1
|
Carvalho ARV, Reis JDE, Gomes PWP, Ferraz AC, Mardegan HA, Menegatto MBDS, Souza Lima RL, de Sarges MRV, Pamplona SDGSR, Jeunon Gontijo KS, de Magalhães JC, da Silva MN, Magalhães CLDB, Silva CYYE. Untargeted-based metabolomics analysis and in vitro/in silico antiviral activity of extracts from Phyllanthus brasiliensis (Aubl.) Poir. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:869-883. [PMID: 37403427 DOI: 10.1002/pca.3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION This study describes the molecular profile and the potential antiviral activity of extracts from Phyllanthus brasiliensis, a plant widely found in the Brazilian Amazon. The research aims to shed light on the potential use of this species as a natural antiviral agent. METHODS The extracts were analysed using liquid chromatography-mass spectrometry (LC-MS) system, a potent analytical technique to discover drug candidates. In the meantime, in vitro antiviral assays were performed against Mayaro, Oropouche, Chikungunya, and Zika viruses. In addition, the antiviral activity of annotated compounds was predicted by in silico methods. RESULTS Overall, 44 compounds were annotated in this study. The results revealed that P. brasiliensis has a high content of fatty acids, flavones, flavan-3-ols, and lignans. Furthermore, in vitro assays revealed potent antiviral activity against different arboviruses, especially lignan-rich extracts against Zika virus (ZIKV), as follows: methanolic extract from bark (MEB) [effective concentration for 50% of the cells (EC50 ) = 0.80 μg/mL, selectivity index (SI) = 377.59], methanolic extract from the leaf (MEL) (EC50 = 0.84 μg/mL, SI = 297.62), and hydroalcoholic extract from the leaf (HEL) (EC50 = 1.36 μg/mL, SI = 735.29). These results were supported by interesting in silico prediction, where tuberculatin (a lignan) showed a high antiviral activity score. CONCLUSIONS Phyllanthus brasiliensis extracts contain metabolites that could be a new kick-off point for the discovery of candidates for antiviral drug development, with lignans becoming a promising trend for further virology research.
Collapse
Affiliation(s)
- Alice Rhelly V Carvalho
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - José Diogo E Reis
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Paulo Wender P Gomes
- Collaborative Mass Spectrometry Innovation Centre, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Ariane Coelho Ferraz
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Horrana A Mardegan
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Marília Bueno da Silva Menegatto
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Rafaela Lameira Souza Lima
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Maria Rosilda V de Sarges
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Sônia das G S R Pamplona
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | | | - José Carlos de Magalhães
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São João del-Rei, São João del Rei, Brazil
| | - Milton N da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Cintia Lopes de Brito Magalhães
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São João del-Rei, São João del Rei, Brazil
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Consuelo Yumiko Yoshioka E Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
2
|
Mittas D, Spitaler U, Bertagnoll M, Oettl S, Gille E, Schwaiger S, Stuppner H. Identification and structural elucidation of bioactive compounds from Scirpoides holoschoenus. PHYTOCHEMISTRY 2022; 200:113241. [PMID: 35597313 DOI: 10.1016/j.phytochem.2022.113241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Phytochemical investigations of dichloromethane and methanol extracts of roots and rhizomes of Scirpoides holoschoenus afforded 21 stilbenes, six flavonoids, six ferulic acid derivatives and four diterpenes. Among these constituents, six stilbenes, one flavonoid, one diterpene and two ferulic acid derivatives, represent previously unreported natural products. Structure elucidation was performed by HRESI-MS, NMR, GC-MS, and ECD data evaluation. The monoprenylated flavonoid (sophoraflavanone B) and all isolated stilbene oligomers (trans-scirpusin B, scirpusin A, cassigarol E, cyperusphenol B, cyperusphenol D, passiflorinol A, cyperusphenol A and mesocyperusphenol A) showed strong inhibitory activities on spore germination of two Botrytis cinerea strains isolated from field-infected grape berries and apple fruits compared to the reference controls resveratrol, piceid, and fenhexamid at a test concentration of 2.0 mM. For sophoraflavanone B and cyperusphenol A, the EC50 values were determined by concentration response curves and resulted in values of 0.35 mM and 0.53 mM, respectively. The data suggest that stilbene oligomers but also prenylated flavonoids should be examined further to gain more information on their antimicrobial activity and might be a suitable addition to chemical fungicides on the market to combat gray mold.
