1
|
Wang X, Zhang H, Wang X, Zhou W, Dong L, Li N, He Q. Generation of an induced pluripotent stem cell line (SDASi001-A) from a Schimke immune-osseous dysplasia patient with SMARCAL1 mutations. Stem Cell Res 2023; 72:103217. [PMID: 37788557 DOI: 10.1016/j.scr.2023.103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023] Open
Abstract
A human induced pluripotent stem cell (iPSC) line (SDASi001-A) was generated from patient with Schimke immune-osseous dysplasia (SIOD), carrying heterozygous mutations in SMARCAL1 gene. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using non-integrating delivery of OCT4, SOX2, KFL4, BCL-XL and c-MYC. The iPSC line expresses pluripotency markers, displays a normal karyotype, and has the ability to differentiate into cells of three germ layers in vitro. This iPSC line represents a valuable cell model for SIOD in humans.
Collapse
Affiliation(s)
- Xingcui Wang
- Science and Technology Service Platform, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong, China; Department of Rheumatology and Immunology, Children's Hospital Affiliated to Shandong University, Ji'nan, Shandong, China
| | - Hongxia Zhang
- Department of Rheumatology and Immunology, Children's Hospital Affiliated to Shandong University, Ji'nan, Shandong, China
| | - Xingbang Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Weiran Zhou
- Department of Rheumatology and Immunology, Children's Hospital Affiliated to Shandong University, Ji'nan, Shandong, China
| | - Linlin Dong
- Department of Rheumatology and Immunology, Children's Hospital Affiliated to Shandong University, Ji'nan, Shandong, China
| | - Na Li
- Dermatology Department, Jinan Central Hospital, Ji'nan, Shandong, China.
| | - Qiuxia He
- Science and Technology Service Platform, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong, China.
| |
Collapse
|
2
|
Pieniawska-Śmiech K, Pasternak G, Lewandowicz-Uszyńska A, Jutel M. Diagnostic Challenges in Patients with Inborn Errors of Immunity with Different Manifestations of Immune Dysregulation. J Clin Med 2022; 11:4220. [PMID: 35887984 PMCID: PMC9324612 DOI: 10.3390/jcm11144220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Inborn errors of immunity (IEI), formerly known as primary immunodeficiency disorders (PIDs), are inherited disorders caused by damaging germline variants in single genes, which result in increased susceptibility to infections and in allergic, autoimmune, autoinflammatory, nonmalignant lymphoproliferative, and neoplastic conditions. Along with well-known warning signs of PID, attention should be paid to signs of immune dysregulation, which seem to be equally important to susceptibility to infection in defining IEI. The modern diagnostics of IEI offer a variety of approaches but with some problems. The aim of this review is to discuss the diagnostic challenges in IEI patients in the context of an immune dysregulation background.
Collapse
Affiliation(s)
- Karolina Pieniawska-Śmiech
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
| | - Gerard Pasternak
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Aleksandra Lewandowicz-Uszyńska
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- ALL-MED Medical Research Institute, 53-201 Wroclaw, Poland
| |
Collapse
|
3
|
Tye S, Ronson GE, Morris JR. A fork in the road: Where homologous recombination and stalled replication fork protection part ways. Semin Cell Dev Biol 2021; 113:14-26. [PMID: 32653304 PMCID: PMC8082280 DOI: 10.1016/j.semcdb.2020.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
In response to replication hindrances, DNA replication forks frequently stall and are remodelled into a four-way junction. In such a structure the annealed nascent strand is thought to resemble a DNA double-strand break and remodelled forks are vulnerable to nuclease attack by MRE11 and DNA2. Proteins that promote the recruitment, loading and stabilisation of RAD51 onto single-stranded DNA for homology search and strand exchange in homologous recombination (HR) repair and inter-strand cross-link repair also act to set up RAD51-mediated protection of nascent DNA at stalled replication forks. However, despite the similarities of these pathways, several lines of evidence indicate that fork protection is not simply analogous to the RAD51 loading step of HR. Protection of stalled forks not only requires separate functions of a number of recombination proteins, but also utilises nucleases important for the resection steps of HR in alternative ways. Here we discuss how fork protection arises and how its differences with HR give insights into the differing contexts of these two pathways.
