1
|
Tito Rodriguez PR, Mehta D, Subhan M, Yadav RP, Yousofzai BS, Al-Najjar EH, Bibi R, Idries M, Singh A, Adnan M. Evolving Horizons in Pediatric Leukemia: Novel Insights, Challenges, and the Journey Ahead. Cureus 2024; 16:e67480. [PMID: 39310608 PMCID: PMC11415937 DOI: 10.7759/cureus.67480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Pediatric leukemia, encompassing acute lymphoblastic leukemia (ALL) and acute myeloid leukemia, remains a formidable challenge despite significant treatment advancements. This review examines recent developments in immunotherapy, chemotherapy, and bone marrow transplantation for pediatric leukemia through a comprehensive analysis of recent literature, focusing on critical studies and clinical trials. Immunotherapy, including monoclonal antibodies, such as blinatumomab and inotuzumab ozogamicin, and chimeric antigen receptor T-cell therapies, such as tisagenlecleucel and brexucabtagene autoleucel, have demonstrated promising results in relapsed or refractory B-cell ALL (B-ALL), achieving notable remission rates with manageable side effects. Chemotherapy continues to be the primary treatment, utilizing multiphase regimens tailored to individual risk profiles. Bone marrow transplantation, especially allogeneic stem cell transplantation, offers potential cures for high-risk or relapsed cases, though it poses risks including graft-versus-host disease and infections. Despite these advancements, treatment resistance, toxicity, and accessibility persist. This review also discusses the long-term outcomes among pediatric leukemia survivors, focusing on late-onset side effects associated with treatments such as chemotherapy and bone marrow transplantation, encompassing secondary malignancies, organ dysfunction, and neurocognitive impacts. Ongoing research and clinical trials are crucial to refine these therapies, enhance their efficacy, and reduce adverse effects, ultimately improving young patients' survival and quality of life.
Collapse
Affiliation(s)
| | - Deepalee Mehta
- Internal Medicine, Bharati Vidyapeeth Medical College, Sangli, Sangli, IND
| | - Muhammad Subhan
- Medicine, Allama Iqbal Medical College, Jinnah Hospital, Lahore, PAK
| | | | | | | | - Ruqiya Bibi
- Medicine, Allama Iqbal Medical College, Jinnah Hospital, Lahore, PAK
| | - Mohamed Idries
- Biochemistry, St. George's University School of Medicine, St. George's, GRD
| | - Atinder Singh
- Medicine, World College of Medical Sciences and Research Hospital, Gurugram, IND
| | - Muhammad Adnan
- Pediatrics, Lady Reading Hospital, Peshawar, PAK
- Pediatrics, Khyber Medical College, Peshawar, PAK
| |
Collapse
|
2
|
Sripornsawan P, Chavananon S, Kittivisuit S, Songthawee N, McNeil EB, Chotsampancharoen T. Long-term survival outcome of childhood acute myeloid leukemia: a 43-year experience in Thailand, a resource-limited country. Leuk Lymphoma 2024:1-10. [PMID: 39058288 DOI: 10.1080/10428194.2024.2382916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Although there have been advances in treating pediatric patients with acute myeloid leukemia (AML) in developed countries, outcomes in low- to middle-income countries remain poor. The goal of this study was to investigate the outcomes in children with AML who were treated at a tertiary care center in Thailand. We divided the study into 4 research periods based on the chemotherapy protocols employed. The 5-year probabilities of event-free survival (pEFS) rates for periods 1-4 were 19.0%, 20.6%, 17.4%, and 37.3% (p value = 0.32), while the 5-year probabilities of overall survival (pOS) rates were 19.0%, 24.7%, 18.7%, and 42.5% (p value = 0.18), respectively. The multivariable model indicated an improvement in 5-year pOS between periods 1 and 4 (p value = 0.04). Age, white blood cell count, and study period were significant predictors of survival outcomes. The pOS of AML patients improved over time, increasing from 19.0% to 42.5%.