Collapse
Affiliation(s)
- Domenic Mittas
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Urban Spitaler
- Institute for Plant Health, Laimburg Research Center, Laimburg 6, Pfatten (Vadena), 39040, Italy
| | - Michaela Bertagnoll
- Institute for Plant Health, Laimburg Research Center, Laimburg 6, Pfatten (Vadena), 39040, Italy
| | - Sabine Oettl
- Institute for Plant Health, Laimburg Research Center, Laimburg 6, Pfatten (Vadena), 39040, Italy
| | - Elvira Gille
- National Institute for Research and Development of Biological Sciences-Bucharest, CCB Stejarul Piatra Neamt, Alexandru cel Bun no. 6, Piatra Neamt, 610004, Romania
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| |
Collapse
|
3
|
Leung KT, Chen CY, You BJ, Lee MH, Huang JW. Brown Root Rot Disease of Phyllanthus myrtifolius: The Causal Agent and Two Potential Biological Control Agents. PLANT DISEASE 2020; 104:3043-3053. [PMID: 32822264 DOI: 10.1094/pdis-02-20-0412-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Brown root rot (BRR), caused by Phellinus noxius (Corner) G. Cunningham, occurs on over 200 species of plants, especially woody trees and shrubs. Ceylon myrtle (Phyllanthus myrtifolius [Wight] Müll.Arg.), a common hedge plant, was recently observed to be infected with BRR. Disease diagnosis was performed by completing Koch's postulates, and Ceylon myrtle was confirmed to be a new host of P. noxius. Typical symptoms of BRR were observed, including reduction in leaf size, dieback of branches, and suspended growth of young leaves. A disease severity index was used to quantify BRR in this study. Compared with Malabar chestnut, Ceylon myrtle was relatively resistant to BRR. Surprisingly, phylogenetic analysis of the ITS and 28S sequences revealed that isolates identified as P. noxius from Taiwan and many other countries were clustered in the same clade but separate from the clade comprising isolates from China, which were designated Pyrrhoderma noxium based on P. noxius. Therefore, to temporarily distinguish these pathogens, the former clade was designated GPN (global P. noxius), whereas the latter clade was designated CPN (China Py. noxium). In biocontrol assays, Streptomyces padanus and Bacillus sp. were selected for BRR control of Ceylon myrtle. Disease severity was reduced from 0.51 to 0.37 by S. padanus and to 0.14 by Bacillus sp. in greenhouse trials. In addition, the two biocontrol agents, especially S. padanus, exhibited good growth-promoting effects on cuttings of Ceylon myrtle. With these double advantages, S. padanus and Bacillus sp. have great potential to control BRR in practical applications.
Collapse
Affiliation(s)
- Ka-Tung Leung
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Yu Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan
| | - Bang-Jau You
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Miin-Huey Lee
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Jenn-Wen Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
4
|
Recent advances on HPLC/MS in medicinal plant analysis—An update covering 2011–2016. J Pharm Biomed Anal 2018; 147:211-233. [DOI: 10.1016/j.jpba.2017.07.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022]
|
5
|
Hemmati S, Seradj H. Justicidin B: A Promising Bioactive Lignan. Molecules 2016; 21:E820. [PMID: 27347906 PMCID: PMC6272961 DOI: 10.3390/molecules21070820] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022] Open
Abstract
Adverse effects and drug resistance to the current onchopharmacologicals have increased the demand for alternative novel therapeutics. We herein introduce justicidin B, an arylnaphthalen lignan isolated from different plant origins, especially Justicia, Phyllanthus, Haplophyllum and Linum species. This cyclolignan exhibits a wide array of biological properties ranges from piscicidal to antifungal, antiviral and antibacterial activities. Activity against Trypanosoma brucei makes justicidin B a potential antiprotozoal agent for the treatment of neglected tropical diseases. Pharmacological properties like antiplatelet, anti-inflammatory and bone resorption inhibition have been also attributed to justicidin B. This compound is a potent cytotoxic substance on several cell lines, especially chronic myeloid and chronic lymphoid leukemia. Pharmacological values, natural variation, as well as biotechnological production of justicidin B by plant cell, tissue and organ culture are also described in this review. Chemical characteristics and chromatographic methods to identify justicidin B and its biosynthetic pathway have been discussed. Different approaches to the total synthesis of justicidin B are compared. This review would shed light on the role of justicidin B as an intriguing natural compound and provides a chance to optimize conditions for industrial applications.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P. O. Box 71345-1583 Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 71345-3119 Shiraz, Iran.
