1
|
Teng M, Zhao W, Chen X, Wang C, Zhou L, Wang C, Xu Y. Parental exposure to propiconazole at environmentally relevant concentrations induces thyroid and metabolism disruption in zebrafish (Danio rerio) offspring: An in vivo, in silico and in vitro study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113865. [PMID: 35870346 DOI: 10.1016/j.ecoenv.2022.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Propiconazole is used against fungal growth in agriculture and is released into the environment, but is a potential health threat to aquatic organisms. Propiconazole induces a generational effect on zebrafish, although the toxic mechanisms involved have not been described. The aim of this study was to investigate the potential mechanisms of abnormal offspring development after propiconazole exposure in zebrafish parents. Zebrafish were exposed to propiconazole at environmentally realistic concentrations (0.1, 5, and 250 μg/L) for 100 days and their offspring were grown in control solution for further study. Heart rate, hatching rate, and body length of hatched offspring were reduced. An increase in triiodothyronine (T3) content and the T3/T4 (tetraiodothyronine) ratio was observed, indicating disruption of thyroid hormones. Increased protein level of transthyretin (TTR) in vivo was consistent with the in silico molecular docking results and T4 competitive binding in vitro assay, suggests higher binding affinity between propiconazole and TTR, more than with T4. Increased expression of genes related to the hypothalamus-pituitary-thyroid (HPT) axis and altered metabolite levels may have affected offspring development. These findings emphasizes that propiconazole, even on indirect exposure, represents health and environmental risk that should not be ignored.
Collapse
Affiliation(s)
- Miaomiao Teng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Lu Z, Hai C, Yan S, Xu L, Lu D, Sou Y, Chen H, Yang X, Fu H, Yang J. Chemistry Combining Elemental Profile, Stable Isotopic Ratios, and Chemometrics for Fine Classification of a Chinese Herb Licorice ( Glycyrrhiza uralensis Fisch.) from 37 Producing Area. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8906305. [PMID: 36032189 PMCID: PMC9410990 DOI: 10.1155/2022/8906305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
A method based on elemental fingerprint, stable isotopic analysis and combined with chemometrics was proposed to trace the geographical origins of Licorice (Glycyrrhiza uralensis Fisch) from 37 producing areas. For elemental fingerprint, the levels of 15 elements, including Ca, Cu, Mg, Pb, Zn, Sr, Mn, Se, Cd, Fe, Na, Al, Cr, Co, and K, were analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Three stable isotopes, including δ 13C, δ 15N, and δ 18O, were measured using an isotope-ratio mass spectrometer (IRMS). For fine classification, three multiclass strategies, including the traditional one-versus-rest (OVR) and one-versus-one (OVO) strategies and a new ensemble strategy (ES), were combined with two binary classifiers, partial least squares discriminant analysis (PLSDA) and least squares support vector machines (LS-SVM). As a result, ES-PLSDA and ES-LS-SVM achieved 0.929 and 0.921 classification accuracy of GUF samples from the 37 origins. The results show that element fingerprint and stable isotope combined with chemometrics is an effective method for GUF traceability and provides a new idea for the geographical traceability of Chinese herbal medicine.
Collapse
Affiliation(s)
- Zhongying Lu
- Department of Food Engineering, Guizhou Vocational College of Foodstuff Engineering, Guiyang 551400, China
| | - Chengying Hai
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, China
| | - Simin Yan
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 201114, China
| | - Lu Xu
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, Guizhou, China
| | - Daowang Lu
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, Guizhou, China
| | - Yixin Sou
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, China
| | - Xiaolong Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, China
| |
Collapse
|
3
|
Usach I, Alaimo A, Fernández J, Ambrosini A, Mocini S, Ochiuz L, Peris JE. Magnolol and Honokiol: Two Natural Compounds with Similar Chemical Structure but Different Physicochemical and Stability Properties. Pharmaceutics 2021; 13:pharmaceutics13020224. [PMID: 33561940 PMCID: PMC7915353 DOI: 10.3390/pharmaceutics13020224] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 01/18/2023] Open
Abstract
Magnolia spp. extracts are known for their use in traditional Korean, Chinese, and Japanese medicine in the treatment of gastrointestinal disorders, anxiety, and allergies. Among their main components with pharmacological activity, the most relevant are magnolol and honokiol, which also show antitumoral activity. The objectives of this work were to study some physicochemical properties of both substances and their stability under different conditions of temperature, pH, and oxidation. Additionally, liposomes of honokiol (the least stable compound) were formulated and characterized. Both compounds showed pH-dependent solubility, with different solubility–pH profiles. Magnolol showed a lower solubility than honokiol at acidic pH values, but a higher solubility at alkaline pH values. The partition coefficients were similar and relatively high for both compounds (log Po/w ≈ 4.5), indicating their lipophilic nature. Honokiol was less stable than magnolol, mainly at neutral and basic pH values. To improve the poor stability of honokiol, it was suitably loaded in liposomes. The obtained liposomes were small in size (175 nm), homogeneous (polydispersity index = 0.17), highly negatively charged (−11 mV), and able to incorporate high amounts of honokiol (entrapment efficiency = 93.4%). The encapsulation of honokiol in liposomes increased its stability only at alkaline pH values.
