1
|
Smith MA, Houghton PJ, Lock RB, Maris JM, Gorlick R, Kurmasheva RT, Li XN, Teicher BA, Chuang JH, Dela Cruz FS, Dyer MA, Kung AL, Lloyd MW, Mossé YP, Stearns TM, Stewart EA, Bult CJ, Erickson SW. Lessons learned from 20 years of preclinical testing in pediatric cancers. Pharmacol Ther 2024; 264:108742. [PMID: 39510293 DOI: 10.1016/j.pharmthera.2024.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Programs for preclinical testing of targeted cancer agents in murine models of childhood cancers have been supported by the National Cancer Institute (NCI) since 2004. These programs were established to work collaboratively with industry partners to address the paucity of targeted agents for pediatric cancers compared with the large number of agents developed and approved for malignancies primarily affecting adults. The distinctive biology of pediatric cancers and the relatively small numbers of pediatric cancer patients are major challenges for pediatric oncology drug development. These factors are exacerbated by the division of cancers into multiple subtypes that are further sub-classified by their genomic properties. The imbalance between the large number of candidate agents and small patient populations requires careful prioritization of agents developed for adult cancers for clinical evaluation in children with cancer. The NCI-supported preclinical pediatric programs have published positive and negative results of efficacy testing for over 100 agents to aid the pediatric research community in identifying the most promising candidates to move forward for clinical testing in pediatric oncology. Here, we review and summarize lessons learned from two decades of experience with the design and execution of preclinical trials of antineoplastic agents in murine models of childhood cancers.
Collapse
Affiliation(s)
- Malcolm A Smith
- National Cancer Institute, Bethesda, MD, United States of America.
| | - Peter J Houghton
- The University of Texas Health at San Antonio, TX, United States of America
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - John M Maris
- The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Richard Gorlick
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | | | - Xiao-Nan Li
- Lurie Children's Hospital, Northwestern University Feiberg School of Medicine, Chicago, IL, United States of America
| | | | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States of America
| | - Filemon S Dela Cruz
- Memorial Sloan Kettering Cancer Center, New York City, NY, United States of America
| | - Michael A Dyer
- St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Andrew L Kung
- Memorial Sloan Kettering Cancer Center, New York City, NY, United States of America
| | - Michael W Lloyd
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States of America
| | - Yael P Mossé
- The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Timothy M Stearns
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States of America
| | - Elizabeth A Stewart
- St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Carol J Bult
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States of America
| | | |
Collapse
|
2
|
Liang J, Qiao G, Zhang Y, Yuan Y, Liu Z, Jiang Y, Zhang Y, Deng Z, Yu L, Lin H, Ma L, Luo Y, Zhou Y, Hu H, Liu X, Zhang J. Ailanthone targets the KMT2A-MEN1 complex to suppress lung metastasis of osteosarcoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156258. [PMID: 39579612 DOI: 10.1016/j.phymed.2024.156258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/04/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Lung metastasis is the leading cause of death in patients with osteosarcoma (OS), and new drugs are urgently needed. Epigenetic reprogramming is a recently proposed hallmark of malignancy; therefore, targeting epigenetic enzymes might provide a novel therapeutic strategy for OS lung metastasis. We recently reported that ailanthone (AIL), a natural product isolated from the Chinese medicinal plant Ailanthus altissima, inhibits OS cell growth and induces substantial metabolic changes; however, its direct targets remain unclear. PURPOSE To identify the direct targets of AIL in OS and to explore the effects of AIL on OS lung metastasis in vivo. STUDY DESIGN Direct target proteins of AIL and downstream signaling pathways were identified in Saos-2 and U-2OS OS cells. The in vivo effects of AIL on OS lung metastasis were investigated using a mouse model. METHODS A novel surface plasmon resonance-high-performance liquid chromatography-mass spectrometry (SPR-HPLC-MS) assay was used to determine direct targets of AIL in OS. A cellular thermal shift assay, molecular docking analysis, enzyme activity assay, qRT-PCR, western blotting, chromatin immunoprecipitation assay, and reverse tests were performed to confirm the target and downstream pathway of AIL. A tumor xenograft model was used to verify the efficacy and mechanisms in vivo. RESULTS Histone-lysine N-methyltransferase 2A (KMT2A) together with its scaffold protein menin (MEN1) were identified as direct target proteins of AIL in OS. AIL induced the autophagic degradation of the KMT2A-MEN1 complex. Moreover, AIL inhibited intracellular H3K4 methyltransferase activity and epigenetically inhibited the transcription of genes in the serine biosynthetic pathway (SSP). Furthermore, AIL suppressed OS lung metastasis and downregulated KMT2A, MEN1, and SSP in mouse models. CONCLUSION This work showed that AIL targets the KMT2A-MEN1 complex and inhibits SSP to suppress OS lung metastasis. Notably, AIL exhibits new mechanisms of action, distinct from those of existing anti-OS drugs. On the basis of these findings, we proposed a novel strategy to treat OS by targeting epigenetic enzymes and cancer metabolism.