Collapse
Affiliation(s)
- Stephanie Tye
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - George E Ronson
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
Expanding Phenotype of Schimke Immuno-Osseous Dysplasia: Congenital Anomalies of the Kidneys and of the Urinary Tract and Alteration of NK Cells. Int J Mol Sci 2020; 21:ijms21228604. [PMID: 33203071 PMCID: PMC7696905 DOI: 10.3390/ijms21228604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
Schimke immuno-osseous dysplasia (SIOD) is a rare multisystemic disorder with a variable clinical expressivity caused by biallelic variants in SMARCAL1. A phenotype-genotype correlation has been attempted and variable expressivity of biallelic SMARCAL1 variants may be associated with environmental and genetic disturbances of gene expression. We describe two siblings born from consanguineous parents with a diagnosis of SIOD revealed by whole exome sequencing (WES). Results: A homozygous missense variant in the SMARCAL1 gene (c.1682G>A; p.Arg561His) was identified in both patients. Despite carrying the same variant, the two patients showed substantial renal and immunological phenotypic differences. We describe features not previously associated with SIOD-both patients had congenital anomalies of the kidneys and of the urinary tract and one of them succumbed to a classical type congenital mesoblastic nephroma. We performed an extensive characterization of the immunophenotype showing combined immunodeficiency characterized by a profound lymphopenia, lack of thymic output, defective IL-7Rα expression, and disturbed B plasma cells differentiation and immunoglobulin production in addition to an altered NK-cell phenotype and function. Conclusions: Overall, our results contribute to extending the phenotypic spectrum of features associated with SMARCAL1 mutations and to better characterizing the underlying immunologic disorder with critical implications for therapeutic and management strategies.
Collapse
|
5
|
Joseph SA, Taglialatela A, Leuzzi G, Huang JW, Cuella-Martin R, Ciccia A. Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease. DNA Repair (Amst) 2020; 95:102943. [PMID: 32971328 DOI: 10.1016/j.dnarep.2020.102943] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Over the course of DNA replication, DNA lesions, transcriptional intermediates and protein-DNA complexes can impair the progression of replication forks, thus resulting in replication stress. Failure to maintain replication fork integrity in response to replication stress leads to genomic instability and predisposes to the development of cancer and other genetic disorders. Multiple DNA damage and repair pathways have evolved to allow completion of DNA replication following replication stress, thus preserving genomic integrity. One of the processes commonly induced in response to replication stress is fork reversal, which consists in the remodeling of stalled replication forks into four-way DNA junctions. In normal conditions, fork reversal slows down replication fork progression to ensure accurate repair of DNA lesions and facilitates replication fork restart once the DNA lesions have been removed. However, in certain pathological situations, such as the deficiency of DNA repair factors that protect regressed forks from nuclease-mediated degradation, fork reversal can cause genomic instability. In this review, we describe the complex molecular mechanisms regulating fork reversal, with a focus on the role of the SNF2-family fork remodelers SMARCAL1, ZRANB3 and HLTF, and highlight the implications of fork reversal for tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Sarah A Joseph
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jen-Wei Huang
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
6
|
Bansal R, Hussain S, Chanana UB, Bisht D, Goel I, Muthuswami R. SMARCAL1, the annealing helicase and the transcriptional co-regulator. IUBMB Life 2020; 72:2080-2096. [PMID: 32754981 DOI: 10.1002/iub.2354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
The ATP-dependent chromatin remodeling proteins play an important role in DNA repair. The energy released by ATP hydrolysis is used for myriad functions ranging from nucleosome repositioning and nucleosome eviction to histone variant exchange. In addition, the distant member of the family, SMARCAL1, uses the energy to reanneal stalled replication forks in response to DNA damage. Biophysical studies have shown that this protein has the unique ability to recognize and bind specifically to DNA structures possessing double-strand to single-strand transition regions. Mutations in SMARCAL1 have been linked to Schimke immuno-osseous dysplasia, an autosomal recessive disorder that exhibits variable penetrance and expressivity. It has long been hypothesized that the variable expressivity and pleiotropic phenotypes observed in the patients might be due to the ability of SMARCAL1 to co-regulate the expression of a subset of genes within the genome. Recently, the role of SMARCAL1 in regulating transcription has been delineated. In this review, we discuss the biophysical and functional properties of the protein that help it to transcriptionally co-regulate DNA damage response as well as to bind to the stalled replication fork and stabilize it, thus ensuring genomic stability. We also discuss the role of SMARCAL1 in cancer and the possibility of using this protein as a chemotherapeutic target.
