1
|
Nguyen KU, Zhang Y, Liu Q, Zhang R, Jin X, Taniguchi M, Miller ES, Lindsey JS. Tolyporphins-Exotic Tetrapyrrole Pigments in a Cyanobacterium-A Review. Molecules 2023; 28:6132. [PMID: 37630384 PMCID: PMC10459692 DOI: 10.3390/molecules28166132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Tolyporphins were discovered some 30 years ago as part of a global search for antineoplastic compounds from cyanobacteria. To date, the culture HT-58-2, comprised of a cyanobacterium-microbial consortium, is the sole known producer of tolyporphins. Eighteen tolyporphins are now known-each is a free base tetrapyrrole macrocycle with a dioxobacteriochlorin (14), oxochlorin (3), or porphyrin (1) chromophore. Each compound displays two, three, or four open β-pyrrole positions and two, one, or zero appended C-glycoside (or -OH or -OAc) groups, respectively; the appended groups form part of a geminal disubstitution motif flanking the oxo moiety in the pyrroline ring. The distinct structures and repertoire of tolyporphins stand alone in the large pigments-of-life family. Efforts to understand the cyanobacterial origin, biosynthetic pathways, structural diversity, physiological roles, and potential pharmacological properties of tolyporphins have attracted a broad spectrum of researchers from diverse scientific areas. The identification of putative biosynthetic gene clusters in the HT-58-2 cyanobacterial genome and accompanying studies suggest a new biosynthetic paradigm in the tetrapyrrole arena. The present review provides a comprehensive treatment of the rich science concerning tolyporphins.
Collapse
Affiliation(s)
- Kathy-Uyen Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Yunlong Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Qihui Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Ran Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Xiaohe Jin
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Eric S. Miller
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA;
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| |
Collapse
|
2
|
Ushimaru R, Lyu J, Abe I. Diverse enzymatic chemistry for propionate side chain cleavages in tetrapyrrole biosynthesis. J Ind Microbiol Biotechnol 2023; 50:kuad016. [PMID: 37422437 PMCID: PMC10548856 DOI: 10.1093/jimb/kuad016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
Tetrapyrroles represent a unique class of natural products that possess diverse chemical architectures and exhibit a broad range of biological functions. Accordingly, they attract keen attention from the natural product community. Many metal-chelating tetrapyrroles serve as enzyme cofactors essential for life, while certain organisms produce metal-free porphyrin metabolites with biological activities potentially beneficial for the producing organisms and for human use. The unique properties of tetrapyrrole natural products derive from their extensively modified and highly conjugated macrocyclic core structures. Most of these various tetrapyrrole natural products biosynthetically originate from a branching point precursor, uroporphyrinogen III, which contains propionate and acetate side chains on its macrocycle. Over the past few decades, many modification enzymes with unique catalytic activities, and the diverse enzymatic chemistries employed to cleave the propionate side chains from the macrocycles, have been identified. In this review, we highlight the tetrapyrrole biosynthetic enzymes required for the propionate side chain removal processes and discuss their various chemical mechanisms. ONE-SENTENCE SUMMARY This mini-review describes various enzymes involved in the propionate side chain cleavages during the biosynthesis of tetrapyrrole cofactors and secondary metabolites.
Collapse
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jiaqi Lyu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Taniguchi M, Bocian DF, Holten D, Lindsey JS. Beyond green with synthetic chlorophylls – Connecting structural features with spectral properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Jin X, Zhang Y, Zhang R, Nguyen KU, Lindsey JS, Miller ES. Identification of Putative Biosynthetic Gene Clusters for Tolyporphins in Multiple Filamentous Cyanobacteria. Life (Basel) 2021; 11:758. [PMID: 34440502 PMCID: PMC8401325 DOI: 10.3390/life11080758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 01/23/2023] Open
Abstract
Tolyporphins A-R are unusual tetrapyrrole macrocycles produced by the non-axenic filamentous cyanobacterium HT-58-2. A putative biosynthetic gene cluster for biosynthesis of tolyporphins (here termed BGC-1) was previously identified in the genome of HT-58-2. Here, homology searching of BGC-1 in HT-58-2 led to identification of similar BGCs in seven other filamentous cyanobacteria, including strains Nostoc sp. 106C, Nostoc sp. RF31YmG, Nostoc sp. FACHB-892, Brasilonema octagenarum UFV-OR1, Brasilonema octagenarum UFV-E1, Brasilonema sennae CENA114 and Oculatella sp. LEGE 06141, suggesting their potential for tolyporphins production. A similar gene cluster (BGC-2) also was identified unexpectedly in HT-58-2. Tolyporphins BGCs were not identified in unicellular cyanobacteria. Phylogenetic analysis based on 16S rRNA and a common component of the BGCs, TolD, points to a close evolutionary history between each strain and their respective tolyporphins BGC. Though identified with putative tolyporphins BGCs, examination of pigments extracted from three cyanobacteria has not revealed the presence of tolyporphins. Overall, the identification of BGCs and potential producers of tolyporphins presents a collection of candidate cyanobacteria for genetic and biochemical analysis pertaining to these unusual tetrapyrrole macrocycles.