Collapse
Affiliation(s)
- Jinrong Liang
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Department of Oncology, Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Guanglei Qiao
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yawen Zhang
- Department of Oncology, Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ying Yuan
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zimei Liu
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yue Jiang
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yan Zhang
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zhoufeng Deng
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Liping Yu
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Hongjian Lin
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Lijun Ma
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yanli Luo
- Department of Pathology, Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yan Zhou
- Department of Oncology, Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Haiyan Hu
- Shanghai Clinical Research Ward (SCRW), Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Xin Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Jianjun Zhang
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
3
|
Majer AD, Hua X, Katona BW. Menin in Cancer. Genes (Basel) 2024; 15:1231. [PMID: 39336822 PMCID: PMC11431421 DOI: 10.3390/genes15091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.
Collapse
Affiliation(s)
- Ariana D Majer
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianxin Hua
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
He B, Bie Q, Zhao R, Yan Y, Dong G, Zhang B, Wang S, Xu W, Tian D, Hao Y, Zhang Y, Zhao M, Xiong H, Zhang B. Arachidonic acid released by PIK3CA mutant tumor cells triggers malignant transformation of colonic epithelium by inducing chromatin remodeling. Cell Rep Med 2024; 5:101510. [PMID: 38614093 PMCID: PMC11148513 DOI: 10.1016/j.xcrm.2024.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/07/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024]
Abstract
Key gene mutations are essential for colorectal cancer (CRC) development; however, how the mutated tumor cells impact the surrounding normal cells to promote tumor progression has not been well defined. Here, we report that PIK3CA mutant tumor cells transmit oncogenic signals and result in malignant transformation of intestinal epithelial cells (IECs) via paracrine exosomal arachidonic acid (AA)-induced H3K4 trimethylation. Mechanistically, PIK3CA mutations sustain SGK3-FBW7-mediated stability of the cPLA2 protein, leading to the synthetic increase in AA, which is transported through exosome and accumulated in IECs. Transferred AA directly binds Menin and strengthens the interactions of Menin and MLL1/2 methyltransferase. Finally, the combination of VTP50469, an inhibitor of the Menin-MLL interaction, and alpelisib synergistically represses PDX tumors harboring PIK3CA mutations. Together, these findings unveil the metabolic link between PIK3CA mutant tumor cells and the IECs, highlighting AA as the potential target for the treatment of patients with CRC harboring PIK3CA mutations.
Collapse
Affiliation(s)
- Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China; School of Integrative Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China; School of Integrative Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Rou Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Yugang Yan
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272067, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Baogui Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Sen Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Wenrong Xu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Dongxing Tian
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Yujun Hao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yanhua Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, China.