| | - Hassan Seradj
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, P. O. Box 71345-1583 Shiraz, Iran.
| |
Collapse
|
6
|
Mulat DG, Latva-Mäenpää H, Koskela H, Saranpää P, Wähälä K. Rapid chemical characterisation of stilbenes in the root bark of Norway spruce by off-line HPLC/DAD-NMR. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:529-536. [PMID: 24777944 DOI: 10.1002/pca.2523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/15/2014] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Stilbenes are plant secondary metabolites that have shown promising and varied biological activities. Stilbenes are presently actively studied for the exploitation of this primary raw material resource, involving the concept of biorefining. Methods for the rapid discovery of new and known stilbene structures from various plant sources are thus keenly sought. OBJECTIVE To establish a simple and rapid technique of off-line HPLC with a diode-array detector (DAD) and NMR for the unambiguous structural elucidation of stilbene structures in the root bark of Norway spruce [Picea abies (L.) Karst.]. MATERIAL AND METHODS The stilbene containing fraction was extracted from the plant bark with an ethanol:water mixture (95:5, v/v) preceded by defatting of hydrophobic compounds with n-hexane using the accelerated solvent extraction technique. A portion of the ethanol-water soluble extract was hydrolysed with β-glucosidase to prepare stilbene aglycones. The extracts were further purified and enriched using a polymeric adsorbent. Stilbene-enriched extracts were directly characterised by off-line HPLC/DAD-NMR in conjunction with HPLC/DAD and HPLC/DAD with electrospray ionisation MS(n). RESULTS Trans-isorhapontin and trans-astringin were identified as the major, and trans-piceid as a minor, stilbene glucosides of the bark of roots of Picea abies. Not only stilbene glucosides but also the corresponding stilbene aglycones, such as trans-resveratrol, trans-piceatannol and trans-isorhapontigenin, were rapidly identified from the hydrolysed extract. The acquired heteronuclear single-quantum coherence and heteronuclear multiple bond correlation spectra were used to assign the complete carbon NMR chemical shifts of trans-isorhapontin and trans-astringin without the need of acquiring a (13)C-NMR spectrum. CONCLUSION The off-line HPLC/DAD-NMR method is expedient for the unambiguous identication of structurally similar stilbenes in plant extracts.
Collapse
Affiliation(s)
- Daniel Girma Mulat
- Laboratory of Organic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland
| | | | | | | | | |
Collapse
|
7
|
Ren Y, Lantvit D, Deng Y, Kanagasabai R, Gallucci JC, Ninh TN, Chai HB, Soejarto DD, Fuchs J, Yalowich JC, Yu J, Swanson SM, Kinghorn AD. Potent cytotoxic arylnaphthalene lignan lactones from Phyllanthus poilanei. JOURNAL OF NATURAL PRODUCTS 2014; 77:1494-504. [PMID: 24937209 PMCID: PMC4073661 DOI: 10.1021/np5002785] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 05/19/2023]
Abstract
Two new (1 and 2) and four known arylnaphthalene lignan lactones (3-6) were isolated from different plant parts of Phyllanthus poilanei collected in Vietnam, with two further known analogues (7 and 8) being prepared from phyllanthusmin C (4). The structures of the new compounds were determined by interpretation of their spectroscopic data and by chemical methods, and the structure of phyllanthusmin D (1) was confirmed by single-crystal X-ray diffraction analysis. Several of these arylnaphthalene lignan lactones were cytotoxic toward HT-29 human colon cancer cells, with compounds 1 and 7-O-[(2,3,4-tri-O-acetyl)-α-L-arabinopyranosyl)]diphyllin (7) found to be the most potent, exhibiting IC50 values of 170 and 110 nM, respectively. Compound 1 showed activity when tested in an in vivo hollow fiber assay using HT-29 cells implanted in immunodeficient NCr nu/nu mice. Mechanistic studies showed that this compound mediated its cytotoxic effects by inducing tumor cell apoptosis through activation of caspase-3, but it did not inhibit DNA topoisomerase IIα activity.
