1
|
Kato S, Nakashima K, Yamato G, Saito S, Taneyama Y, Yamamoto N, Miyamura T, Kato K, Sato Y, Yamada A, Kamiya T, Nishikawa T, Uemura S, Tomizawa D, Moritake H, Terui K, Taga T, Hasegawa D. Azacitidine treatment for myeloid leukemia associated with Down syndrome: A nationwide retrospective study in Japan. Pediatr Blood Cancer 2024; 71:e31244. [PMID: 39099137 DOI: 10.1002/pbc.31244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Hypomethylating agent treatment for myeloid leukemia associated with Down syndrome (ML-DS) has been scarcely reported. Herein, we collected information on azacitidine treatment for ML-DS in Japan. Forty-eight cycles of azacitidine treatment were performed for 12 patients, including 11 relapsed or refractory (R/R) patients. In 40 cycles, azacitidine was used as monotherapy. No azacitidine-related death was observed. One cycle concurrently administered with methotrexate-based intrathecal therapy was discontinued due to toxicities. Only 4 of the 19 cycles given in non-remission achieved complete or partial remission. In conclusion, although most toxicities were acceptable, azacitidine monotherapy might be insufficient for R/R ML-DS cases.
Collapse
Affiliation(s)
- Shota Kato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Nakashima
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Genki Yamato
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shoji Saito
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuichi Taneyama
- Department of Hematology/Oncology, Chiba Children's Hospital, Chiba, Japan
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keisuke Kato
- Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Mito, Japan
| | - Yuya Sato
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - Ai Yamada
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuro Nishikawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Suguru Uemura
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hiroshi Moritake
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Miladinovic M, Reinhardt D, Hasle H, Goemans BF, Tomizawa D, Hitzler J, Klusmann JH. Guideline for treating relapsed or refractory myeloid leukemia in children with Down syndrome. Pediatr Blood Cancer 2024; 71:e31141. [PMID: 38965693 DOI: 10.1002/pbc.31141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
Treatment of relapsed and refractory myeloid leukemia in Down syndrome (r/r ML-DS) poses significant challenges, as prognosis is dire and there is no established standard treatment. This guideline provides treatment recommendations based on a literature review and collection of expert opinions, aiming to improve overall and event-free survival of patients. Treatment options include fludarabine and cytarabine (FLA) ± gemtuzumab ozogamicin (GO), azacytidine (AZA) ± panobinostat, and hematopoietic stem cell transplantation (HSCT). Preferred approaches are AZA ± panobinostat for cases with low blast count or FLA ± GO for cases with high blast count, followed by HSCT after remission. Further research is crucial for the investigation of targeted therapies (e.g., BH3 mimetics, LSD1, JAK inhibitors).
Collapse
Affiliation(s)
- Milica Miladinovic
- Department of Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, Essen, Germany
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Bianca F Goemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
3
|
Mason NR, Cahill H, Diamond Y, McCleary K, Kotecha RS, Marshall GM, Mateos MK. Down syndrome-associated leukaemias: current evidence and challenges. Ther Adv Hematol 2024; 15:20406207241257901. [PMID: 39050114 PMCID: PMC11268035 DOI: 10.1177/20406207241257901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/13/2024] [Indexed: 07/27/2024] Open
Abstract
Children with Down syndrome (DS) are at increased risk of developing haematological malignancies, in particular acute megakaryoblastic leukaemia and acute lymphoblastic leukaemia. The microenvironment established by abnormal haematopoiesis driven by trisomy 21 is compounded by additional genetic and epigenetic changes that can drive leukaemogenesis in patients with DS. GATA-binding protein 1 (GATA1) somatic mutations are implicated in the development of transient abnormal myelopoiesis and the progression to myeloid leukaemia of DS (ML-DS) and provide a model of the multi-step process of leukaemogenesis in DS. This review summarises key genetic drivers for the development of leukaemia in patients with DS, the biology and treatment of ML-DS and DS-associated acute lymphoblastic leukaemia, late effects of treatments for DS-leukaemias and the focus for future targeted therapy.