Collapse
Affiliation(s)
- Ritu Bansal
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saddam Hussain
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Upasana Bedi Chanana
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Deepa Bisht
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Isha Goel
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Muthuswami
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Gonzalez-Mancera MS, Forghani I, Mirsaeidi M. Missense (p.Glu778Lys) and (p.Gly908Arg) variants of NOD2 gene are associated with recurrent pulmonary non-tuberculous mycobacterial infections. Scand J Immunol 2020; 92:e12935. [PMID: 32654169 DOI: 10.1111/sji.12935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Miguel S Gonzalez-Mancera
- Department of Pulmonary Medicine and Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irman Forghani
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mehdi Mirsaeidi
- Department of Pulmonary Medicine and Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Jin J, Wu K, Liu Z, Chen X, Jiang S, Wang Z, Li W. Whole Exome Sequencing Identified a Novel Biallelic SMARCAL1 Mutation in the Extremely Rare Disease SIOD. Front Genet 2019; 10:565. [PMID: 31275356 PMCID: PMC6591458 DOI: 10.3389/fgene.2019.00565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023] Open
Abstract
Schimke immuno-osseous dysplasia (SIOD) is an extremely rare autosomal recessive pleiotropic disease. Although biallelic mutations in SMARCAL1 gene have been reported to be the genetic etiology of SIOD, its molecular diagnosis has been challenging in a relatively proportion of cases due to the extreme rarity. Here, we made a definitive SIOD diagnosis of a 5-year-old girl with an extremely mild phenotype by applying whole exome sequencing (WES). As a result, a novel maternal mutation (c.2141+5G > A) confirmed to create a novel splice donor site combined with a known paternal mutation (c.1933C > T; p.Arg645Cys) were detected. In addition, previous reported SIOD cases showed excessive enrichment for mutations in the helicase ATP-binding and C-terminal domains of SMARCAL1. Similarly, the novel mutation we identified caused a mutant protein truncated in the SMARCAL1 C-terminus. Interestingly, based on the phenotypic profile, compared to reported cases, the patient in our study exhibited milder symptoms with renal dysfunctions limited to asymptomatic proteinuria, but no neurological signs or recurrent infections. Moreover, we identified 73 SMARCAL1-interacting genes, which formed a significant interconnected interaction network with roles in disease-related pathways such as double-strand break repair via homologous recombination, DNA repair, and replication fork processing. Notably, the top 15 SMARCAL1-interacting genes all showed a similar renal temporal expression pattern. Altogether, to our knowledge, the case in this study is the first case diagnosed originally based on a genetic test via WES rather than a characteristic phenotype. The identification of the novel allelic mutation (c.2141+5G > A) extends the phenotypic spectrum of SMARCAL1 mutations and the following bioinformatics analysis presents additional genetic evidence to illustrate the role of SMARCAL1 in SIOD.