Collapse
Affiliation(s)
- Pornpun Sripornsawan
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Shevachut Chavananon
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sirinthip Kittivisuit
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Natsaruth Songthawee
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Edward B McNeil
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | |
Collapse
|
3
|
Sakashita K, Komori K, Morokawa H, Kurata T. Screening and interventional strategies for the late effects and toxicities of hematological malignancy treatments in pediatric survivors. Expert Rev Hematol 2024; 17:313-327. [PMID: 38899398 DOI: 10.1080/17474086.2024.2370559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Advancements in pediatric cancer treatment have increased patient survival rates; however, childhood cancer survivors may face long-term health challenges due to treatment-related effects on organs. Regular post-treatment surveillance and early intervention are crucial for improving the survivors' quality of life and long-term health outcomes. The present paper highlights the significance of late effects in childhood cancer survivors, particularly those with hematologic malignancies, stressing the importance of a vigilant follow-up approach to ensure better overall well-being. AREAS COVERED This article provides an overview of the treatment history of childhood leukemia and lymphoma as well as outlines the emerging late effects of treatments. We discuss the various types of these complications and their corresponding risk factors. EXPERT OPINION Standardizing survivorship care in pediatric cancer aims to improve patient well-being by optimizing their health outcomes and quality of life. This involves early identification and intervention of late effects, requiring collaboration among specialists, nurses, and advocates, and emphasizing data sharing and international cooperation.
Collapse
Affiliation(s)
- Kazuo Sakashita
- Department of Hematology and Oncology, Nagano Children's Hospital, Azumino, Japan
| | - Kazutoshi Komori
- Department of Hematology and Oncology, Nagano Children's Hospital, Azumino, Japan
| | - Hirokazu Morokawa
- Department of Hematology and Oncology, Nagano Children's Hospital, Azumino, Japan
| | - Takashi Kurata
- Department of Hematology and Oncology, Nagano Children's Hospital, Azumino, Japan
| |
Collapse
|
4
|
Renard C, Corbel A, Paillard C, Pochon C, Schneider P, Simon N, Buchbinder N, Fahd M, Yakoub-Agha I, Calvo C. [Preventive and therapeutic strategies for relapse after hematopoietic stem cell transplant for pediatric AML (SFGM-TC)]. Bull Cancer 2024:S0007-4551(24)00109-7. [PMID: 38926053 DOI: 10.1016/j.bulcan.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 06/28/2024]
Abstract
Treatment of pediatric high-risk acute myeloid leukemia (AML), defined either on molecular or cytogenetic features, relies on bone marrow transplant after cytologic remission. However, relapse remains the first post-transplant cause of mortality. In this 13th session of practice harmonization of the francophone society of bone marrow transplantation and cellular therapy (SFGM-TC), our group worked on recommendations regarding the management of post-transplant relapse in AML pediatric patients based on international literature, national survey and expert opinion. Overall, immunomodulation strategy relying on both measurable residual disease (MRD) and chimerism evaluation should be used for high-risk AML. In very high-risk (VHR) AML with a 5-year overall survival ≤30 %, a post-transplant maintenance should be proposed using either hypomethylating agents, combined with DLI whenever possible, or FLT3 tyrosine kinase inhibitors if this target is present on leukemia cells. In the pre-emptive or early relapse settings (< 6 months post-transplant), treatments combining DLI, Azacytidine and Venetoclax should be considered. Access to phase I/II trails for targeted therapies (menin, IDH or JAK inhibitors) should be discussed in each patient according to the underlying molecular abnormalities of the disease.
Collapse
Affiliation(s)
- Cécile Renard
- Service d'hématologie pédiatrique, Institut d'hématologie et d'oncologie pédiatrique, Hospices Civils de Lyon, 1, place Professeur Joseph Renaut, 69008 Lyon, France.