Collapse
Affiliation(s)
- Iris Usach
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100 Valencia, Spain; (I.U.); (A.A.); (J.F.); (A.A.); (S.M.)
| | - Alessandro Alaimo
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100 Valencia, Spain; (I.U.); (A.A.); (J.F.); (A.A.); (S.M.)
| | - Juan Fernández
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100 Valencia, Spain; (I.U.); (A.A.); (J.F.); (A.A.); (S.M.)
| | - Alessandro Ambrosini
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100 Valencia, Spain; (I.U.); (A.A.); (J.F.); (A.A.); (S.M.)
| | - Sara Mocini
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100 Valencia, Spain; (I.U.); (A.A.); (J.F.); (A.A.); (S.M.)
| | - Lacramioara Ochiuz
- Department of Pharmaceutical Technology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - José-Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100 Valencia, Spain; (I.U.); (A.A.); (J.F.); (A.A.); (S.M.)
- Correspondence: ; Tel.: +34-963-543-353; Fax: +34-963-544-911
| |
Collapse
|
4
|
Cao Q, Liu H, Zhang G, Wang X, Manyande A, Du H. 1H-NMR based metabolomics reveals the nutrient differences of two kinds of freshwater fish soups before and after simulated gastrointestinal digestion. Food Funct 2020; 11:3095-3104. [PMID: 32195513 DOI: 10.1039/c9fo02661d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soups show diverse health functions, which could be linked to their original nutrient profiles and metabolites derived from digestion. NMR spectroscopy is a robust and rapid method that unveils or identifies the chemical composition of food or food-derived metabolites. In the current study, the 1H-NMR spectroscopy approach was applied to identify the differences in metabolic profiling of two kinds of home-cooked freshwater fish soups (crucian carp and snakehead fish) before and after in vitro gastrointestinal digestion. The nutritional profiles of these soups were studied using the 1H-NMR method for the first time. Two metabolomics methods, PCA (Principal Component Analysis) and OPLS-DA (Orthogonal Partial Least Squares Discriminant Analysis), were used to analyze the data. On the whole, levels of amino acid metabolites such as valine (Val), tyrosine, choline, taurine (Tau) and glycine were higher in the crucian carp soup, whereas higher levels of fatty acids and unsaturated fatty acids were found in the snakehead soup. Furthermore, the high content of seven metabolites valine, leucine, EPA C20:5 (PUFA eicosapentaenoic acid), acetic acid, taurine, GPCho (phosphatidylcholine) and creatine showed an upward trend after simulated gastrointestinal digestion. The results demonstrate that the 1H-NMR metabolic profile of different fish soups can shed some light on our understanding of food functional properties and dietary therapy. Furthermore, changes of metabolites in digested fish soups could reveal information about chemical compounds which play important roles in the body.