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China.
| |
Collapse
|
5
|
Wolffhardt TM, Ketzer F, Telese S, Wirth T, Ushmorov A. Dependency of B-Cell Acute Lymphoblastic Leukemia and Multiple Myeloma Cell Lines on MEN1 Extends beyond MEN1-KMT2A Interaction. Int J Mol Sci 2023; 24:16472. [PMID: 38003662 PMCID: PMC10670986 DOI: 10.3390/ijms242216472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Menin/MEN1 is a scaffold protein that participates in proliferation, regulation of gene transcription, DNA damage repair, and signal transduction. In hematological malignancies harboring the KMT2A/MLL1 (MLLr) chromosomal rearrangements, the interaction of the oncogenic fusion protein MLLr with MEN1 has been shown to be essential. MEN1 binders inhibiting the MEN1 and KMT2A interaction have been shown to be effective against MLLr AML and B-ALL in experimental models and clinical studies. We hypothesized that in addition to the MEN1-KMT2A interaction, alternative mechanisms might be instrumental in the MEN1 dependency of leukemia. We first mined and analyzed data from publicly available gene expression databases, finding that the dependency of B-ALL cell lines on MEN1 did not correlate with the presence of MLLr. Using shRNA-mediated knockdown, we found that all tested B-ALL cell lines were sensitive to MEN1 depletion, independent of the underlying driver mutations. Most multiple myeloma cell lines that did not harbor MLLr were also sensitive to the genetic depletion of MEN1. We conclude that the oncogenic role of MEN1 is not limited to the interaction with KMT2A. Our results suggest that targeted degradation of MEN1 or the development of binders that induce global changes in the MEN1 protein structure may be more efficient than the inhibition of individual MEN1 protein interactions.
Collapse
Affiliation(s)
- Tatjana Magdalena Wolffhardt
- Institute of Physiological Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (T.M.W.); (S.T.)
| | - Franz Ketzer
- Center for Molecular and Cellular Oncology, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Stefano Telese
- Institute of Physiological Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (T.M.W.); (S.T.)
| | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (T.M.W.); (S.T.)
| | - Alexey Ushmorov
- Institute of Physiological Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (T.M.W.); (S.T.)
| |
Collapse
|
6
|
Soto-Feliciano YM, Sánchez-Rivera FJ, Perner F, Barrows DW, Kastenhuber ER, Ho YJ, Carroll T, Xiong Y, Anand D, Soshnev AA, Gates L, Beytagh MC, Cheon D, Gu S, Liu XS, Krivtsov AV, Meneses M, de Stanchina E, Stone RM, Armstrong SA, Lowe SW, Allis CD. A Molecular Switch between Mammalian MLL Complexes Dictates Response to Menin-MLL Inhibition. Cancer Discov 2023; 13:146-169. [PMID: 36264143 PMCID: PMC9827117 DOI: 10.1158/2159-8290.cd-22-0416] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/18/2022] [Accepted: 10/17/2022] [Indexed: 01/16/2023]
Abstract
Menin interacts with oncogenic MLL1-fusion proteins, and small molecules that disrupt these associations are in clinical trials for leukemia treatment. By integrating chromatin-focused and genome-wide CRISPR screens with genetic, pharmacologic, and biochemical approaches, we discovered a conserved molecular switch between the MLL1-Menin and MLL3/4-UTX chromatin-modifying complexes that dictates response to Menin-MLL inhibitors. MLL1-Menin safeguards leukemia survival by impeding the binding of the MLL3/4-UTX complex at a subset of target gene promoters. Disrupting the Menin-MLL1 interaction triggers UTX-dependent transcriptional activation of a tumor-suppressive program that dictates therapeutic responses in murine and human leukemia. Therapeutic reactivation of this program using CDK4/6 inhibitors mitigates treatment resistance in leukemia cells that are insensitive to Menin inhibitors. These findings shed light on novel functions of evolutionarily conserved epigenetic mediators like MLL1-Menin and MLL3/4-UTX and are relevant to understand and target molecular pathways determining therapeutic responses in ongoing clinical trials. SIGNIFICANCE Menin-MLL inhibitors silence a canonical HOX- and MEIS1-dependent oncogenic gene expression program in leukemia. We discovered a parallel, noncanonical transcriptional program involving tumor suppressor genes that are repressed in Menin-MLL inhibitor-resistant leukemia cells but that can be reactivated upon combinatorial treatment with CDK4/6 inhibitors to augment therapy responses. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
