1
|
Shirai R, Osumi T, Keino D, Nakabayashi K, Uchiyama T, Sekiguchi M, Hiwatari M, Yoshida M, Yoshida K, Yamada Y, Tomizawa D, Takae S, Kiyokawa N, Matsumoto K, Yoshioka T, Hata K, Hori T, Suzuki N, Kato M. Minimal residual disease detection by mutation-specific droplet digital PCR for leukemia/lymphoma. Int J Hematol 2023; 117:910-918. [PMID: 36867356 DOI: 10.1007/s12185-023-03566-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Minimal residual disease (MRD) is usually defined as the small number of cancer cells that remain in the body after treatment. The clinical significance of MRD kinetics is well recognized in treatment of hematologic malignancies, particularly acute lymphoblastic leukemia (ALL). Real time quantitative PCR targeting immunoglobulin (Ig) or T-cell receptor (TCR) rearrangement (PCR-MRD), as well as multiparametric flow cytometric analysis targeting antigen expression, are widely used in MRD detection. In this study, we devised an alternative method to detect MRD using droplet digital PCR (ddPCR), targeting somatic single nucleotide variants (SNVs). This ddPCR-based method (ddPCR-MRD) had sensitivity up to 1E-4. We assessed ddPCR-MRD at 26 time points from eight T-ALL patients, and compared it to the results of PCR-MRD. Almost all results were concordant between the two methods, but ddPCR-MRD detected micro-residual disease that was missed by PCR-MRD in one patient. We also measured MRD in stored ovarian tissue of four pediatric cancer patients, and detected 1E-2 of submicroscopic infiltration. Considering the universality of ddPCR-MRD, the methods can be used as a complement for not only ALL, but also other malignant diseases regardless of tumor-specific Ig/TCR or surface antigen patterns.
Collapse
Affiliation(s)
- Ryota Shirai
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Tomoo Osumi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Dai Keino
- Department of Pediatrics, St. Marianna University School of Medicine Hospital, Kawasaki, Japan.,Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masahiro Sekiguchi
- Department of Pediatrics, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Mitsuteru Hiwatari
- Department of Pediatrics, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.,Department of Pediatrics, School of Medicine, Teikyo University, Tokyo, Japan
| | - Masanori Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Kaoru Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuji Yamada
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seido Takae
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kimikazu Matsumoto
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Toshinori Hori
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Nao Suzuki
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan. .,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan. .,Department of Pediatrics, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
2
|
Maintenance therapy for acute lymphoblastic leukemia: basic science and clinical translations. Leukemia 2022; 36:1749-1758. [PMID: 35654820 PMCID: PMC9252897 DOI: 10.1038/s41375-022-01591-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/21/2023]
Abstract
Maintenance therapy (MT) with oral methotrexate (MTX) and 6-mercaptopurine (6-MP) is essential for the cure of acute lymphoblastic leukemia (ALL). MTX and 6-MP interfere with nucleotide synthesis and salvage pathways. The primary cytotoxic mechanism involves the incorporation of thioguanine nucleotides (TGNs) into DNA (as DNA-TG), which may be enhanced by the inhibition of de novo purine synthesis by other MTX/6-MP metabolites. Co-medication during MT is common. Although Pneumocystis jirovecii prophylaxis appears safe, the benefit of glucocorticosteroid/vincristine pulses in improving survival and of allopurinol to moderate 6-MP pharmacokinetics remains uncertain. Numerous genetic polymorphisms influence the pharmacology, efficacy, and toxicity (mainly myelosuppression and hepatotoxicity) of MTX and thiopurines. Thiopurine S-methyltransferase (encoded by TPMT) decreases TGNs but increases methylated 6-MP metabolites (MeMPs); similarly, nudix hydrolase 15 (encoded by NUDT15) also decreases TGNs available for DNA incorporation. Loss-of-function variants in both genes are currently used to guide MT, but do not fully explain the inter-patient variability in thiopurine toxicity. Because of the large inter-individual variations in MTX/6-MP bioavailability and metabolism, dose adjustments are traditionally guided by the degree of myelosuppression, but this does not accurately reflect treatment intensity. DNA-TG is a common downstream metabolite of MTX/6-MP combination chemotherapy, and a higher level of DNA-TG has been associated with a lower relapse hazard, leading to the development of the Thiopurine Enhanced ALL Maintenance (TEAM) strategy-the addition of low-dose (2.5-12.5 mg/m2/day) 6-thioguanine to the 6-MP/MTX backbone-that is currently being tested in a randomized ALLTogether1 trial (EudraCT: 2018-001795-38). Mutations in the thiopurine and MTX metabolism pathways, and in the mismatch repair genes have been identified in early ALL relapses, providing valuable insights to assist the development of strategies to detect imminent relapse, to facilitate relapse salvage therapy, and even to bring about changes in frontline ALL therapy to mitigate this relapse risk.