Collapse
Affiliation(s)
- Jing Jin
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Keke Wu
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaomin Chen
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China.,Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shan Jiang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhen Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Weixing Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Zhejiang Center for Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
9
|
Diplas BH, He X, Brosnan-Cashman JA, Liu H, Chen LH, Wang Z, Moure CJ, Killela PJ, Loriaux DB, Lipp ES, Greer PK, Yang R, Rizzo AJ, Rodriguez FJ, Friedman AH, Friedman HS, Wang S, He Y, McLendon RE, Bigner DD, Jiao Y, Waitkus MS, Meeker AK, Yan H. The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma. Nat Commun 2018; 9:2087. [PMID: 29802247 PMCID: PMC5970234 DOI: 10.1038/s41467-018-04448-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/26/2018] [Indexed: 12/26/2022] Open
Abstract
The majority of glioblastomas can be classified into molecular subgroups based on mutations in the TERT promoter (TERTp) and isocitrate dehydrogenase 1 or 2 (IDH). These molecular subgroups utilize distinct genetic mechanisms of telomere maintenance, either TERTp mutation leading to telomerase activation or ATRX-mutation leading to an alternative lengthening of telomeres phenotype (ALT). However, about 20% of glioblastomas lack alterations in TERTp and IDH. These tumors, designated TERTpWT-IDHWT glioblastomas, do not have well-established genetic biomarkers or defined mechanisms of telomere maintenance. Here we report the genetic landscape of TERTpWT-IDHWT glioblastoma and identify SMARCAL1 inactivating mutations as a novel genetic mechanism of ALT. Furthermore, we identify a novel mechanism of telomerase activation in glioblastomas that occurs via chromosomal rearrangements upstream of TERT. Collectively, our findings define novel molecular subgroups of glioblastoma, including a telomerase-positive subgroup driven by TERT-structural rearrangements (IDHWT-TERTSV), and an ALT-positive subgroup (IDHWT-ALT) with mutations in ATRX or SMARCAL1. Glioblastoma can be classified based on IDH and TERT promoter mutations, but ~20% of glioblastoma do not have these mutations (TERTpWT-IDHWT glioblastoma). Here, the authors present a genetic landscape of TERTpWT-IDHWT glioblastoma, identifying a telomerase-positive subgroup driven by TERT-structural rearrangements and an ALT-positive subgroup with mutations in ATRX or SMARCAL1.
Collapse
Affiliation(s)
- Bill H Diplas
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Xujun He
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jacqueline A Brosnan-Cashman
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, 21231, MD, USA
| | - Heng Liu
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Lee H Chen
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Zhaohui Wang
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Casey J Moure
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Patrick J Killela
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Daniel B Loriaux
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Eric S Lipp
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA
| | - Paula K Greer
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Rui Yang
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Anthony J Rizzo
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, 21231, MD, USA
| | - Fausto J Rodriguez
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, 21231, MD, USA
| | - Allan H Friedman
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, 27710, NC, USA
| | - Henry S Friedman
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA
| | - Sizhen Wang
- Genetron Health (Beijing) Co. Ltd, Beijing, 102208, China
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Roger E McLendon
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Darell D Bigner
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, 27710, NC, USA
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Matthew S Waitkus
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA. .,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA.
| | - Alan K Meeker
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, 21231, MD, USA.
| | - Hai Yan
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA. .,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA.
| |
Collapse
|
10
|
Collins MK, Peters K, English JC, Rady P, Tyring S, Jedrych J. Cutaneous squamous cell carcinoma with epidermodysplasia verruciformis-like features in a patient with Schimke immune-osseous dysplasia. J Cutan Pathol 2018; 45:465-467. [PMID: 29498428 DOI: 10.1111/cup.13139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Mary-Katharine Collins
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kaitlin Peters
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Joseph C English
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Peter Rady
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Stephen Tyring
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jaroslaw Jedrych
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Abstract
A large number of SNF2 family, DNA and ATP-dependent motor proteins are needed during transcription, DNA replication, and DNA repair to manipulate protein-DNA interactions and change DNA structure. SMARCAL1, ZRANB3, and HLTF are three related members of this family with specialized functions that maintain genome stability during DNA replication. These proteins are recruited to replication forks through protein-protein interactions and bind DNA using both their motor and substrate recognition domains (SRDs). The SRD provides specificity to DNA structures like forks and junctions and confers DNA remodeling activity to the motor domains. Remodeling reactions include fork reversal and branch migration to promote fork stabilization, template switching, and repair. Regulation ensures these powerful activities remain controlled and restricted to damaged replication forks. Inherited mutations in SMARCAL1 cause a severe developmental disorder and mutations in ZRANB3 and HLTF are linked to cancer illustrating the importance of these enzymes in ensuring complete and accurate DNA replication. In this review, we examine how these proteins function, concentrating on their common and unique attributes and regulatory mechanisms.