| | - Alizee Corbel
- Service d'hémato-cancérologie pédiatrique, CHU de Rennes, 16, boulevard de Bulgarie, 35200 Rennes, France
| | - Catherine Paillard
- Service d'onco-hématologie pédiatrique, Hôpital de Hautepierre CHRU de Strasbourg, avenue Molière, 67200 Strasbourg, France
| | - Cécile Pochon
- service d'onco-hématologie pédiatrique, hôpital de Brabois CHRU de Nancy, rue du Morvan, 54511 Vandoeuvre-les-Nancy, France
| | - Pascale Schneider
- service d'hémato-oncologie pédiatrique, hôpital Charles-Nicolle CHU de Rouen, 1, rue De Germont, 76038 Rouen, France
| | - Nicolas Simon
- Université Lille, EA 7365-GRITA-groupe de recherche sur les formes injectables et les technologies associées, CHU Lille, Institut de Pharmacie, 59000 Lille, France
| | - Nimrod Buchbinder
- service d'hémato-oncologie pédiatrique, hôpital Charles-Nicolle CHU de Rouen, 1, rue De Germont, 76038 Rouen, France
| | - Mony Fahd
- Service d'hématologie et immunologie pédiatrique, hôpital Robert Debré, AP-HP, 48, boulevard Sérurier, 75019 Paris, France
| | | | - Charlotte Calvo
- Service d'hématologie et immunologie pédiatrique, hôpital Robert Debré, AP-HP, 48, boulevard Sérurier, 75019 Paris, France
| |
Collapse
|
5
|
Shang Q, Bai L, Cheng Y, Suo P, Hu G, Yan C, Wang Y, Zhang X, Xu L, Liu K, Huang X. Outcomes and prognosis of haploidentical haematopoietic stem cell transplantation in children with FLT3-ITD mutated acute myeloid leukaemia. Bone Marrow Transplant 2024; 59:824-831. [PMID: 38443705 DOI: 10.1038/s41409-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 03/07/2024]
Abstract
The presence of internal tandem duplication mutations in the FMS-like tyrosine kinase 3 receptor (FLT3-ITD) is a poor prognostic predictor in paediatric patients with acute myeloid leukaemia (AML). We evaluated the treatment outcomes and prognostic factors of 45 paediatric patients with FLT3-ITD AML who achieved complete remission before haploidentical haematopoietic stem cell transplantation (haplo-HSCT) at our institution from 2012 to 2021. Among the 45 patients, the overall survival (OS), event‑free survival (EFS), and cumulative incidence of relapse (CIR) rates were 74.9% ± 6.6%, 64.1% ± 7.2%, and 31.4% ± 7.1%, respectively, with 48.8 months of median follow-up. Univariate and multivariate analyses associated positive minimal residual disease (MRD) at pre-HSCT and non-remission (NR) after introduce 1 with inferior long-term survival. The 100-day cumulative incidence of grade II-IV acute graft-versus-host disease (aGVHD) was 35.6% ± 5.2%, and that of grade III-IV aGVHD was 15.6% ± 3.0% The overall 4-year cumulative incidence of chronic graft-versus-host disease after transplantation was 35.7% ± 9.8%, respectively. In conclusion, haplo-HSCT may be a feasible strategy for paediatric patients with FLT3-ITD AML, and pre-HSCT MRD status and NR after introduce 1 significantly affected the outcomes.
Collapse
Affiliation(s)
- Qianwen Shang
- Department of Paediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Lu Bai
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Yifei Cheng
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Pan Suo
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Guanhua Hu
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Chenhua Yan
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Yu Wang
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Xiaohui Zhang
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Lanping Xu
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Kaiyan Liu
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China
| | - Xiaojun Huang
- Department of Haematology, Peking University People's Hospital, Peking University Institute of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplantation Research Unit of Key Technique for Diagnosis and Treatments of Haematologic Malignancies, Chinese Academy of Medical Sciences, Peking University, 2019RU029, Beijing, China.