| | | | - Florian Perner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Internal Medicine C, Greifswald University Medical Center, Greifswald, Germany
| | - Douglas W. Barrows
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York.,Bioinformatics Resource Center, The Rockefeller University, New York, New York
| | - Edward R. Kastenhuber
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu-Jui Ho
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York
| | - Yijun Xiong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Disha Anand
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Internal Medicine C, Greifswald University Medical Center, Greifswald, Germany
| | - Alexey A. Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Leah Gates
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Mary Clare Beytagh
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - David Cheon
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Shengqing Gu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - X. Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrei V. Krivtsov
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maximiliano Meneses
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard M. Stone
- Leukemia Division, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: C. David Allis, The Rockefeller University, Allis Lab, Box #78, 1230 York Avenue, New York, NY 10065. Phone: 212-327-7839; E-mail: ; Scott W. Lowe, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Cancer Biology and Genetics Program, New York, NY, 10065. Phone: 646-888-3342; E-mail: ; and Scott A. Armstrong, Harvard Medical School, Dana-Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA, 02115. Phone: 617-632-2991; E-mail:
| | - Scott W. Lowe
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York.,Corresponding Authors: C. David Allis, The Rockefeller University, Allis Lab, Box #78, 1230 York Avenue, New York, NY 10065. Phone: 212-327-7839; E-mail: ; Scott W. Lowe, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Cancer Biology and Genetics Program, New York, NY, 10065. Phone: 646-888-3342; E-mail: ; and Scott A. Armstrong, Harvard Medical School, Dana-Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA, 02115. Phone: 617-632-2991; E-mail:
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York.,Corresponding Authors: C. David Allis, The Rockefeller University, Allis Lab, Box #78, 1230 York Avenue, New York, NY 10065. Phone: 212-327-7839; E-mail: ; Scott W. Lowe, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Cancer Biology and Genetics Program, New York, NY, 10065. Phone: 646-888-3342; E-mail: ; and Scott A. Armstrong, Harvard Medical School, Dana-Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA, 02115. Phone: 617-632-2991; E-mail:
| |
Collapse
|
7
|
Chemical biology and pharmacology of histone lysine methylation inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194840. [PMID: 35753676 DOI: 10.1016/j.bbagrm.2022.194840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
Histone lysine methylation is a post-translational modification that plays a key role in the epigenetic regulation of a broad spectrum of biological processes. Moreover, the dysregulation of histone lysine methyltransferases (KMTs) has been implicated in the pathogenesis of several diseases particularly cancer. Due to their pathobiological importance, KMTs have garnered immense attention over the last decade as attractive therapeutic targets. These endeavors have culminated in tens of chemical probes that have been used to interrogate many aspects of histone lysine methylation. Besides, over a dozen inhibitors have been advanced to clinical trials, including the EZH2 inhibitor tazemetostat approved for the treatment of follicular lymphoma and advanced epithelioid sarcoma. In this Review, we highlight the chemical biology and pharmacology of KMT inhibitors and targeted protein degraders focusing on the clinical development of EZH1/2, DOT1L, Menin-MLL, and WDR5-MLL inhibitors. We also briefly discuss the pharmacologic targeting of other KMTs.