Collapse
Affiliation(s)
- Lisa A Poole
- a Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - David Cortez
- a Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
12
|
Lugli N, Sotiriou SK, Halazonetis TD. The role of SMARCAL1 in replication fork stability and telomere maintenance. DNA Repair (Amst) 2017. [PMID: 28623093 DOI: 10.1016/j.dnarep.2017.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SMARCAL1 (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A-Like 1), also known as HARP, is an ATP-dependent annealing helicase that stabilizes replication forks during DNA damage. Mutations in this gene are the cause of Schimke immune-osseous dysplasia (SIOD), an autosomal recessive disorder characterized by T-cell immunodeficiency and growth dysfunctions. In this review, we summarize the main roles of SMARCAL1 in DNA repair, telomere maintenance and replication fork stability in response to DNA replication stress.
Collapse
Affiliation(s)
- Natalia Lugli
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
13
|
Azeroglu B, Leach DRF. RecG controls DNA amplification at double-strand breaks and arrested replication forks. FEBS Lett 2017; 591:1101-1113. [PMID: 28155219 PMCID: PMC5412681 DOI: 10.1002/1873-3468.12583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/16/2022]
Abstract
DNA amplification is a powerful mutational mechanism that is a hallmark of cancer and drug resistance. It is therefore important to understand the fundamental pathways that cells employ to avoid over‐replicating sections of their genomes. Recent studies demonstrate that, in the absence of RecG, DNA amplification is observed at sites of DNA double‐strand break repair (DSBR) and of DNA replication arrest that are processed to generate double‐strand ends. RecG also plays a role in stabilising joint molecules formed during DSBR. We propose that RecG prevents a previously unrecognised mechanism of DNA amplification that we call reverse‐restart, which generates DNA double‐strand ends from incorrect loading of the replicative helicase at D‐loops formed by recombination, and at arrested replication forks.
Collapse
Affiliation(s)
- Benura Azeroglu
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, UK
| | - David R F Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, UK
| |
Collapse
|
14
|
Badu-Nkansah A, Mason AC, Eichman BF, Cortez D. Identification of a Substrate Recognition Domain in the Replication Stress Response Protein Zinc Finger Ran-binding Domain-containing Protein 3 (ZRANB3). J Biol Chem 2016; 291:8251-7. [PMID: 26884333 DOI: 10.1074/jbc.m115.709733] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage and other forms of replication stress can cause replication forks to stall. Replication stress response proteins stabilize and resolve stalled forks by mechanisms that include fork remodeling to facilitate repair or bypass of damaged templates. Several enzymes including SMARCAL1, HLTF, and ZRANB3 catalyze these reactions. SMARCAL1 and HLTF utilize structurally distinct accessory domains attached to an ATPase motor domain to facilitate DNA binding and catalysis of fork remodeling reactions. Here we describe a substrate recognition domain within ZRANB3 that is needed for it to recognize forked DNA structures, hydrolyze ATP, catalyze fork remodeling, and act as a structure-specific endonuclease. Thus, substrate recognition domains are a common feature of fork remodeling, SNF2-family, DNA-dependent ATPases, and our study provides further mechanistic understanding of how these enzymes maintain genome integrity during DNA replication.
Collapse
Affiliation(s)
- Akosua Badu-Nkansah
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Aaron C Mason
- Department of Biological Sciences, Vanderbilt University College of Arts and Sciences, Nashville, Tennessee 37232
| | - Brandt F Eichman
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and Department of Biological Sciences, Vanderbilt University College of Arts and Sciences, Nashville, Tennessee 37232
| | - David Cortez
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| |
Collapse
|
15
|
Abstract
The SMARCAL1 (SWI/SNF related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) DNA translocase is one of several related enzymes, including ZRANB3 (zinc finger, RAN-binding domain containing 3) and HLTF (helicase-like transcription factor), that are recruited to stalled replication forks to promote repair and restart replication. These enzymes can perform similar biochemical reactions such as fork reversal; however, genetic studies indicate they must have unique cellular activities. Here, we present data showing that SMARCAL1 has an important function at telomeres, which present an endogenous source of replication stress. SMARCAL1-deficient cells accumulate telomere-associated DNA damage and have greatly elevated levels of extrachromosomal telomere DNA (C-circles). Although these telomere phenotypes are often found in tumor cells using the alternative lengthening of telomeres (ALT) pathway for telomere elongation, SMARCAL1 deficiency does not yield other ALT phenotypes such as elevated telomere recombination. The activity of SMARCAL1 at telomeres can be separated from its genome-maintenance activity in bulk chromosomal replication because it does not require interaction with replication protein A. Finally, this telomere-maintenance function is not shared by ZRANB3 or HLTF. Our results provide the first identification, to our knowledge, of an endogenous source of replication stress that requires SMARCAL1 for resolution and define differences between members of this class of replication fork-repair enzymes.
