1
|
Fernández-López J, Botella-Martínez C, Navarro-Rodríguez de Vera C, Sayas-Barberá ME, Viuda-Martos M, Sánchez-Zapata E, Pérez-Álvarez JA. Vegetable Soups and Creams: Raw Materials, Processing, Health Benefits, and Innovation Trends. PLANTS 2020; 9:plants9121769. [PMID: 33327480 PMCID: PMC7764940 DOI: 10.3390/plants9121769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
Vegetable soups and creams have gained popularity among consumers worldwide due to the wide variety of raw materials (vegetable fruits, tubers, bulbs, leafy vegetables, and legumes) that can be used in their formulation which has been recognized as a healthy source of nutrients (mainly proteins, dietary fiber, other carbohydrates, vitamins, and minerals) and bioactive compounds that could help maintain the body’s health and wellbeing. In addition, they are cheap and easy to preserve and prepare at home, ready to eat, so in consequence they are very useful in the modern life rhythms that modify the habits of current consumption and that reclaim foods elaborated with natural ingredients, ecologic, vegans, less invasive production processes, agroindustry coproducts valorization, and exploring new flavors and textures. This review focuses on the nutritional and healthy properties of vegetable soups and creams (depending on the raw materials used in their production) highlighting their content in bioactive compounds and their antioxidant properties. Apart from the effect that some processing steps could have on these compounds, innovation trends for the development of healthier soups and creams adapted to specific consumer requirements have also been explored.
Collapse
Affiliation(s)
- Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Carmen Botella-Martínez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Casilda Navarro-Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - María Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Elena Sánchez-Zapata
- Research & Development Pre-Cooked Convenience Food, Surinver El Grupo S.Coop, 03191 Alicante, Spain;
| | - José Angel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
- Correspondence: ; Tel.: +94-96-674-9739
| |
Collapse
|
2
|
Benedé S, Gradillas A, Villalba M, Batanero E. Allium porrum Extract Decreases Effector Cell Degranulation and Modulates Airway Epithelial Cell Function. Nutrients 2019; 11:E1303. [PMID: 31181780 PMCID: PMC6627176 DOI: 10.3390/nu11061303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/14/2023] Open
Abstract
Allium genus plants, such as leek (Allium porrum), are rich sources of anti-inflammatory and anti-oxidant secondary metabolites; this is of interest because it demonstrates their suitability as pharmacological alternatives for inflammatory processes, including allergy treatment. The composition of methanolic leek extract (LE) was analyzed by GC-MS and LC-IT/MS, and the total phenolic content and antioxidant capacity were quantified by colorimetric methods. Its pharmacological potential was analyzed in human bronchial epithelial Calu-3 cells, human mast cells LAD2, and humanized rat basophiles RBL-2H3. LE exhibited a cytotoxic effect on Calu-3 cells and HumRBL-2H3 cells only at high concentrations and in a dose-dependent manner. Moreover, LE decreased the degranulation of LAD2 and HumRBL-2H3 cells. LE treatment also significantly prevented alterations in transepithelial electrical resistance values and mRNA levels of glutathione-S-transferase (GST), c-Jun, and NFκB after treatment with H2O2 in ALI-cultured Calu-3 cells. Finally, ALI-cultured Calu-3 cells treated with LE showed lower permeability to Ole e 1 compared to untreated cells. A reduction in IL-6 secretion in ALI-cultured Calu-3 cells treated with LE was also observed. In summary, the results obtained in this work suggest that A. porrum extract may have potential anti-allergic effects due to its antioxidant and anti-inflammatory properties. This study provides several important insights into how LE can protect against allergy.
Collapse
Affiliation(s)
- Sara Benedé
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Ana Gradillas
- Cembio (Centro de Metabolómica y Bioanálisis), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU San Pablo, 28668 Monteprincipe, Spain.
| | - Mayte Villalba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Eva Batanero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
3
|
La Barbera G, Capriotti AL, Cavaliere C, Montone CM, Piovesana S, Samperi R, Zenezini Chiozzi R, Laganà A. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages. Food Res Int 2017; 100:28-52. [PMID: 28873689 DOI: 10.1016/j.foodres.2017.07.080] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023]
Abstract
The recent years witnessed a change in the perception of nutrition. Diet does not only provide nutrients to meet the metabolic requirements of the body, but it also constitutes an active way for the consumption of compounds beneficial for human health. Fruit and vegetables are an excellent source of such compounds, thus the growing interest in characterizing phytochemical sources, structures and activities. Given the interest for phytochemicals in food, the development of advanced and suitable analytical techniques for their identification is fundamental for the advancement of food research. In this review, the state of the art of phytochemical research in food plants is described, starting from sample preparation, throughout extract clean-up and compound separation techniques, to the final analysis, considering both qualitative and quantitative investigations. In this regard, from an analytical point of view, fruit and vegetable extracts are complex matrices, which greatly benefit from the use of modern hyphenated techniques, in particular from the combination of high performance liquid chromatography separation and high resolution mass spectrometry, powerful tools which are being increasingly used in the recent years. Therefore, selected applications to real samples are presented and discussed, in particular for the analysis of phenols, polyphenols and phenolic acids. Finally, some hot points are discussed, such as waste characterization for high value-compounds recovery and the untargeted metabolomics approach.