Collapse
Affiliation(s)
- Qiongju Cao
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China. and National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, 430070, Hubei, P.R. China
| | - Huili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, P.R. China
| | - Gaonan Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China.
| | - Xiaohua Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, P.R. China and Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430071, P.R. China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China. and National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, 430070, Hubei, P.R. China
| |
Collapse
|
5
|
HPLC–PDA and LC–MS/MS Analysis for the Simultaneous Quantification of the 14 Marker Components in Sojadodamgangki-Tang. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sojadodamgangki-tang (SDGT) is a traditional Korean medicine consisting of 12 medicinal herbs that has been used in Korea for the treatment of asthma since ancient times. However, the quality control of herbal formulas that contain two or more herbal medicines remains challenging. In this study, 14 marker components were analyzed simultaneously by using high-performance liquid chromatography with photodiode array detection in addition to the use of liquid chromatography–tandem mass spectrometry for quality evaluation of SDGT. The simultaneous determination of the 14 marker components was validated in terms of linearity, recovery, and precision. The established methods can provide useful data for the quality control of SDGT and related herbal formulas.
Collapse
|
6
|
Kucharska-Ambrożej K, Karpinska J. The application of spectroscopic techniques in combination with chemometrics for detection adulteration of some herbs and spices. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104278] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Li Y, Li Y, Zou Z, Li Y, Xie H, Yang H. Yin Yang Gong Ji pill is an ancient formula with antitumor activity against hepatoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112267. [PMID: 31586691 DOI: 10.1016/j.jep.2019.112267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yin Yang Gong Ji pill (YYGJ) is a formula that was used in the Ming Dynasty. This study investigated the effects of YYGJ on HepG2 and MHCC97H hepatoma cells. MATERIAL AND METHODS The effects of YYGJ drug-containing rat serum (YYGJ serum) on cell proliferation and the cell cycle were investigated by a tetrazolium dye-based MTS assay and flow cytometry. Apoptosis was assayed by TUNEL and flow cytometry. E-cadherin, vimentin, c-Myc, Smad4, and MMP2 expression were assayed by real-time quantitative PCR and Western blot assays. The effects on cell invasiveness and migration were evaluated by wound healing and transwell assays. The antitumor activity of 10% YYGJ serum was compared to that of blank control, 10% rat serum control and 5-fluorouracil(FU). RESULTS HepG2 and MHCC97H cell proliferation was inhibited by YYGJ serum in a time- and concentration-dependent manner. Cells accumulated in G0/G1 and apoptosis was increased in both cell lines by 10% YYGJ serum. The effects of apoptosis in 10% YYGJ serum were weaker than those in response to 5-FU. E-cadherin and Smad4 expression were upregulated by 10% YYGJ serum, but c-Myc, vimentin and MMP2 expression were downregulated in both hepatoma cell lines. The protein expression of Smad4 in HepG2, and mRNA expression of MMP2 and E-cadherin in both cell lines had no difference between 10% YYGJ serum and 5-FU treated groups. Cell invasion and migration were decreased by 10%YYGJ serum while cell cytotoxicity was shown in 5-FU treated group. CONCLUSIONS YYGJ drug-containing serum inhibited HepG2 and MHCC97H cell proliferation, induced apoptosis, and regulated the expression of tumor-related genes and proteins. It reduced tumor cell invasion and migration. Further study to investigate the antitumor activity of YYGJ is warranted.
Collapse
Affiliation(s)
- Yongwei Li
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Yujie Li
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zengcheng Zou
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Li
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Heping Xie
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Magnolol: A Neolignan from the Magnolia Family for the Prevention and Treatment of Cancer. Int J Mol Sci 2018; 19:ijms19082362. [PMID: 30103472 PMCID: PMC6121321 DOI: 10.3390/ijms19082362] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
The past few decades have witnessed widespread research to challenge carcinogenesis; however, it remains one of the most important health concerns with the worst prognosis and diagnosis. Increasing lines of evidence clearly show that the rate of cancer incidence will increase in future and will create global havoc, designating it as an epidemic. Conventional chemotherapeutics and treatment with synthetic disciplines are often associated with adverse side effects and development of chemoresistance. Thus, discovering novel economic and patient friendly drugs that are safe and efficacious is warranted. Several natural compounds have proved their potential against this dreadful disease so far. Magnolol is a hydroxylated biphenyl isolated from the root and stem bark of Magnolia tree. Magnolol can efficiently prevent or inhibit the growth of various cancers originating from different organs such as brain, breast, cervical, colon, liver, lung, prostate, skin, etc. Considering these perspectives, the current review primarily focuses on the fascinating role of magnolol against various types of cancers, and the source and chemistry of magnolol and the molecular mechanism underlying the targets of magnolol are discussed. This review proposes magnolol as a suitable candidate that can be appropriately designed and established into a potent anti-cancer drug.