Collapse
|
16
|
Carroll C, Hunley TE, Guo Y, Cortez D. A novel splice site mutation in SMARCAL1 results in aberrant exon definition in a child with Schimke immunoosseous dysplasia. Am J Med Genet A 2015; 167A:2260-4. [PMID: 25943327 DOI: 10.1002/ajmg.a.37146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/20/2015] [Indexed: 12/30/2022]
Abstract
Schimke Immunoosseous Dysplasia (SIOD) is a rare, autosomal recessive disorder of childhood characterized by spondyloepiphyseal dysplasia, focal segmental glomerulosclerosis and renal failure, T-cell immunodeficiency, and cancer in certain instances. Approximately half of patients with SIOD are reported to have biallelic mutations in SMARCAL1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily a-like 1), which encodes a DNA translocase that localizes to sites of DNA replication and repairs damaged replication forks. We present a novel mutation (NM_014140.3:c.2070+2insT) that results in defective SMARCAL1 mRNA splicing in a child with SIOD. This mutation, within the donor site of intron 12, results in the skipping of exon 12, which encodes part of a critical hinge region connecting the two lobes of the ATPase domain. This mutation was not recognized as deleterious by diagnostic SMARCAL1 sequencing, but discovered through next generation sequencing and found to result in absent SMARCAL1 expression in patient-derived lymphoblasts. The splicing defect caused by this mutation supports the concept of exon definition. Furthermore, it illustrates the need to broaden the search for SMARCAL1 mutations in patients with SIOD lacking coding sequence variants.
Collapse
Affiliation(s)
- Clinton Carroll
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee.,Division of Pediatric Hematology/Oncology, Vanderbilt University School of Medicine, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Tracy E Hunley
- Division of Pediatric Nephrology, Vanderbilt University School of Medicine, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
17
|
Bhat KP, Bétous R, Cortez D. High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling. J Biol Chem 2014; 290:4110-7. [PMID: 25552480 DOI: 10.1074/jbc.m114.627083] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity.
Collapse
Affiliation(s)
- Kamakoti P Bhat
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Rémy Bétous
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - David Cortez
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
18
|
A structure-specific nucleic acid-binding domain conserved among DNA repair proteins. Proc Natl Acad Sci U S A 2014; 111:7618-23. [PMID: 24821763 DOI: 10.1073/pnas.1324143111] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SMARCAL1, a DNA remodeling protein fundamental to genome integrity during replication, is the only gene associated with the developmental disorder Schimke immuno-osseous dysplasia (SIOD). SMARCAL1-deficient cells show collapsed replication forks, S-phase cell cycle arrest, increased chromosomal breaks, hypersensitivity to genotoxic agents, and chromosomal instability. The SMARCAL1 catalytic domain (SMARCAL1(CD)) is composed of an SNF2-type double-stranded DNA motor ATPase fused to a HARP domain of unknown function. The mechanisms by which SMARCAL1 and other DNA translocases repair replication forks are poorly understood, in part because of a lack of structural information on the domains outside of the common ATPase motor. In the present work, we determined the crystal structure of the SMARCAL1 HARP domain and examined its conformation and assembly in solution by small angle X-ray scattering. We report that this domain is conserved with the DNA mismatch and damage recognition domains of MutS/MSH and NER helicase XPB, respectively, as well as with the putative DNA specificity motif of the T4 phage fork regression protein UvsW. Loss of UvsW fork regression activity by deletion of this domain was rescued by its replacement with HARP, establishing the importance of this domain in UvsW and demonstrating a functional complementarity between these structurally homologous domains. Mutation of predicted DNA-binding residues in HARP dramatically reduced fork binding and regression activities of SMARCAL1(CD). Thus, this work has uncovered a conserved substrate recognition domain in DNA repair enzymes that couples ATP-hydrolysis to remodeling of a variety of DNA structures, and provides insight into this domain's role in replication fork stability and genome integrity.
