common malignancy in the world. Many long non‐coding RNAs (lncRNAs) have been reported to be associated with LC; however, the function of KCNQ1OT1 in LC requires exploration. Methods We conducted in silico analysis with data from The Cancer Genome Atlas to investigate the association between KCNQ1OT1 and LC. A Kaplan–Meier plotter was used to analyze the function of KCNQ1OT1 on LC patient prognosis. Quantitative reverse transcription‐PCR (qRT‐PCR) was performed to confirm previous results. An A549 lung cancer cell was transfected with pcDNA‐KCNQ1OT1, and methyl thiazolyl tetrazolium assay was performed to investigate the function of KCNQ1OT1 on cell proliferation. in vivo assay was performed with nude mice. Results Bioinformatics analysis and qRT‐PCR indicated that KCNQ1OT1 expression was higher in stage I LC patients (P < 0.01), and survival analysis showed that high expression of KCNQ1OT1 in LC patients was associated with better prognosis (P < 0.05). qRT‐PCR showed a negative correlation between KCNQ1OT1 and Ki67 expression and tumor size (P < 0.01), which indicated that KCNQ1OT1 is associated with tumor growth in LC. There was no significant correlation between KCNQ1OT1 level and lymph node metastasis (P > 0.05). KCNQ1OT1 overexpression significantly inhibited cell proliferation and tumor growth in vitro and in vivo (P < 0.05). Conclusion Our preliminary data showed that KCNQ1OT1 is overexpressed in early stage LC and is correlated with better prognosis in LC patients, possibly by suppressing cell proliferation.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanlu Xin
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Maolong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shicheng Li
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuncheng Miao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunpeng Xuan
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Lu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Fatima R, Akhade VS, Pal D, Rao SMR. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. MOLECULAR AND CELLULAR THERAPIES 2015; 3:5. [PMID: 26082843 PMCID: PMC4469312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 11/21/2023]
Abstract
Long noncoding RNAs are emerging as key players in various fundamental biological processes. We highlight the varied molecular mechanisms by which lncRNAs modulate gene expression in diverse cellular contexts and their role in early mammalian development in this review. Furthermore, it is being increasingly recognized that altered expression of lncRNAs is specifically associated with tumorigenesis, tumor progression and metastasis. We discuss various lncRNAs implicated in different cancer types with a focus on their clinical applications as potential biomarkers and therapeutic targets in the pathology of diverse cancers.
Collapse
Affiliation(s)
- Roshan Fatima
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Vijay Suresh Akhade
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Debosree Pal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Satyanarayana MR Rao
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| |
Collapse
|
10
|
Fatima R, Akhade VS, Pal D, Rao SM. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. MOLECULAR AND CELLULAR THERAPIES 2015; 3:5. [PMID: 26082843 PMCID: PMC4469312 DOI: 10.1186/s40591-015-0042-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs are emerging as key players in various fundamental biological processes. We highlight the varied molecular mechanisms by which lncRNAs modulate gene expression in diverse cellular contexts and their role in early mammalian development in this review. Furthermore, it is being increasingly recognized that altered expression of lncRNAs is specifically associated with tumorigenesis, tumor progression and metastasis. We discuss various lncRNAs implicated in different cancer types with a focus on their clinical applications as potential biomarkers and therapeutic targets in the pathology of diverse cancers.
Collapse
Affiliation(s)
- Roshan Fatima
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Vijay Suresh Akhade
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Debosree Pal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Satyanarayana Mr Rao
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| |
Collapse
|
11
|
Ouadid-Ahidouch H, Rodat-Despoix L, Matifat F, Morin G, Ahidouch A. DNA methylation of channel-related genes in cancers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2621-8. [PMID: 25703813 DOI: 10.1016/j.bbamem.2015.02.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/04/2015] [Accepted: 02/12/2015] [Indexed: 12/31/2022]
Abstract
DNA methylation at CpG sites is an epigenetic mechanism that regulates cellular gene expression. In cancer cells, aberrant methylation is correlated with the abnormalities in expression of genes that are known to be involved in the particular characteristics of cancer cells such as proliferation, apoptosis, migration or invasion. During the past 30 years, accumulating data have definitely convinced the scientific community that ion channels are involved in cancerogenesis and cancer properties. As they are situated at the cell surface, they might be prime targets in the development of new therapeutic strategies besides their potential use as prognostic factors. Despite the progress in our understanding of the remodeling of ion channels in cancer cells, the molecular mechanisms underlying their over- or down-expression remained enigmatic. In this review, we aimed to summarize the available data on gene promoter methylation of ion channels and to investigate their clinical significance as novel biomarkers in cancer. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Halima Ouadid-Ahidouch
- UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, University of Picardie Jules Verne, SFR CAP-SANTE (FED 4231), Amiens, France.
| | - Lise Rodat-Despoix
- UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, University of Picardie Jules Verne, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Fabrice Matifat
- UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, University of Picardie Jules Verne, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Gilles Morin
- EA 4666 and Department of Molecular and Clinical Genetics, Amiens University Hospital, University of Picardie Jules Verne, Amiens, France
| | - Ahmed Ahidouch
- UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, University of Picardie Jules Verne, SFR CAP-SANTE (FED 4231), Amiens, France; Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir Morocco
| |
Collapse
|
12
|
Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1097-109. [PMID: 25159663 DOI: 10.1016/j.bbagrm.2014.08.012] [Citation(s) in RCA: 793] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/04/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
Abstract
Unraveling the gene expression networks governing cancer initiation and development is essential while remains largely uncompleted. With the innovations in RNA-seq technologies and computational biology, long noncoding RNAs (lncRNAs) are being identified and characterized at a rapid pace. Recent findings reveal that lncRNAs are implicated in serial steps of cancer development. These lncRNAs interact with DNA, RNA, protein molecules and/or their combinations, acting as an essential regulator in chromatin organization, and transcriptional and post-transcriptional regulation. Their misexpression confers the cancer cell capacities for tumor initiation, growth, and metastasis. The review here will emphasize their aberrant expression and function in cancer, and the roles in cancer diagnosis and therapy will be also discussed.
Collapse
Affiliation(s)
- Guodong Yang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, PR China.
| | - Xiaozhao Lu
- Department of Nephrology, 323 Hospital of PLA, Xi'an 710054, PR China
| | - Lijun Yuan
- Department of Ultrasound, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China.
| |
Collapse
|
13
|
Abstract
The human genome encodes thousands of long noncoding RNAs (lncRNAs). Although most remain functionally uncharacterized biological "dark matter," lncRNAs have garnered considerable attention for their diverse roles in human biology, including developmental programs and tumor suppressor gene networks. As the number of lncRNAs associated with human disease grows, ongoing research efforts are focusing on their regulatory mechanisms. New technologies that enable enumeration of lncRNA interaction partners and determination of lncRNA structure are well positioned to drive deeper understanding of their functions and involvement in pathogenesis. In turn, lncRNAs may become targets for therapeutic intervention or new tools for biotechnology.
Collapse
Affiliation(s)
- Lance Martin
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.
Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Howard Y. Chang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.
Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|