| |
Collapse
|
6
|
Mumme H, Thomas BE, Bhasin SS, Krishnan U, Dwivedi B, Perumalla P, Sarkar D, Ulukaya GB, Sabnis HS, Park SI, DeRyckere D, Raikar SS, Pauly M, Summers RJ, Castellino SM, Wechsler DS, Porter CC, Graham DK, Bhasin M. Single-cell analysis reveals altered tumor microenvironments of relapse- and remission-associated pediatric acute myeloid leukemia. Nat Commun 2023; 14:6209. [PMID: 37798266 PMCID: PMC10556066 DOI: 10.1038/s41467-023-41994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Acute myeloid leukemia (AML) microenvironment exhibits cellular and molecular differences among various subtypes. Here, we utilize single-cell RNA sequencing (scRNA-seq) to analyze pediatric AML bone marrow (BM) samples from diagnosis (Dx), end of induction (EOI), and relapse timepoints. Analysis of Dx, EOI scRNA-seq, and TARGET AML RNA-seq datasets reveals an AML blasts-associated 7-gene signature (CLEC11A, PRAME, AZU1, NREP, ARMH1, C1QBP, TRH), which we validate on independent datasets. The analysis reveals distinct clusters of Dx relapse- and continuous complete remission (CCR)-associated AML-blasts with differential expression of genes associated with survival. At Dx, relapse-associated samples have more exhausted T cells while CCR-associated samples have more inflammatory M1 macrophages. Post-therapy EOI residual blasts overexpress fatty acid oxidation, tumor growth, and stemness genes. Also, a post-therapy T-cell cluster associated with relapse samples exhibits downregulation of MHC Class I and T-cell regulatory genes. Altogether, this study deeply characterizes pediatric AML relapse- and CCR-associated samples to provide insights into the BM microenvironment landscape.
Collapse
Affiliation(s)
- Hope Mumme
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Upaasana Krishnan
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Pruthvi Perumalla
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Debasree Sarkar
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gulay B Ulukaya
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Himalee S Sabnis
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunita I Park
- Department of Pathology, Children's Healthcare of Atlanta, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Melinda Pauly
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan J Summers
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel S Wechsler
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
7
|
Tosic N, Marjanovic I, Lazic J. Pediatric acute myeloid leukemia: Insight into genetic landscape and novel targeted approaches. Biochem Pharmacol 2023; 215:115705. [PMID: 37532055 DOI: 10.1016/j.bcp.2023.115705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous hematological malignancy that accounts for approximately 20% of all pediatric leukemia cases. The outcome of pediatric AML has improved over the last decades, with overall survival rates reaching up to 70%. Still, AML is among the leading types of pediatric cancers by its high mortality rate. Modulation of standard therapy, like chemotherapy intensification, hematopoietic stem cell transplantation and optimized supportive care, could only get this far, but for the significant improvement of the outcome in pediatric AML, development of novel targeted therapy approaches is necessary. In recent years the advances in genomic techniques have greatly expanded our knowledge of the AML biology, revealing molecular landscape and complexity of the disease, which in turn have led to the identification of novel therapeutic targets. This review provides a brief overview of the genetic landscape of pediatric AML, and how it's used for precise molecular characterization and risk stratification of the patients, and also for the development of effective targeted therapy. Furthermore, this review presents recent advances in molecular targeted therapy and immunotherapy with an emphasis on the therapeutic approaches with significant clinical benefits for pediatric AML.
Collapse
Affiliation(s)
- Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Serbia.
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Serbia
| | - Jelena Lazic
- University Children's Hospital, Department for Hematology and Oncology, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
8
|
Doan A, Huang HK, Hadar AJ, Malvar J, Rushing T, Raca G, Kovach AE, Freyer DR, Parekh C, Stokke J, Posch LC, Dao J, Bhojwani D, Gaynon P, Orgel E. Efficacy and safety of FLAG-IDA as front-line therapy in de novo paediatric acute myeloid leukaemia population. Br J Haematol 2023; 202:e3-e6. [PMID: 37129267 PMCID: PMC10330637 DOI: 10.1111/bjh.18844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Andrew Doan