Collapse
|
19
|
Simon AJ, Lev A, Jeison M, Borochowitz ZU, Korn D, Lerenthal Y, Somech R. Novel SMARCAL1 bi-allelic mutations associated with a chromosomal breakage phenotype in a severe SIOD patient. J Clin Immunol 2013; 34:76-83. [PMID: 24197801 DOI: 10.1007/s10875-013-9957-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Chromosomal instability syndromes include a group of rare diseases characterized by defective DNA-damage-response and increased risk of chromosomal breakage. Patients display defects in the recognition and/or repair of DNA damage, with a subsequent high rate of malignancies and abnormal gene rearrangements. Other clinical manifestations, such as immunodeficiency, neurodevelopmental delay and skeletal abnormalities, are present in some of these syndromes. We studied a patient with profound T-lymphocyte defect, neurodevelopmental delay, facial dysmorphism, nephrotic syndrome and spondyloepiphyseal bone dysplasia typical of SIOD. METHODS Karyotype and chromosome fragility assays on patients' peripheral blood mononuclear cells showed an abnormal rate of spontaneous breaks. Cell cycle analysis of patient's fibroblasts following replication stress induced by hydroxyhurea revealed a delay in their release from S-phase to G2. When using higher concentrations of hydroxyhurea no patient fibroblast colonies could survive, compared with control fibroblasts. Whole-exome sequencing revealed novel compound heterozygote mutations in SMARCAL1 gene, resulting in putative frame shifts of encoded SMARCAL1 from each allele and no detected protein in patient's cells. The patient's youngest brother was found to have similar manifestations of SIOD but of less severity, including short stature, facial dysmorphism and typical osseous dysplasia, but no clinical findings suggestive of immunodeficiency and no chromosomal fragility. Similar to his sister, the brother carries both bi-allelic mutations in SMARCAL1 gene. CONCLUSIONS We present here the first evidence of intrinsic chromosomal instability in a severe SMARCAL1-deficient patient with a clinical picture of SIOD. Our results are consistent with the recently outlined role of SMARCAL1 protein in DNA damage response.
Collapse
Affiliation(s)
- Amos J Simon
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, 52621, Israel,
| | | | | | | | | | | | | |
Collapse
|
20
|
Carroll C, Bansbach CE, Zhao R, Jung SY, Qin J, Cortez D. Phosphorylation of a C-terminal auto-inhibitory domain increases SMARCAL1 activity. Nucleic Acids Res 2013; 42:918-25. [PMID: 24150942 PMCID: PMC3902923 DOI: 10.1093/nar/gkt929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
SMARCAL1 promotes the repair and restart of damaged replication forks. Either overexpression or silencing SMARCAL1 causes the accumulation of replication-associated DNA damage. SMARCAL1 is heavily phosphorylated. Here we identify multiple phosphorylation sites, including S889, which is phosphorylated even in undamaged cells. S889 is highly conserved through evolution and it regulates SMARCAL1 activity. Specifically, S889 phosphorylation increases the DNA-stimulated ATPase activity of SMARCAL1 and increases its ability to catalyze replication fork regression. A phosphomimetic S889 mutant is also hyperactive when expressed in cells, while a non-phosphorylatable mutant is less active. S889 lies within a C-terminal region of the SMARCAL1 protein. Deletion of the C-terminal region also creates a hyperactive SMARCAL1 protein suggesting that S889 phosphorylation relieves an auto-inhibitory function of this SMARCAL1 domain. Thus, S889 phosphorylation is one mechanism by which SMARCAL1 activity is regulated to ensure the proper level of fork remodeling needed to maintain genome integrity during DNA synthesis.