Collapse
|
3
|
Toksvang LN, Als-Nielsen B, Bacon C, Bertasiute R, Duarte X, Escherich G, Helgadottir EA, Johannsdottir IR, Jónsson ÓG, Kozlowski P, Langenskjöld C, Lepik K, Niinimäki R, Overgaard UM, Punab M, Räty R, Segers H, van der Sluis I, Smith OP, Strullu M, Vaitkevičienė G, Wik HS, Heyman M, Schmiegelow K. Thiopurine Enhanced ALL Maintenance (TEAM): study protocol for a randomized study to evaluate the improvement in disease-free survival by adding very low dose 6-thioguanine to 6-mercaptopurine/methotrexate-based maintenance therapy in pediatric and adult patients (0-45 years) with newly diagnosed B-cell precursor or T-cell acute lymphoblastic leukemia treated according to the intermediate risk-high group of the ALLTogether1 protocol. BMC Cancer 2022; 22:483. [PMID: 35501736 PMCID: PMC9063225 DOI: 10.1186/s12885-022-09522-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/10/2022] [Indexed: 12/05/2022] Open
Abstract
Background A critical challenge in current acute lymphoblastic leukemia (ALL) therapy is treatment intensification in order to reduce the relapse rate in the subset of patients at the highest risk of relapse. The year-long maintenance phase is essential in relapse prevention. The Thiopurine Enhanced ALL Maintenance (TEAM) trial investigates a novel strategy for ALL maintenance. Methods TEAM is a randomized phase 3 sub-protocol to the ALLTogether1 trial, which includes patients 0–45 years of age with newly diagnosed B-cell precursor or T-cell ALL, and stratified to the intermediate risk-high (IR-high) group, in 13 European countries. In the TEAM trial, the traditional methotrexate (MTX)/6-mercaptopurine (6MP) maintenance backbone (control arm) is supplemented with low dose (2.5–12.5 mg/m2/day) oral 6-thioguanine (6TG) (experimental arm), while the starting dose of 6MP is reduced from 75 to 50 mg/m2/day. A total of 778 patients will be included in TEAM during ~ 5 years. The study will close when the last included patient has been followed for 5 years from the end of induction therapy. The primary objective of the study is to significantly improve the disease-free survival (DFS) of IR-high ALL patients by adding 6TG to 6MP/MTX-based maintenance therapy. TEAM has 80% power to detect a 7% increase in 5-year DFS through a 50% reduction in relapse rate. DFS will be evaluated by intention-to-treat analysis. In addition to reducing relapse, TEAM may also reduce hepatotoxicity and hypoglycemia caused by high levels of methylated 6MP metabolites. Methotrexate/6MP metabolites will be monitored and low levels will be reported back to clinicians to identify potentially non-adherent patients. Discussion TEAM provides a novel strategy for maintenance therapy in ALL with the potential of improving DFS through reducing relapse rate. Potential risk factors that have been considered include hepatic sinusoidal obstruction syndrome/nodular regenerative hyperplasia, second cancer, infection, and osteonecrosis. Metabolite monitoring can potentially increase treatment adherence in both treatment arms. Trial registration EudraCT, 2018–001795-38. Registered 2020-05-15, Clinicaltrials.gov, NCT04307576. Registered 2020-03-13, https://clinicaltrials.gov/ct2/show/NCT04307576 Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09522-3.
Collapse
Affiliation(s)
- Linea Natalie Toksvang
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Bodil Als-Nielsen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | | | - Ruta Bertasiute
- Vilnius University Hospital Santariskiu Klinikos, Vilnius, Lithuania
| | - Ximo Duarte
- Instituto Português de Oncologia Lisboa Francisco Gentil Departamento de Pediatria, Lisbon, Portugal
| | | | | | | | | | | | | | | | - Riitta Niinimäki
- Oulu University Hospital and PEDEGRO Research Unit, University of Oulu, Oulu, Finland
| | | | - Mari Punab
- Tartu University Hospital, Tartu, Estonia
| | - Riikka Räty
- Helsinki University Central Hospital, Helsinki, Finland
| | - Heidi Segers
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | | | | | - Marion Strullu
- Université de Paris, hôpital universitaire Robert-Debré (APHP), Paris, France
| | - Goda Vaitkevičienė
- Center for Pediatric Oncology and Hematology, Vilnius University, Vilnius, Lithuania
| | | | - Mats Heyman
- Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Minimal Residual Disease in Acute Lymphoblastic Leukemia: Current Practice and Future Directions. Cancers (Basel) 2021; 13:cancers13081847. [PMID: 33924381 PMCID: PMC8069391 DOI: 10.3390/cancers13081847] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Acute lymphoblastic leukemia minimal residual disease (MRD) refers to the presence of residual leukemia cells following the achievement of complete remission, but below the limit of detection using conventional morphologic assessment. Up to two thirds of children may have MRD detectable after induction therapy depending on the biological subtype and method of detection. Patients with detectable MRD have an increased likelihood of relapse. A rapid reduction of MRD reveals leukemia sensitivity to therapy and under this premise, MRD has emerged as the strongest independent predictor of individual patient outcome and is crucial for risk stratification. However, it is a poor surrogate for treatment effect on long term outcome at the trial level, with impending need of randomized trials to prove efficacy of MRD-adapted interventions. Abstract Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer and advances in its clinical and laboratory biology have grown exponentially over the last few decades. Treatment outcome has improved steadily with over 90% of patients surviving 5 years from initial diagnosis. This success can be attributed in part to the development of a risk stratification approach to identify those subsets of patients with an outstanding outcome that might qualify for a reduction in therapy associated with fewer short and long term side effects. Likewise, recognition of patients with an inferior prognosis allows for augmentation of therapy, which has been shown to improve outcome. Among the clinical and biological variables known to impact prognosis, the kinetics of the reduction in tumor burden during initial therapy has emerged as the most important prognostic variable. Specifically, various methods have been used to detect minimal residual disease (MRD) with flow cytometric and molecular detection of antigen receptor gene rearrangements being the most common. However, many questions remain as to the optimal timing of these assays, their sensitivity, integration with other variables and role in treatment allocation of various ALL subgroups. Importantly, the emergence of next generation sequencing assays is likely to broaden the use of these assays to track disease evolution. This review will discuss the biological basis for utilizing MRD in risk assessment, the technical approaches and limitations of MRD detection and its emerging applications.
Collapse
|