Collapse
Affiliation(s)
- Giorgia La Barbera
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Roberto Samperi
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Di Donna L, Taverna D, Indelicato S, Napoli A, Sindona G, Mazzotti F. Rapid assay of resveratrol in red wine by paper spray tandem mass spectrometry and isotope dilution. Food Chem 2017; 229:354-357. [DOI: 10.1016/j.foodchem.2017.02.098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/16/2017] [Accepted: 02/19/2017] [Indexed: 12/22/2022]
|
5
|
Qin Y, Gao B, Shi H, Cao J, Yin C, Lu W, Yu L, Cheng Z. Characterization of flavonol mono-, di-, tri- and tetra- O -glycosides by ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry and its application for identification of flavonol glycosides in Viola tianschanica. J Pharm Biomed Anal 2017; 142:113-124. [DOI: 10.1016/j.jpba.2017.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/26/2023]
|
6
|
Aiello D, Materazzi S, Risoluti R, Thangavel H, Di Donna L, Mazzotti F, Casadonte F, Siciliano C, Sindona G, Napoli A. A major allergen in rainbow trout (Oncorhynchus mykiss): complete sequences of parvalbumin by MALDI tandem mass spectrometry. MOLECULAR BIOSYSTEMS 2016; 11:2373-82. [PMID: 26111497 DOI: 10.1039/c5mb00148j] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fish parvalbumin (PRVB) is an abundant and stable protein in fish meat. The variation in cross-reactivity among individuals is well known and explained by a broad repertoire of molecular forms and differences between IgE-binding epitopes in fish species. PVRB has "sequential" epitopes, which retain their IgE-binding capacity and allergenicity also after heating and digestion using proteolytic enzymes. From the allergonomics perspective, PRVB is still a challenging target due to its multiple isoforms present at different degrees of distribution. Little information is available in the databases about PVRBs from Oncorhynchus mykiss. At present, only two validated, incomplete isoforms of this species are included in the protein databases: parvalbumin beta 1 (P86431) and parvalbumin beta 2 (P86432). A simple and rapid protocol has been developed for selective solubilization of PRVB from the muscle of farmed rainbow trout (Oncorhynchus mykiss), followed by calcium depletion, proteolytic digestion, MALDI MS, and MS/MS analysis. With this strategy thermal allergen release was assessed and PRVB1 (P86431), PRVB1.1, PRVB2 (P86432) and PRVB2.1 variants from the rainbow trout were sequenced. The correct ordering of peptide sequences was aided by mapping the overlapping enzymatic digests. The deduced peptide sequences were arranged and the theoretical molecular masses (Mr) of the resulting sequences were calculated. Experimental masses (Mr) of each PRVB variant were measured by linear MALDI-TOF.
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Taverna D, Di Donna L, Bartella L, Napoli A, Sindona G, Mazzotti F. Fast analysis of caffeine in beverages and drugs by paper spray tandem mass spectrometry. Anal Bioanal Chem 2016; 408:3783-7. [DOI: 10.1007/s00216-016-9468-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
|
8
|
Yang M, Zhou Z, Yao S, Li S, Yang W, Jiang B, Liu X, Wu W, Qv H, Guo DA. Neutral Loss Ion Mapping Experiment Combined with Precursor Mass List and Dynamic Exclusion for Screening Unstable Malonyl Glucoside Conjugates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:99-107. [PMID: 26334988 DOI: 10.1007/s13361-015-1240-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 06/05/2023]
Abstract
Malonates are one type of the acylation conjugates and found abundantly in ginseng and soybean. Malonyl conjugates of ginsenosides and isoflavone glycosides were often considered as the characteristic components to evaluate various species and different forms of ginseng and soybean products because of their thermal instability. Another famous isoflavonoid-rich leguminous traditional Chinese medicine (TCM), named Puerarin lobata (Gegen), has also been reported to contain malonyl daidzin and malonyl genistin. However, the conjugates were found to present in very low amount and particularly unstable in the negative ion mode scan using LTQ Orbitrap mass spectrometry with electrospray ionization (ESI). In order to screen and characterize the malonyl conjugates in Gegen, a specific method was designed and developed combining neutral loss ion mapping (NLIM) experiment and precursor mass list (PL) triggered data dependent acquisition (DDA). Along with the activation of dynamic exclusion (DE), the method was proven to be specific and efficient for searching the malonate derivatives from Gegen. Two samples were examined by the established method. A total of 66 compounds were found, and 43 of them were malonates of isoflavone glycoside. Very few compounds were reported previously in Gegen. The results are helpful to understand the constituents of Gegen with more insight. The study not only provided a method for analyzing the malonyl conjugates from complex matrices but also explored a way to trace other low amount components in TCMs.