Collapse
|
9
|
Zhao H, Yan Y, Wang CC, Zou LS, Liu XH, Chen SY, Shi JJ. Comparison of Chemical Constituents in Magnoliae Officinalis Cortex Processed by “Sweating” and “Non Sweating” based on Ultra Fast Liquid Chromatography-Triple Quadrupole-Time of Flight Mass Spectrometry and Gas Chromatography-Triple Quadrupole Mass Spectrometry Combined with Multivariate Statistical Analysis. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Magnoliae Officinalis Cortex (MOC) is a commonly used traditional Chinese herbal medicine, which is always preliminarily processed by “sweating”. To explore the effects of primary processing on chemical constituents in MOC and the potential chemical markers for differentiating the samples processed by “sweating” and “non sweating”, a method is proposed based on ultra fast liquid chromatography-triple quadrupole-time of flight mass spectrometry (UFLC-Triple TOF MS/MS) and gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) coupled with multivariate statistical analysis. The obtained data were analyzed by principal component analysis and partial least-squares discriminant analysis. The nonvolatile constituents were identified according to MS accurate mass and MS/MS spectrometry fragmentation information, combined with the software of database search and literatures comparison. The volatile constituents were identified according to the NIST05 library and literatures. All of the results demonstrated that the chemical constituents in MOC samples processed by “sweating” and “non sweating” were clearly distinguished. Seventeen nonvolatile differential constituents and five volatile differential constituents were identified and presented in different change laws. This study will provide the basic information for revealing the difference of chemical constituents in MOC processed by “sweating” and “non sweating” and comprehensive evaluation of its quality.
Collapse
Affiliation(s)
- Hui Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ying Yan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Cheng-cheng Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Li-si Zou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xun-hong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shu-yu Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jing-jing Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| |
Collapse
|
10
|
Zhang PJ, Li YM, Zhang YN, Huang W, Li YB, Zhang YJ, Liu CX. Application and prospect of toxicity quality markers of Chinese materia medica based on metabolomics. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
11
|
Nuclear magnetic resonance based metabolomic differentiation of different Astragali Radix. Chin J Nat Med 2018; 15:363-374. [PMID: 28558872 DOI: 10.1016/s1875-5364(17)30057-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 11/23/2022]
Abstract
Astragali Radix (AR) is one of the most popular herbal medicines in traditional Chinese medicine (TCM). Wild AR is believed to be of high quality, and substitution with cultivated AR is frequently encountered in the market. In the present study, two types of ARs (wild and cultivated) from Astragalus membranaceus (Fisch.) Bge. and A. membranaceus var. mongholicus (Bge.) Hsiao, growing in different regions of China, were analyzed by NMR profiling coupled with multivariate analysis. Results showed that both could be differentiated successfully and cultivation patterns or growing years might have greater impact on the metabolite compositions than the variety; the metabolites responsible for the separation were identified. In addition, three extraction methods were compared and the method (M1) was used for further analysis. In M1, the extraction solvent composed of water, methanol, and chloroform in the ratio of 1 : 1 : 2 was used to obtain the aqueous methanol (upper layer) and chloroform (lower layer) fractions, respectively, showing the best separation. The differential metabolites among different methods were also revealed. Moreover, the sucrose/glucose ratio could be used as a simple index to differentiate wild and cultivated AR. Meanwhile, the changes of correlation pattern among the differential metabolites of the two varieties were found. The work demonstrated that NMR-based non-targeted profiling approach, combined with multivariate statistical analysis, can be used as a powerful tool for differentiating AR of different cultivation types or growing years.