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Holly K.T. Huang
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | | | - Jemily Malvar
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Teresa Rushing
- Department of Pharmacy, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Gordana Raca
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Alexandra E. Kovach
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA
| | - David R. Freyer
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Chintan Parekh
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Jamie Stokke
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Leila C. Posch
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Julie Dao
- Department of Pharmacy, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Deepa Bhojwani
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Paul Gaynon
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Etan Orgel
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| |
Collapse
|
9
|
Wang L, Wang Y, Yu Y, Liu D, Zhao J, Zhang L. Deciphering Selectivity Mechanism of BRD9 and TAF1(2) toward Inhibitors Based on Multiple Short Molecular Dynamics Simulations and MM-GBSA Calculations. Molecules 2023; 28:molecules28062583. [PMID: 36985555 PMCID: PMC10052767 DOI: 10.3390/molecules28062583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
BRD9 and TAF1(2) have been regarded as significant targets of drug design for clinically treating acute myeloid leukemia, malignancies, and inflammatory diseases. In this study, multiple short molecular dynamics simulations combined with the molecular mechanics generalized Born surface area method were employed to investigate the binding selectivity of three ligands, 67B, 67C, and 69G, to BRD9/TAF1(2) with IC50 values of 230/59 nM, 1400/46 nM, and 160/410 nM, respectively. The computed binding free energies from the MM-GBSA method displayed good correlations with that provided by the experimental data. The results indicate that the enthalpic contributions played a critical factor in the selectivity recognition of inhibitors toward BRD9 and TAF1(2), indicating that 67B and 67C could more favorably bind to TAF1(2) than BRD9, while 69G had better selectivity toward BRD9 over TAF1(2). In addition, the residue-based free energy decomposition approach was adopted to calculate the inhibitor–residue interaction spectrum, and the results determined the gatekeeper (Y106 in BRD9 and Y1589 in TAF1(2)) and lipophilic shelf (G43, F44, and F45 in BRD9 and W1526, P1527, and F1528 in TAF1(2)), which could be identified as hotspots for designing efficient selective inhibitors toward BRD9 and TAF1(2). This work is also expected to provide significant theoretical guidance and insightful molecular mechanisms for the rational designs of efficient selective inhibitors targeting BRD9 and TAF1(2).
Collapse
|
10
|
Yunis LK, Linares-Ballesteros A, Barros G, Garcia J, Aponte N, Niño L, Uribe G, Quintero E, Perez J, Martinez L, Yunis JJ. Genomic alterations in a cohort of pediatric acute myeloid leukemia patients at two cancer centers in Colombia. Int J Hematol 2023; 117:269-277. [PMID: 36279042 PMCID: PMC9889450 DOI: 10.1007/s12185-022-03475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 02/04/2023]
Abstract
Few studies identifying genomic aspects in pediatric acute myeloid leukemia patients in Latin American countries have been reported. The aim of this study was to identify genomic alterations, clinical characteristics and outcomes in a cohort of pediatric AML patients. This descriptive observational cohort study included patients with confirmed de novo acute myeloid leukemia up to 18 years of age. Cytogenetics and conventional FISH analysis, next-generation sequencing and PCR testing were performed. The correlation of genomic data with treatment response and outcomes were analyzed. Of the 51 patients analyzed, 67.4% had a cytogenetic abnormality and 74.5% had a genetic variant. FLT3 variants (ITD or TKD D835) were found in 27.4%, followed by NRAS (21.6%), KRAS (13.7%) and WT1 and KIT (11.8%). Patients were stratified by risk (66.6% high-risk) after the end of induction. FLT3-ITD was associated with relapse (OR 11.25; CI 1.89-66.72, p 0.006) and NRAS with death during induction (OR 16.71; CI 1.51-184.59, p 0.022). Our study highlights the importance of rapid incorporation of genetic testing in pediatric AML in Colombia, as it directly affects treatment decisions and outcomes. Incorporation of targeted therapies with conventional chemotherapy is an increasingly urgent need in pediatric patients.