Collapse
|
8
|
Jiménez JA, Apfelbaum AA, Hawkins AG, Svoboda LK, Kumar A, Ruiz RO, Garcia AX, Haarer E, Nwosu ZC, Bradin J, Purohit T, Chen D, Cierpicki T, Grembecka J, Lyssiotis CA, Lawlor ER. EWS-FLI1 and Menin Converge to Regulate ATF4 Activity in Ewing Sarcoma. Mol Cancer Res 2021; 19:1182-1195. [PMID: 33741715 PMCID: PMC8462528 DOI: 10.1158/1541-7786.mcr-20-0679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Ewing sarcomas are driven by EWS-ETS fusions, most commonly EWS-FLI1, which promotes widespread metabolic reprogramming, including activation of serine biosynthesis. We previously reported that serine biosynthesis is also activated in Ewing sarcoma by the scaffolding protein menin through as yet undefined mechanisms. Here, we investigated whether EWS-FLI1 and/or menin orchestrate serine biosynthesis via modulation of ATF4, a stress-response gene that acts as a master transcriptional regulator of serine biosynthesis in other tumors. Our results show that in Ewing sarcoma, ATF4 levels are high and that ATF4 modulates transcription of core serine synthesis pathway (SSP) genes. Inhibition of either EWS-FLI1 or menin leads to loss of ATF4, and this is associated with diminished expression of SSP transcripts and proteins. We identified and validated an EWS-FLI1 binding site at the ATF4 promoter, indicating that the fusion can directly activate ATF4 transcription. In contrast, our results suggest that menin-dependent regulation of ATF4 is mediated by transcriptional and post-transcriptional mechanisms. Importantly, our data also reveal that the downregulation of SSP genes that occurs in the context of EWS-FLI1 or menin loss is indicative of broader inhibition of ATF4-dependent transcription. Moreover, we find that menin inhibition similarly leads to loss of ATF4 and the ATF4-dependent transcriptional signature in MLL-rearranged B-cell acute lymphoblastic leukemia, extending our findings to another cancer in which menin serves an oncogenic role. IMPLICATIONS: These studies provide new insights into metabolic reprogramming in Ewing sarcoma and also uncover a previously undescribed role for menin in the regulation of ATF4.
Collapse
Affiliation(s)
- Jennifer A Jiménez
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - April A Apfelbaum
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Pediatrics, University of Washington, Seattle, Washington
- Seattle Children's Research Institute, Seattle, Washington
| | - Allegra G Hawkins
- New York Genome Center, New York, New York
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | | | - Abhijay Kumar
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ramon Ocadiz Ruiz
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alessandra X Garcia
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Elena Haarer
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joshua Bradin
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Trupta Purohit
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dong Chen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Elizabeth R Lawlor
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan.
- Department of Pediatrics, University of Washington, Seattle, Washington
- Seattle Children's Research Institute, Seattle, Washington
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
9
|
Li X, Song Y. Structure, function and inhibition of critical protein-protein interactions involving mixed lineage leukemia 1 and its fusion oncoproteins. J Hematol Oncol 2021; 14:56. [PMID: 33823889 PMCID: PMC8022399 DOI: 10.1186/s13045-021-01057-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Mixed lineage leukemia 1 (MLL1, also known as MLL or KMT2A) is an important transcription factor and histone-H3 lysine-4 (H3K4) methyltransferase. It is a master regulator for transcription of important genes (e.g., Hox genes) for embryonic development and hematopoiesis. However, it is largely dispensable in matured cells. Dysregulation of MLL1 leads to overexpression of certain Hox genes and eventually leukemia initiation. Chromosome translocations involving MLL1 cause ~ 75% of acute leukemia in infants and 5–10% in children and adults with a poor prognosis. Targeted therapeutics against oncogenic fusion MLL1 (onco-MLL1) are therefore needed. Onco-MLL1 consists of the N-terminal DNA-interacting domains of MLL1 fused with one of > 70 fusion partners, among which transcription cofactors AF4, AF9 and its paralog ENL, and ELL are the most frequent. Wild-type (WT)- and onco-MLL1 involve numerous protein–protein interactions (PPI), which play critical roles in regulating gene expression in normal physiology and leukemia. Moreover, WT-MLL1 has been found to be essential for MLL1-rearranged (MLL1-r) leukemia. Rigorous studies of such PPIs have been performed and much progress has been achieved in understanding their structures, structure–function relationships and the mechanisms for activating gene transcription as well as leukemic transformation. Inhibition of several critical PPIs by peptides, peptidomimetic or small-molecule compounds has been explored as a therapeutic approach for MLL1-r leukemia. This review summarizes the biological functions, biochemistry, structure and inhibition of the critical PPIs involving MLL1 and its fusion partner proteins. In addition, challenges and perspectives of drug discovery targeting these PPIs for the treatment of MLL1-r leukemia are discussed.