Collapse
|
12
|
Hu H, Wang Z, Hua W, You Y, Zou L. Effect of Chemical Profiling Change of ProcessedMagnolia officinalison the Pharmacokinetic Profiling of Honokiol and Magnolol in Rats. J Chromatogr Sci 2016; 54:1201-12. [DOI: 10.1093/chromsci/bmw052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 02/06/2023]
|
13
|
Jeong SJ, Kim OS, Yoo SR, Seo CS, Kim Y, Shin HK. Anti‑inflammatory and antioxidant activity of the traditional herbal formula Gwakhyangjeonggi‑san via enhancement of heme oxygenase‑1 expression in RAW264.7 macrophages. Mol Med Rep 2016; 13:4365-71. [PMID: 27052497 DOI: 10.3892/mmr.2016.5084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 12/21/2015] [Indexed: 12/27/2022] Open
Abstract
Gwakhyangjeonggi‑san (GHJGS) is a mixture of herbal plants, including Agastache rugosa, Perilla frutescens, Angelica dahurica, Areca catechu, Poria cocos, Magnolia officinalis, Atractylodes macrocephala, Citrus reticulata, Pinellia ternata, Platycodon grandiflorum, Glycyrrhiza uralensis, Ziziphus jujuba and Zingiber officinale. GHJGS has been used for treating diarrhea‑predominant irritable bowel syndrome in traditional Korean medicine. In the present study, the anti‑inflammatory and antioxidant effects of GHJGS were investigated using the RAW 264.7 murine macrophage cell line. GHJGS significantly reduced production of the proinflammatory cytokines, tumor necrosis factor‑α, interleukin‑6 and prostaglandin E2 in lipopolysaccharide (LPS)‑stimulated macrophages. GHJGS markedly suppressed LPS‑induced phosphorylation of mitogen‑activated protein kinases, whereas it had no effect on nuclear factor‑κB activation. Furthermore, GHJGS enhanced expression of heme oxygenase‑1 and prevented the generation of reactive oxygen species in RAW 264.7 cells. These results indicate that GHJGS is a viable therapeutic agent against inflammation and oxidative stress‑associated disorders.
Collapse
Affiliation(s)
- Soo-Jin Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Ohn-Soon Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sae-Rom Yoo
- K‑herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Chungcheong 34054, Republic of Korea
| | - Chang-Seob Seo
- K‑herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Chungcheong 34054, Republic of Korea
| | - Yeji Kim
- K‑herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Chungcheong 34054, Republic of Korea
| | - Hyeun-Kyoo Shin
- K‑herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Chungcheong 34054, Republic of Korea
| |
Collapse
|
14
|
Kim SH, Shin YS, Choi HK. NanoESI-MS-based lipidomics to discriminate between cultivars, cultivation ages, and parts of Panax ginseng. Anal Bioanal Chem 2016; 408:2109-21. [PMID: 26800980 DOI: 10.1007/s00216-016-9314-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 01/09/2023]
Abstract
Korean ginseng (Panax ginseng C.A. Meyer) is one of the most popular medicinal herbs used in Asia, including Korea and China. In the present study lipid profiling of two officially registered cultivars (P. ginseng 'Chunpoong' and P. ginseng 'Yunpoong') was performed at different cultivation ages (5 and 6 years) and on different parts (tap roots, lateral roots, and rhizomes) using nano-electrospray ionization-mass spectrometry (nanoESI-MS). In total, 30 compounds including galactolipids, phospholipids, triacylglycerols, and ginsenosides were identified. Among them, triacylglycerol 54:6 (18:2/18:2/18:2), phosphatidylglycerol 34:3 (16:0/18:3), monogalactosyldiacylglycerol 36:4 (18:2/18:2), phosphatidic acid species 36:4 (18:2/18:2), and 34:1 (16:0/18:1) were selected as biomarkers to discriminate cultivars, cultivation ages, and parts. In addition, an unknown P. ginseng sample was successfully predicted by applying validated partial least squares projection to latent structures regression models. This is the first study regarding the identification of intact lipid species from P. ginseng and to predict cultivars, cultivation ages, and parts of P. ginseng using nanoESI-MS-based lipidomic profiling with a multivariate statistical analysis.