Collapse
Affiliation(s)
- Luz K. Yunis
- Grupo de Patología Molecular, Universidad Nacional de Colombia, Bogotá D.C., Colombia ,Servicios Médicos Yunis Turbay Y Cía S.A.S., Instituto de Genética, Calle 86B # 49D-28, Of 305, Bogotá D.C., Colombia
| | - Adriana Linares-Ballesteros
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia ,Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia- HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá D.C., Colombia
| | - Gisela Barros
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia ,Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia- HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá D.C., Colombia
| | - Johnny Garcia
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia ,Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia- HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá D.C., Colombia
| | - Nelson Aponte
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia ,Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia- HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá D.C., Colombia
| | - Laura Niño
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia ,Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia- HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá D.C., Colombia
| | - Gloria Uribe
- Unidad de Patología, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá D.C., Colombia
| | - Edna Quintero
- Unidad de Patología, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá D.C., Colombia
| | - Jaime Perez
- Unidad de Hemato-Oncología, Clínica Infantil Colsubsidio, Bogotá D.C., Colombia
| | - Leila Martinez
- Unidad de Hemato-Oncología, Clínica Infantil Colsubsidio, Bogotá D.C., Colombia
| | - Juan J. Yunis
- Grupo de Patología Molecular, Universidad Nacional de Colombia, Bogotá D.C., Colombia ,Servicios Médicos Yunis Turbay Y Cía S.A.S., Instituto de Genética, Calle 86B # 49D-28, Of 305, Bogotá D.C., Colombia ,Departamento de Patología, Facultad de Medicina E Instituto de Genética, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| |
Collapse
|
11
|
Allogeneic hematopoietic stem cell transplantation for pediatric acute myeloid leukemia in first complete remission: a meta-analysis. Ann Hematol 2022; 101:2497-2506. [PMID: 36038660 PMCID: PMC9546991 DOI: 10.1007/s00277-022-04965-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 11/01/2022]
Abstract
Identification of pediatric patients with acute myeloid leukemia (AML) candidates to receive allogeneic hematopoietic stem cell transplantation (allo-HSCT) in first complete remission (CR1) is still a matter of debate. Currently, transplantation is reserved to patients considered at high risk of relapse based on cytogenetics, molecular biology, and minimal residual disease (MRD) assessment. However, no randomized clinical trial exists in the literature comparing transplantation with other types of consolidation therapy. Here, we provide an up-to-date meta-analysis of studies comparing allo-HSCT in CR1 with chemotherapy alone as a post-remission treatment in high-risk pediatric AML. The literature search strategy identified 10 cohorts from 9 studies performing as-treated analysis. The quantitative synthesis showed improved overall survival (OS) (relative risk, 1.15; 95% confidence interval [CI], 1.06-1.24; P = 0.0006) and disease-free survival (relative risk, 1.31; 95% CI, 1.17-1.47; P = 0.0001) in the allo-HSCT group, with increased relapse rate in the chemotherapy group (relative risk, 1.26; 95% CI, 1.07-1.49; P = 0.006). Sensitivity analysis including prospective studies alone and excluding studies that reported the comparison only on intermediate-risk patients confirmed the benefit of allo-HSCT on OS. Further research should focus on individualizing allo-HSCT indications based on molecular stratification and MRD monitoring.
Collapse
|
12
|
Li J, Liu L, Zhang R, Wan Y, Gong X, Zhang L, Yang W, Chen X, Zou Y, Chen Y, Guo Y, Ruan M, Zhu X. Development and validation of a prognostic scoring model to risk stratify childhood acute myeloid leukaemia. Br J Haematol 2022; 198:1041-1050. [PMID: 35880261 PMCID: PMC9543487 DOI: 10.1111/bjh.18354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
To create a personal prognostic model and modify the risk stratification of paediatric acute myeloid leukaemia, we downloaded the clinical data of 597 patients from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database as a training set and included 189 patients from our centre as a validation set. In the training set, age at diagnosis, -7/del(7q) or -5/del(5q), core binding factor fusion genes, FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD)/nucleophosmin 1 (NPM1) status, Wilms tumour 1 (WT1) mutation, biallelic CCAAT enhancer binding protein alpha (CEBPA) mutation were strongly correlated with overall survival and included to construct the model. The prognostic model demonstrated excellent discriminative ability with the Harrell's concordance index of 0.68, 3- and 5-year area under the receiver operating characteristic curve of 0.71 and 0.72 respectively. The model was validated in the validation set and outperformed existing prognostic systems. Additionally, patients were stratified into three risk groups (low, intermediate and high risk) with significantly distinct prognosis, and the model successfully identified candidates for haematopoietic stem cell transplantation. The newly developed prognostic model showed robust ability and utility in survival prediction and risk stratification, which could be helpful in modifying treatment selection in clinical routine.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lipeng Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ranran Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaojuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Min Ruan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