Collapse
Affiliation(s)
- Min Yang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhe Zhou
- ThermoFisher Scientific (China) Co., Ltd., Shanghai, 201206, China
| | - Shuai Yao
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shangrong Li
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenzhi Yang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Baohong Jiang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuan Liu
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wanying Wu
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hua Qv
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - De-an Guo
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
9
|
Di Donna L, Benabdelkamel H, Taverna D, Indelicato S, Aiello D, Napoli A, Sindona G, Mazzotti F. Determination of ketosteroid hormones in meat by liquid chromatography tandem mass spectrometry and derivatization chemistry. Anal Bioanal Chem 2015; 407:5835-42. [PMID: 26014285 DOI: 10.1007/s00216-015-8772-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 12/25/2022]
Abstract
A method for the determination and quantification of ketosteroid hormones in meat by mass spectrometry, based on the derivatization of the carbonyl moiety of steroids by O-methylhydroxylamine, is presented. The quantitative assay is performed by means of multiple-reaction-monitoring (MRM) scan mode and using the corresponding labelled species, obtained by reaction with d 3-methoxylamine, as internal standard. The accuracy of the method was established by evaluating artificially spiked samples, obtaining values in the range 90-110%. Recovery tests were performed on blank matrix samples spiked with non-natural steroids including trenbolone and melengestrol acetate. The latter experiment revealed that the yield of the extraction processes was approximately 60%. Good values of LOQ and LOD were achieved, making this method competitive with current hormone assay methods.
Collapse
Affiliation(s)
- Leonardo Di Donna
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/C, 87036, Arcavacata di Rende, CS, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Taverna D, Pollins AC, Sindona G, Caprioli RM, Nanney LB. Imaging mass spectrometry for assessing cutaneous wound healing: analysis of pressure ulcers. J Proteome Res 2014; 14:986-96. [PMID: 25488653 PMCID: PMC4324443 DOI: 10.1021/pr5010218] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Imaging
mass spectrometry (IMS) was employed for the analysis of
frozen skin biopsies to investigate the differences between stage
IV pressure ulcers that remain stalled, stagnant, and unhealed versus
those exhibiting clinical and histological signs of improvement. Our
data reveal a rich diversity of proteins that are dynamically modulated,
and we selectively highlight a family of calcium binding proteins
(S-100 molecules) including calcyclin (S100-A6), calgranulins A (S100-A8)
and B (S100-A9), and calgizzarin (S100-A11). IMS allowed us to target
three discrete regions of interest: the wound bed, adjacent dermis,
and hypertrophic epidermis. Plots derived using unsupervised principal
component analysis of the global protein signatures within these three
spatial niches indicate that these data from wound signatures have
potential as a prognostic tool since they appear to delineate wounds
that are favorably responding to therapeutic interventions versus
those that remain stagnant or intractable in their healing status.
Our discovery-based approach with IMS augments current knowledge of
the molecular signatures within pressure ulcers while providing a
rationale for a focused examination of the role of calcium modulators
within the context of impaired wound healing.
Collapse
Affiliation(s)
- Domenico Taverna
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria , Via P. Bucci, cubo 12/D, Arcavacata di Rende, CS, 87036, Italy
| | | | | | | | | |
Collapse
|
11
|
Napoli A, Aiello D, Aiello G, Cappello MS, Di Donna L, Mazzotti F, Materazzi S, Fiorillo M, Sindona G. Mass Spectrometry-Based Proteomic Approach in Oenococcus oeni Enological Starter. J Proteome Res 2014; 13:2856-66. [DOI: 10.1021/pr4012798] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anna Napoli
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | - Donatella Aiello
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | - Gilda Aiello
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | | | - Leonardo Di Donna
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | - Fabio Mazzotti
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | | | - Marco Fiorillo
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | - Giovanni Sindona
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|