Collapse
Affiliation(s)
- So-Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Yoo-Soo Shin
- Department of Medicinal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, 369-873, Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
15
|
Current application of chemometrics in traditional Chinese herbal medicine research. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:27-35. [PMID: 26795190 DOI: 10.1016/j.jchromb.2015.12.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 11/20/2022]
Abstract
Traditional Chinese herbal medicines (TCHMs) are promising approach for the treatment of various diseases which have attracted increasing attention all over the world. Chemometrics in quality control of TCHMs are great useful tools that harnessing mathematics, statistics and other methods to acquire information maximally from the data obtained from various analytical approaches. This feature article focuses on the recent studies which evaluating the pharmacological efficacy and quality of TCHMs by determining, identifying and discriminating the bioactive or marker components in different samples with the help of chemometric techniques. In this work, the application of chemometric techniques in the classification of TCHMs based on their efficacy and usage was introduced. The recent advances of chemometrics applied in the chemical analysis of TCHMs were reviewed in detail.
Collapse
|
16
|
Xin GZ, Hu B, Shi ZQ, Zheng JY, Wang L, Chang WQ, Li P, Yao Z, Liu LF. A direct ionization mass spectrometry-based approach for differentiation of medicinal Ephedra species. J Pharm Biomed Anal 2016; 117:492-8. [DOI: 10.1016/j.jpba.2015.09.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/26/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022]
|
17
|
Wang Y, Choi HK, Brinckmann JA, Jiang X, Huang L. Chemical analysis of Panax quinquefolius (North American ginseng): A review. J Chromatogr A 2015; 1426:1-15. [DOI: 10.1016/j.chroma.2015.11.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022]
|
18
|
Masullo M, Montoro P, Mari A, Pizza C, Piacente S. Medicinal plants in the treatment of women's disorders: Analytical strategies to assure quality, safety and efficacy. J Pharm Biomed Anal 2015; 113:189-211. [DOI: 10.1016/j.jpba.2015.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 11/25/2022]
|
19
|
Zhang J, Zhong X, Li S, Zhang G, Liu X. Metabolic characterization of natural and cultured Ophicordyceps sinensis from different origins by 1H NMR spectroscopy. J Pharm Biomed Anal 2015; 115:395-401. [PMID: 26279370 DOI: 10.1016/j.jpba.2015.07.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/22/2015] [Accepted: 07/25/2015] [Indexed: 01/27/2023]
Abstract
Ophicordyceps sinensis is a well-known traditional Chinese medicine and cultured mycelium is a substitute for wild O. sinensis. Metabolic profiles of wild O. sinensis from three geographical locations and cultivated mycelia derived from three origins were investigated using (1)H nuclear magnetic resonance (NMR) analysis combined with multivariate statistical analysis. A total of 56 primary metabolites were identified and quantified from O. sinensis samples. The principle component analysis (PCA) showed significant differences between natural O. sinensis and fermentation mycelia. Seven metabolites responsible for differentiation were screened out by orthogonal partial least squares discriminant analysis (OPLS-DA). The concentrations of mannitol, trehalose, arginine, trans-4-hydroxyproline, alanine and glucitol were significantly different between wild and cultured groups. The variation in metabolic profiling among artificial mycelia was greater than that among wild O. sinensis. Furthermore, wild samples from different origins were clearly distinguished by the levels of mannitol, trehalose and some amino acids. This study indicates that (1)H NMR-based metabolomics is useful for fingerprinting and discriminating O. sinensis of different geographical regions and cultivated mycelia of different strains. The present study provided an efficient approach for investigating chemical compositions and evaluating the quality of medicine and health food derived from O. sinensis.