13
|
Knight TE, Edwards H, Meshinchi S, Taub JW, Ge Y. "FLipping" the Story: FLT3-Mutated Acute Myeloid Leukemia and the Evolving Role of FLT3 Inhibitors. Cancers (Basel) 2022; 14:3398. [PMID: 35884458 PMCID: PMC9315611 DOI: 10.3390/cancers14143398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/19/2022] Open
Abstract
The treatment of many types of cancers, including acute myeloid leukemia (AML), has been revolutionized by the development of therapeutics targeted at crucial molecular drivers of oncogenesis. In contrast to broad, relatively indiscriminate conventional chemotherapy, these targeted agents precisely disrupt key pathways within cancer cells. FMS-like tyrosine kinase 3 (FLT3)-encoding a critical regulator of hematopoiesis-is the most frequently mutated gene in patients with AML, and these mutations herald reduced survival and increased relapse in these patients. Approximately 30% of newly diagnosed AML carries an FLT3 mutation; of these, approximately three-quarters are internal tandem duplication (ITD) mutations, and the remainder are tyrosine kinase domain (TKD) mutations. In contrast to its usual, tightly controlled expression, FLT3-ITD mutants allow constitutive, "run-away" activation of a large number of key downstream pathways which promote cellular proliferation and survival. Targeted inhibition of FLT3 is, therefore, a promising therapeutic avenue. In April 2017, midostaurin became both the first FLT3 inhibitor and the first targeted therapy of any kind in AML to be approved by the US FDA. The use of FLT3 inhibitors has continued to grow as clinical trials continue to demonstrate the efficacy of this class of agents, with an expanding number available for use as both experimental standard-of-care usage. This review examines the biology of FLT3 and its downstream pathways, the mechanism of FLT3 inhibition, the development of the FLT3 inhibitors as a class and uses of the agents currently available clinically, and the mechanisms by which resistance to FLT3 inhibition may both develop and be overcome.
Collapse
Affiliation(s)
- Tristan E. Knight
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA; (H.E.); (Y.G.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Soheil Meshinchi
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey W. Taub
- Division of Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI 48201, USA;
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA; (H.E.); (Y.G.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
14
|
Friedman R. The molecular mechanisms behind activation of FLT3 in acute myeloid leukemia and resistance to therapy by selective inhibitors. Biochim Biophys Acta Rev Cancer 2021; 1877:188666. [PMID: 34896257 DOI: 10.1016/j.bbcan.2021.188666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia is an aggressive cancer, which, in spite of increasingly better understanding of its genetic background remains difficult to treat. Mutations in the FLT3 gene are observed in ≈30% of the patients. Most of these mutations are internal tandem duplications (ITDs) of a sequence within the protein coding region, an activation mechanism that is almost non-existent with other genes and cancers. As patients each carry their own unique set of mutations, it is challenging to understand how ITDs activate the protein, and ascertain the risk for each individual patient. Available treatment options are limited due to development of drug resistance. Here, recent studies are reviewed that help to better understand the molecular mechanism behind activation of the FLT3 protein due to mutations. It is argued that difference in mutation sequences and especially location might be coupled to prognosis. When it comes to FLT3 inhibitors, key differences between them can be attributed to the mode of inhibition (type-1 and type-2 inhibitors), effective inhibitory coefficient in the blood plasma and off-target binding. Accounting for the position and length of insertions may in the future be used to predict prognosis and rationalise treatment. Development of new inhibitors must take into account the potential for resistance mutations. Inhibitors aimed at multiple specific targets are currently being developed. These, and as well as combination therapies will hopefully lead to longer periods during which targeted FLT3 therapy will remain effective.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnæus University, 391 82 Kalmar, Sweden.