Collapse
Affiliation(s)
- Clinton Carroll
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232 USA, Division of Pediatric Hematology/Oncology, Vanderbilt University School of Medicine and Verna and Mars McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
21
|
Couch FB, Bansbach CE, Driscoll R, Luzwick JW, Glick GG, Bétous R, Carroll CM, Jung SY, Qin J, Cimprich KA, Cortez D. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev 2013; 27:1610-23. [PMID: 23873943 DOI: 10.1101/gad.214080.113] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The DNA damage response kinase ataxia telangiectasia and Rad3-related (ATR) coordinates much of the cellular response to replication stress. The exact mechanisms by which ATR regulates DNA synthesis in conditions of replication stress are largely unknown, but this activity is critical for the viability and proliferation of cancer cells, making ATR a potential therapeutic target. Here we use selective ATR inhibitors to demonstrate that acute inhibition of ATR kinase activity yields rapid cell lethality, disrupts the timing of replication initiation, slows replication elongation, and induces fork collapse. We define the mechanism of this fork collapse, which includes SLX4-dependent cleavage yielding double-strand breaks and CtIP-dependent resection generating excess single-stranded template and nascent DNA strands. Our data suggest that the DNA substrates of these nucleases are generated at least in part by the SMARCAL1 DNA translocase. Properly regulated SMARCAL1 promotes stalled fork repair and restart; however, unregulated SMARCAL1 contributes to fork collapse when ATR is inactivated in both mammalian and Xenopus systems. ATR phosphorylates SMARCAL1 on S652, thereby limiting its fork regression activities and preventing aberrant fork processing. Thus, phosphorylation of SMARCAL1 is one mechanism by which ATR prevents fork collapse, promotes the completion of DNA replication, and maintains genome integrity.
Collapse
Affiliation(s)
- Frank B Couch
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Substrate-selective repair and restart of replication forks by DNA translocases. Cell Rep 2013; 3:1958-69. [PMID: 23746452 DOI: 10.1016/j.celrep.2013.05.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/15/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
Stalled replication forks are sources of genetic instability. Multiple fork-remodeling enzymes are recruited to stalled forks, but how they work to promote fork restart is poorly understood. By combining ensemble biochemical assays and single-molecule studies with magnetic tweezers, we show that SMARCAL1 branch migration and DNA-annealing activities are directed by the single-stranded DNA-binding protein RPA to selectively regress stalled replication forks caused by blockage to the leading-strand polymerase and to restore normal replication forks with a lagging-strand gap. We unveil the molecular mechanisms by which RPA enforces SMARCAL1 substrate preference. E. coli RecG acts similarly to SMARCAL1 in the presence of E. coli SSB, whereas the highly related human protein ZRANB3 has different substrate preferences. Our findings identify the important substrates of SMARCAL1 in fork repair, suggest that RecG and SMARCAL1 are functional orthologs, and provide a comprehensive model of fork repair by these DNA translocases.
Collapse
|
23
|
Bétous R, Glick GG, Zhao R, Cortez D. Identification and characterization of SMARCAL1 protein complexes. PLoS One 2013; 8:e63149. [PMID: 23671665 PMCID: PMC3650004 DOI: 10.1371/journal.pone.0063149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022] Open
Abstract
SMARCAL1 is an ATPase in the SNF2 family that functions at damaged replication forks to promote their stability and restart. It acts by translocating on DNA to catalyze DNA strand annealing, branch migration, and fork regression. Many SNF2 enzymes work as motor subunits of large protein complexes. To determine if SMARCAL1 is also a member of a protein complex and to further understand how it functions in the replication stress response, we used a proteomics approach to identify interacting proteins. In addition to the previously characterized interaction with replication protein A (RPA), we found that SMARCAL1 forms complexes with several additional proteins including DNA-PKcs and the WRN helicase. SMARCAL1 and WRN co-localize at stalled replication forks independently of one another. The SMARCAL1 interaction with WRN is indirect and is mediated by RPA acting as a scaffold. SMARCAL1 and WRN act independently to prevent MUS81 cleavage of the stalled fork. Biochemical experiments indicate that both catalyze fork regression with SMARCAL1 acting more efficiently and independently of WRN. These data suggest that RPA brings a complex of SMARCAL1 and WRN to stalled forks, but that they may act in different pathways to promote fork repair and restart.
Collapse
Affiliation(s)
- Rémy Bétous
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Gloria G. Glick
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Runxiang Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|