Collapse
Affiliation(s)
- Yulin Ren
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Daniel
D. Lantvit
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Youcai Deng
- Division
of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ragu Kanagasabai
- Division
of Pharmacology, College of Pharmacy, The
Ohio State University, Columbus, Ohio 43210, United States
| | - Judith C. Gallucci
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Tran Ngoc Ninh
- Institute
of Ecology and Biological Resources, Vietnam
Academy of Science and Technology, Hoang
Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hee-Byung Chai
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Djaja D. Soejarto
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department
of Botany, Field Museum of Natural History, Chicago, Illinois 60605, United States
| | - James
R. Fuchs
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jack C. Yalowich
- Division
of Pharmacology, College of Pharmacy, The
Ohio State University, Columbus, Ohio 43210, United States
| | - Jianhua Yu
- Division
of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven M. Swanson
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - A. Douglas Kinghorn
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Tel: +1 614 247-8094. Fax: +1 614 247-8642. E-mail:
| |
Collapse
|
8
|
Seger C, Sturm S, Stuppner H. Mass spectrometry and NMR spectroscopy: modern high-end detectors for high resolution separation techniques--state of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations. Nat Prod Rep 2013; 30:970-87. [PMID: 23739842 DOI: 10.1039/c3np70015a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current natural product research is unthinkable without the use of high resolution separation techniques as high performance liquid chromatography or capillary electrophoresis (HPLC or CE respectively) combined with mass spectrometers (MS) or nuclear magnetic resonance (NMR) spectrometers. These hyphenated instrumental analysis platforms (CE-MS, HPLC-MS or HPLC-NMR) are valuable tools for natural product de novo identification, as well as the authentication, distribution, and quantification of constituents in biogenic raw materials, natural medicines and biological materials obtained from model organisms, animals and humans. Moreover, metabolic profiling and metabolic fingerprinting applications can be addressed as well as pharmacodynamic and pharmacokinetic issues. This review provides an overview of latest technological developments, discusses the assets and drawbacks of the available hyphenation techniques, and describes typical analytical workflows.
Collapse
Affiliation(s)
- Christoph Seger
- Institute of Pharmacy/Pharmacognosy, CCB-Centrum of Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
9
|
Rivière C, Pawlus AD, Mérillon JM. Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep 2013; 29:1317-33. [PMID: 23014926 DOI: 10.1039/c2np20049j] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stilbenoids, a family of polyphenols known for the complexity of their structure and for their diverse biological activities, occur with a limited but heterogeneous distribution in the plant kingdom. The most prominent stilbene containing plant family, the Vitaceae, represented by the famous wine producing grape vines Vitis vinifera L., is one of the richest sources of novel stilbenes currently known, together with other families, such as Dipterocarpaceae, Gnetaceae and Fabaceae. This review focuses on the distribution of stilbenes and 2-arylbenzofuran derivatives in the plant kingdom, the chemical structure of stilbenes in the Vitaceae family and their taxonomic implication.
Collapse
Affiliation(s)
- Céline Rivière
- Université de Bordeaux, Groupe d'Etude des Substances Végétales à Activité Biologique (GESVAB), EA 3675, Institut des Sciences de la Vigne et du Vin, 210 Chemin de Leysotte, CS 50008, F-33882 Villenave d'Ornon Cedex, France.
| | | | | |
Collapse
|