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Qi L, Kogiso M, Du Y, Zhang H, Braun FK, Huang Y, Teo WY, Lindsay H, Zhao S, Baxter P, Zhao X, Yu L, Liu Z, Zhang X, Su JM, Adesina A, Yang J, Chintagumpala M, Perlaky L, Tsz-Kwong Man C, Lau CC, Li XN. Impact of SCID mouse gender on tumorigenicity, xenograft growth and drug-response in a large panel of orthotopic PDX models of pediatric brain tumors. Cancer Lett 2020; 493:197-206. [PMID: 32891713 DOI: 10.1016/j.canlet.2020.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 11/26/2022]
Abstract
Brain tumor is the leading cause of cancer related death in children. Clinically relevant animals are critical for new therapy development. To address the potential impact of animal gender on tumorigenicity rate, xenograft growth and in vivo drug responses, we retrospectively analyzed 99 of our established patient derived orthotopic xenograft mouse models (orthotopic PDX or PDOX). From 27 patient tumors, including 5 glioblastomas (GBMs), 11 medulloblastomas (MBs), 4 ependymomas (EPNs), 4 atypical teratoid/rhabdoid tumors (ATRTs) and 3 diffuse intrinsic pontine gliomas (DIPGs), that were directly implanted into matching locations in the brains of approximately equal numbers of male and female animals (n = 310) in age-matched (within 2-week age-difference) SCID mice, the tumor formation rate was 50.6 ± 21.5% in male and 52.7 ± 23.5% in female mice with animal survival times of 192.6 ± 31.7 days in male and 173.9 ± 34.5 days in female mice (P = 0.46) regardless of pathological diagnosis. Once established, PDOX tumors were serially subtransplanted for up to VII passage. Analysis of 1,595 mice from 59 PDOX models (18 GBMs, 18 MBs, 5 ATRTs, 6 EPNs, 7 DIPGs and 5 PENTs) during passage II and VII revealed similar tumor take rates of the 6 different tumor types between male (85.4 ± 15.5%) and female mice (84.7 ± 15.2%) (P = 0.74), and animal survival times were 96.7 ± 23.3 days in male mice and 99.7 ± 20 days in female (P = 0.25). A total of 284 mice from 7 GBM, 2 MB, 1 ATRT, 1 EPN, 2 DIPG and 1 PNET were treated with a series of standard and investigational drugs/compounds. The overall survival times were 106.9 ± 25.7 days in male mice, and 110.9 ± 31.8 days in female mice (P = 0.41), similar results were observed when different types/models were analyzed separately. In conclusion, our data demonstrated that the gender of SCID mice did not have a major impact on animal model development nor drug responses in vivo, and SCID mice of both genders are appropriate for use.
Collapse
Affiliation(s)
- Lin Qi
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Mari Kogiso
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Yuchen Du
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Frank K Braun
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Yulun Huang
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA; Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital, Soochow University Medical School, Suzhou, 215007, China
| | - Wan-Yee Teo
- Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, 169610, Singapore; KK Women's and Children's Hospital, 169610, Singapore; Institute of Molecular and Cell Biology, A*STAR, 169610, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 169610, Singapore
| | - Holly Lindsay
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Sibo Zhao
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | | | - Xiumei Zhao
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Litian Yu
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Zhigang Liu
- Department of Head and Neck Oncology, The Oancer Oenter of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519001, China; Phase I Clinical Trial Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519001, China
| | - Xingding Zhang
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jack Mf Su
- Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Adekunle Adesina
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianhua Yang
- Texas Children's Cancer Center, Houston, TX, 77030, USA
| | | | | | | | - Ching C Lau
- Division of Hematology-Oncology, Connecticut Children's Medical Center, USA; The Jackson Laboratory for Genomic Medicine and University of Connecticut School of Medicine, USA
| | - Xiao-Nan Li
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|