Collapse
Affiliation(s)
- Jianshuang Zhang
- Food and Health Engineering Research Center of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Zhong
- Food and Health Engineering Research Center of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaosong Li
- Food and Health Engineering Research Center of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Guren Zhang
- Food and Health Engineering Research Center of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory for Biological Control, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Liu
- Food and Health Engineering Research Center of State Education Ministry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
20
|
Lei W, Song YL, Guo XY, Tu PF, Jiang Y. Habitat differentiation and degradation characterization of Cinnamomi Cortex by 1H NMR spectroscopy coupled with multivariate statistical analysis. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Yan R, Yu S, Liu H, Xue Z, Yang B. An HPLC-DAD method for simultaneous quantitative determination of four active hydrophilic compounds in Magnoliae officinalis cortex. J Chromatogr Sci 2014; 53:598-602. [PMID: 25085894 DOI: 10.1093/chromsci/bmu091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Magnoliae officinalis cortex (MOC), derived from Magnolia officinalis and its variation M. officinalis var. biloba, is an important traditional Chinese medicine. In our previous work, 11 hydrophilic ingredients of MOC were isolated and structurally elucidated and four, namely syringin (SG), magnoloside A (MA), magnoloside B (MB) and magnoflorine (MF), showed bioactive effects. Herein, we describe an HPLC-DAD method for the simultaneous quantitative determination of MA, MB, MF and SG in MOC for the first time. The chromatographic separation of samples was performed on an Agilent Zorbax SB-C18 column (250 × 4.6 mm i.d., 5 µm) by gradient elution with water-acetic acid (pH 3.0) and methanol at a flow rate of 1.0 mL/min. The wavelengths were set at 265 nm for MF and SG, and 328 nm for MA and MB. The average recovery of the four compounds was from 97.63 to 103.84%. Nearly 100 MOC samples harvested from eight habitats were analyzed in which the contents of the tested compound varied in the range of 0.016-0.350% (MF), 0.010-0.337% (SG), 0.017-3.009% (MB) and 0.077-2.529% (MA). The analysis also indicated that MOC contains a significant amount of phenylethanoid glycosides. This was an unexpected finding because previously lignan was considered to be the main component of MOC.
Collapse
Affiliation(s)
- Renyi Yan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shengxian Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China Beijing Double-Crane Pharmaceutical Co., Ltd, Beijing 100102, China
| | - Hongliang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhenzhen Xue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
22
|
Metabolic differentiations of Pueraria lobata and Pueraria thomsonii using 1H NMR spectroscopy and multivariate statistical analysis. J Pharm Biomed Anal 2014; 93:51-8. [DOI: 10.1016/j.jpba.2013.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 12/18/2022]
|
23
|
Xin GZ, Hu B, Shi ZQ, Lam YC, Dong TTX, Li P, Yao ZP, Tsim KW. Rapid identification of plant materials by wooden-tip electrospray ionization mass spectrometry and a strategy to differentiate the bulbs of Fritillaria. Anal Chim Acta 2014; 820:84-91. [DOI: 10.1016/j.aca.2014.02.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/16/2014] [Accepted: 02/25/2014] [Indexed: 12/30/2022]
|
24
|
Sun H, Wang M, Zhang A, Ni B, Dong H, Wang X. UPLC-Q-TOF-HDMS analysis of constituents in the root of two kinds of Aconitum using a metabolomics approach. PHYTOCHEMICAL ANALYSIS : PCA 2013; 24:263-276. [PMID: 23225552 DOI: 10.1002/pca.2407] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/08/2012] [Accepted: 09/16/2012] [Indexed: 06/01/2023]
Abstract
INTRODUCTION Metabolomics is an 'omics' approach that aims to comprehensively analyse all metabolites in a biological sample, and has great potential for directly elucidating plant metabolic processes. Increasing evidence supports the view that plants produce a broad range of low-molecular-weight secondary metabolites responsible for variation from species to species, thus enabling the use of secondary metabolite profiling in the chemotaxonomy. OBJECTIVE To gain deeper insights into the metabolites to increasing plant diversity, we performed systematic untargeted metabolite profiling to exploit the different parts and species of Aconitum as a case study. METHOD Application of ultraperformance liquid chromatography-quadrupole time-of-flight-high-definition mass spectrometry (UPLC-QTOF-HDMS) equipped with electrospray ionisation and coupled with pattern recognition analyses to study constituents in the root of two kinds of Aconitum species. RESULTS Twenty-two metabolites between the mother root of Aconitum carmichaelii Debx (CHW) and lateral root of Aconitum carmichaelii Debx (SFZ) and 13 metabolites between the CHW and root of Aconitum kusnezoffii Reichb (CW) have been identified. Of note, songorine, carmichaeline and isotalatizidine did not exist in CW, whereas they are present in the SFZ and CHW. CONCLUSION Metabolomics based UPLC-QTOF-HDMS with multivariate statistical models was effective for analysis of constituents in the root of two kinds of Aconitum species.
Collapse
Affiliation(s)
- Hui Sun
- National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, and Key Pharmacometabolomic Platform of Chinese Medicines, Heping Road 24, Harbin 150040, China.
| | | | | | | | | | | |
Collapse
|