Collapse
Affiliation(s)
- Xiaohe Jin
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (X.J.); (Y.Z.); (R.Z.); (K.-U.N.)
| | - Yunlong Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (X.J.); (Y.Z.); (R.Z.); (K.-U.N.)
| | - Ran Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (X.J.); (Y.Z.); (R.Z.); (K.-U.N.)
| | - Kathy-Uyen Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (X.J.); (Y.Z.); (R.Z.); (K.-U.N.)
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (X.J.); (Y.Z.); (R.Z.); (K.-U.N.)
| | - Eric S. Miller
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7615, USA
| |
Collapse
|
5
|
Nguyen KU, Zhang R, Taniguchi M, Lindsey JS. Fluorescence Assay for Tolyporphins Amidst Abundant Chlorophyll in Crude Cyanobacterial Extracts. Photochem Photobiol 2021; 97:1507-1515. [PMID: 34152600 DOI: 10.1111/php.13474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022]
Abstract
Tolyporphins are distinctive tetrapyrrole natural products found singularly in a filamentous cyanobacterial-microbial holobiont (termed HT-58-2) from Micronesia. The absorption and fluorescence features of tolyporphins resemble those of chlorophyll a, complicating direct analysis of culture samples. Treatment of the crude (unfractionated) organic extract (CH2 Cl2 /2-propanol, 1:1) of HT-58-2 cultures with NaBH4 in methanol causes reduction of the peripheral ketone auxochromes, whereupon tolyporphins (predominantly 7,17-dioxobacteriochlorins) exhibit a bathochromic shift (λabs ~ 676 → ~ 700 nm) and chlorophyll a (a 131 -oxochlorin) exhibits a hypsochromic shift (λabs 665 → 634 nm). Fluorescence excitation spectroscopy (at 368 and 491 nm with λem 710 nm) enabled detection of reduced tolyporphins amidst abundant reduced chlorophyll a (1:19 ratio), a detection sensitivity >5 times that without reduction. The resulting assay combines simple sample preparation from non-axenic cultures at microscale quantities (2 mL, 2 μm), absence of any fractionation procedures, and fluorescence detection. Tolyporphins were readily detected in cultures of HT-58-2 at reasonable growth periods in the absence of environmental stressors, which was not possible previously.
Collapse
Affiliation(s)
- Kathy-Uyen Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC
| | - Ran Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC
| | | | | |
Collapse
|
6
|
Natural Product Gene Clusters in the Filamentous Nostocales Cyanobacterium HT-58-2. Life (Basel) 2021; 11:life11040356. [PMID: 33919559 PMCID: PMC8073705 DOI: 10.3390/life11040356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are known as rich repositories of natural products. One cyanobacterial-microbial consortium (isolate HT-58-2) is known to produce two fundamentally new classes of natural products: the tetrapyrrole pigments tolyporphins A–R, and the diterpenoid compounds tolypodiol, 6-deoxytolypodiol, and 11-hydroxytolypodiol. The genome (7.85 Mbp) of the Nostocales cyanobacterium HT-58-2 was annotated previously for tetrapyrrole biosynthesis genes, which led to the identification of a putative biosynthetic gene cluster (BGC) for tolyporphins. Here, bioinformatics tools have been employed to annotate the genome more broadly in an effort to identify pathways for the biosynthesis of tolypodiols as well as other natural products. A putative BGC (15 genes) for tolypodiols has been identified. Four BGCs have been identified for the biosynthesis of other natural products. Two BGCs related to nitrogen fixation may be relevant, given the association of nitrogen stress with production of tolyporphins. The results point to the rich biosynthetic capacity of the HT-58-2 cyanobacterium beyond the production of tolyporphins and tolypodiols.