Collapse
Affiliation(s)
- Nicola R. Mason
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Hilary Cahill
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Yonatan Diamond
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Karen McCleary
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Bone Marrow Transplantation, Perth Children’s Hospital, Perth, WA, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Glenn M. Marshall
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, Randwick, NSW, Australia School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Marion K. Mateos
- Kids Cancer Centre, Sydney Children’s Hospital, Level 1 South Wing, High Street, Randwick, NSW 2031, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
4
|
Tanaka T, Kudo K, Kanezaki R, Yuzawa K, Toki T, Okuse R, Kobayashi A, Sato T, Kamio T, Terui K, Ito E. Antileukemic effect of azacitidine, a DNA methyltransferase inhibitor, on cell lines of myeloid leukemia associated with Down syndrome. Exp Hematol 2024; 132:104179. [PMID: 38342295 DOI: 10.1016/j.exphem.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/12/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) responds well to chemotherapy and has a favorable prognosis, but the clinical outcome of patients with refractory or relapsed ML-DS is dismal. We recently reported a case of relapsed ML-DS with an effective response to a DNA methyltransferase inhibitor, azacitidine (AZA). However, the efficacy of AZA for refractory or relapsed ML-DS remains uncertain. Here, we investigated the effects and mechanism of action of AZA on three ML-DS cell lines derived from relapsed cases. AZA inhibited the proliferation of all examined ML-DS cell lines to the same extent as that of AZA-sensitive acute myeloid leukemia non-Down syndrome cell lines. Transient low-dose AZA treatment exerted durable antileukemic effects on ML-DS cells. The inhibitory effect included cell cycle arrest, apoptosis, and reduction of aldehyde dehydrogenase activity. Comprehensive differential gene expression analysis showed that AZA induced megakaryocytic differentiation in all ML-DS cell lines examined. Furthermore, AZA induced activation of type I interferon-stimulated genes, primarily involved in antiproliferation signaling, without stimulation of the interferon receptor-mediated autocrine system. Activation of the type I interferon pathway by stimulation with interferon-α exerted antiproliferative effects on ML-DS cells, suggesting that AZA exerts its antileukemic effects on ML-DS cells at least partially through the type I interferon pathway. Moreover, the effect of AZA on normal hematopoiesis did not differ significantly between individuals with non-Down syndrome and Down syndrome. In summary, this study suggests that AZA is a potentially effective treatment option for ML-DS disease control, including relapsed cases, and has reduced side effects.
Collapse
Affiliation(s)
- Tatsuhiko Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Yuzawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryo Okuse
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akie Kobayashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomohiko Sato
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Kamio
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan; Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
5
|
Barwe SP, Kolb EA, Gopalakrishnapillai A. Down syndrome and leukemia: An insight into the disease biology and current treatment options. Blood Rev 2024; 64:101154. [PMID: 38016838 DOI: 10.1016/j.blre.2023.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Children with Down syndrome (DS) have a 10- to 20-fold greater predisposition to develop acute leukemia compared to the general population, with a skew towards myeloid leukemia (ML-DS). While ML-DS is known to be a subtype with good outcome, patients who relapse face a dismal prognosis. Acute lymphocytic leukemia in DS (DS-ALL) is considered to have poor prognosis. The relapse rate is high in DS-ALL compared to their non-DS counterparts. We have a better understanding about the mutational spectrum of DS leukemia. Studies using animal, embryonic stem cell- and induced pluripotent stem cell-based models have shed light on the mechanism by which these mutations contribute to disease initiation and progression. In this review, we list the currently available treatment strategies for DS-leukemias along with their outcome with emphasis on challenges with chemotherapy-related toxicities in children with DS. We focus on the mechanisms of initiation and progression of leukemia in children with DS and highlight the novel molecular targets with greater success in preclinical trials that have the potential to progress to the clinic.