| |
Collapse
|
15
|
Knight TE, Ge Y, Taub JW, Hitzler J, Krueger J. When it comes to drug access, should children be considered small adults? Countering coverage denials of FLT3 inhibitors in children with FLT3-ITD AML. Pediatr Blood Cancer 2021; 68:e29278. [PMID: 34357678 DOI: 10.1002/pbc.29278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Tristan E Knight
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children (SickKids) and the University of Toronto, Toronto, Ontario, Canada
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey W Taub
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Pediatrics, Central Michigan University, Mt. Pleasant, Michigan, USA
| | - Johann Hitzler
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children (SickKids) and the University of Toronto, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Joerg Krueger
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children (SickKids) and the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Recent Advances in the Management of Pediatric Acute Myeloid Leukemia-Report of the Hungarian Pediatric Oncology-Hematology Group. Cancers (Basel) 2021; 13:cancers13205078. [PMID: 34680225 PMCID: PMC8534106 DOI: 10.3390/cancers13205078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The outcome of pediatric AML improved considerably worldwide during the past few decades. Hereby, we summarize the therapeutic results of pediatric AML patients registered between 2012 and 2019 in Hungary. As compared to our previous results, improvement was registered in event-free (EFS) and overall (OS) survival, which can be attributed to the application of contemporary diagnostic and therapeutic guidelines, advanced supportation, and higher efficacy of hematopoietic stem cell transplantation. Between 2016 and 2019, a statistically significant increment of 2-year EFS was confirmed over the period between 2012 and 2015. The most prominent progress was observed in acute promyelocytic leukemia (APL). Multidimensional flow cytometry made possible the prompt introduction of ATRA in two cases with M3v, who also represent the first pediatric APL patients in Hungary to be treated with arsenic-trioxide. Besides joining multinational pediatric AML treatment groups, our future aims include the introduction of centralized treatment centers and diagnostic facilities. Abstract Outcome measures of pediatric acute myeloid leukemia (AML) improved considerably between 1990 and 2011 in Hungary. Since 2012, efforts of the Hungarian Pediatric Oncology-Hematology Group (HPOG) included the reduction in the number of treatment centers, contemporary diagnostic procedures, vigorous supportation, enhanced access to hematopoietic stem cell transplantation (HSCT), and to targeted therapies. The major aim of our study was to evaluate AML treatment results of HPOG between 2012 and 2019 with 92 new patients registered (52 males, 40 females, mean age 7.28 years). Two periods were distinguished: 2012–2015 and 2016–2019 (55 and 37 patients, respectively). During these periods, 2 y OS increased from 63.6% to 71.4% (p = 0.057), and the 2 y EFS increased significantly from 56.4% to 68.9% (p = 0.02). HSCT was performed in 37 patients (5 patients received a second HSCT). We demonstrate advances in the diagnosis and treatment of acute promyelocytic leukemia (APL) in two cases. Early diagnosis and follow-up were achieved by multidimensional flow cytometry and advanced molecular methods. Both patients were successfully treated with all-trans retinoic acid and arsenic-trioxide, in addition to chemotherapy. In order to meet international standards of pediatric AML management, HPOG will further centralize treatment centers and diagnostic facilities and join efforts with international study groups.
Collapse
|
17
|
Argenziano M, Tortora C, Paola AD, Pota E, Martino MD, Pinto DD, Leva CD, Rossi F. Eltrombopag and its iron chelating properties in pediatric acute myeloid leukemia. Oncotarget 2021; 12:1377-1387. [PMID: 34262648 PMCID: PMC8274721 DOI: 10.18632/oncotarget.28000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023] Open
Abstract
Pediatric acute myeloid leukemia (AML) represents 20% of total childhood leukemia diagnoses and is characterized by poor prognosis with a long-term survival rate around the 50%, when patients are properly treated. The standard treatment for pediatric AML currently consists in a combination of cytarabine (Ara-C) and antracycline. Iron plays an important role in cancer development and progression. Targeting iron and its metabolism mediators could be a novel therapeutic strategy in cancer.Deferasirox (DFX) inhibits cancer cell proliferation and its use as an antiblastic drug could be suggested. Eltrombopag (ELT), a thrombopoietin receptor agonist used in immunethrombocytopenia, shows anticancer properties related to its emerging iron chelating properties. We compare the anticancer effect of classically used cytarabine with DFX and ELT effects in a pediatric AML cell line, THP-1, in order to identify innovative and more effective therapeutic strategies. ELT and DFX reduce intracellular iron concentration by inhibiting its uptake and by promoting its release. In particular, even though further investigations are needed to better understand the extact underlying action mechanisms, we demonstrated that ELT improves cytarabine antineoplastic activity in pediatric AML cell line.
Collapse
Affiliation(s)
- Maura Argenziano
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Chiara Tortora
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Alessandra Di Paola
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Elvira Pota
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Martina Di Martino
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Daniela Di Pinto
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Caterina Di Leva
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| |
Collapse
|