Collapse
Affiliation(s)
- Sonali P Barwe
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - E Anders Kolb
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA.
| |
Collapse
|
6
|
Gupte A, Al-Antary ET, Edwards H, Ravindranath Y, Ge Y, Taub JW. The Paradox of Myeloid Leukemia Associated with Down Syndrome. Biochem Pharmacol 2022; 201:115046. [PMID: 35483417 DOI: 10.1016/j.bcp.2022.115046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/03/2023]
Abstract
Children with Down syndrome constitute a distinct genetic population who has a greater risk of developing acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) compared to their non-Down syndrome counterparts. The risk for developing solid tumors is also distinct from the non-Down syndrome population. In the case of myeloid leukemias, the process of leukemogenesis in Trisomy 21 begins in early fetal life where genetic drivers including GATA1 mutations lead to the development of the preleukemic condition, transient abnormal myelopoiesis (TAM). Various other mutations in genes encoding cohesin, epigenetic regulators and RAS pathway can result in subsequent progression to Myeloid Leukemia associated with Down Syndrome (ML-DS). The striking paradoxical feature in the Down syndrome population is that even though there is a higher predisposition to developing AML, they are also very sensitive to chemotherapy agents, particularly cytarabine, thus accounting for the very high cure rates for ML-DS compared to AML in children without Down syndrome. Current clinical trials for ML-DS attempt to balance effective curative therapies while trying to reduce treatment-associated toxicities including infections by de-intensifying chemotherapy doses, if possible. The small proportion of patients with relapsed ML-DS have an extremely poor prognosis and require the development of new therapies.
Collapse
Affiliation(s)
- Avanti Gupte
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eman T Al-Antary
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaddanapudi Ravindranath
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA; Discipline of Pediatrics, Central Michigan University, Saginaw, Michigan, USA.
| |
Collapse
|
7
|
Boucher AC, Caldwell KJ, Crispino JD, Flerlage JE. Clinical and biological aspects of myeloid leukemia in Down syndrome. Leukemia 2021; 35:3352-3360. [PMID: 34518645 PMCID: PMC8639661 DOI: 10.1038/s41375-021-01414-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Children with Down syndrome are at an elevated risk of leukemia, especially myeloid leukemia (ML-DS). This malignancy is frequently preceded by transient abnormal myelopoiesis (TAM), which is self-limited expansion of fetal liver-derived megakaryocyte progenitors. An array of international studies has led to consensus in treating ML-DS with reduced-intensity chemotherapy, leading to excellent outcomes. In addition, studies performed in the past 20 years have revealed many of the genetic and epigenetic features of the tumors, including GATA1 mutations that are arguably associated with all cases of both TAM and ML-DS. Despite these advances in understanding the clinical and biological aspects of ML-DS, little is known about the mechanisms of relapse. Upon relapse, patients face a poor outcome, and there is no consensus on treatment. Future studies need to be focused on this challenging aspect of leukemia in children with DS.
Collapse
Affiliation(s)
- Austin C Boucher
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kenneth J Caldwell
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John D Crispino
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Jamie E Flerlage
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
8
|
Fujikawa T, Uemura S, Aoto Y, Nambu Y, Nagano C, Nakatani N, Nino N, Yamamoto N, Mori T, Nishimura N, Iijima K. Catheter-related blood stream infection caused by Mycobacterium chelonae in a child with myeloid leukemia associated with Down syndrome. Clin Case Rep 2021; 9:835-840. [PMID: 33598254 PMCID: PMC7869324 DOI: 10.1002/ccr3.3646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 12/01/2022] Open
Abstract
Rapidly growing nontuberculous mycobacteria should be considered if GPRs gram-positive rods are detected in blood cultures 2-3 days after the blood sample collection.
Collapse
Affiliation(s)
- Tomoko Fujikawa
- Department of PediatricsKobe University Graduate School of MedicineKobeJapan
| | - Suguru Uemura
- Department of PediatricsKobe University Graduate School of MedicineKobeJapan
| | - Yuya Aoto
- Department of PediatricsKobe University Graduate School of MedicineKobeJapan
| | - Yoshinori Nambu
- Department of PediatricsKobe University Graduate School of MedicineKobeJapan
| | - China Nagano
- Department of PediatricsKobe University Graduate School of MedicineKobeJapan
| | - Naoko Nakatani
- Department of PediatricsKobe University Graduate School of MedicineKobeJapan
| | - Nanako Nino
- Department of PediatricsKobe University Graduate School of MedicineKobeJapan
| | - Nobuyuki Yamamoto
- Department of PediatricsKobe University Graduate School of MedicineKobeJapan
| | - Takeshi Mori
- Department of Hematology and OncologyKobe Children’s HospitalKobeJapan
| | | | - Kazumoto Iijima
- Department of PediatricsKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|