Collapse
|
7
|
O'Donnell TJ, Gurr JR, Dai J, Taniguchi M, Williams PG, Lindsey JS. Tolyporphins A–R, unusual tetrapyrrole macrocycles in a cyanobacterium from Micronesia, assessed quantitatively from the culture HT-58-2. NEW J CHEM 2021. [DOI: 10.1039/d1nj02108g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tolyporphins A–R are the newest additions to the family of native tetrapyrroles. LC-MS-dMRM and absorption spectroscopy have been employed for analysis of mixtures containing the 18 distinctive natural products.
Collapse
Affiliation(s)
| | - Joshua R. Gurr
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Jingqiu Dai
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | | | | | | |
Collapse
|
8
|
Abstract
Tolyporphins, relatively new members of the pigments of life family found in a cyanobacterium, differ in the chromophores, pyrroline substituents, and stereochemistry, yet likely all derive from uroporphyrinogen III.
Collapse
|
9
|
Fujita H, Zhang Y, Wu Z, Lindsey JS. Chromogenic agents built around a multifunctional double-triazine framework for enzymatically triggered cross-linking under physiological conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj06187h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular architecture designed for bioconjugation and internal absorption ratiometry undergoes enzymatically triggered cleavage of glucosyl groups and subsequent oxidative dimerization in aqueous solution to yield indigoid-containing scaffolds.
Collapse
Affiliation(s)
- Hikaru Fujita
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Yunlong Zhang
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Zhiyuan Wu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | |
Collapse
|
10
|
Gurr JR, Dai J, Philbin CS, Sartain HT, O'Donnell TJ, Yoshida WY, Rheingold AL, Williams PG. Tolyporphins L-R: Unusual Tetrapyrroles from a Brasilonema sp. of Cyanobacterium. J Org Chem 2019; 85:318-326. [PMID: 31815480 DOI: 10.1021/acs.joc.9b01928] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tolyporphins L-R (2-8) have been isolated from a mixed cyanobacterium-microbial culture. The structures of tolyporphins L and M have been revised to four constitutional isomers, isolated as two mixtures of dioxobacteriochlorins (2/3 and 4/5). In contrast, tolyporphin P (6) is a fully oxidized tetrapyrrole, while tolyporphins Q and R (7 and 8) are oxochlorins. X-ray structures are reported for the first time for tolyporphins A (1), R (8), and E (9), revealing unexpected stereochemical variation within the series.
Collapse
Affiliation(s)
- Joshua R Gurr
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Jingqiu Dai
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Casey S Philbin
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Hope T Sartain
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Timothy J O'Donnell
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Wesley Y Yoshida
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Arnold L Rheingold
- Department of Chemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , 92093 California , United States
| | - Philip G Williams
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
11
|
Barnhart-Dailey M, Zhang Y, Zhang R, Anthony SM, Aaron JS, Miller ES, Lindsey JS, Timlin JA. Cellular localization of tolyporphins, unusual tetrapyrroles, in a microbial photosynthetic community determined using hyperspectral confocal fluorescence microscopy. PHOTOSYNTHESIS RESEARCH 2019; 141:259-271. [PMID: 30903482 DOI: 10.1007/s11120-019-00625-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
The cyanobacterial culture HT-58-2, composed of a filamentous cyanobacterium and accompanying community bacteria, produces chlorophyll a as well as the tetrapyrrole macrocycles known as tolyporphins. Almost all known tolyporphins (A-M except K) contain a dioxobacteriochlorin chromophore and exhibit an absorption spectrum somewhat similar to that of chlorophyll a. Here, hyperspectral confocal fluorescence microscopy was employed to noninvasively probe the locale of tolyporphins within live cells under various growth conditions (media, illumination, culture age). Cultures grown in nitrate-depleted media (BG-110 vs. nitrate-rich, BG-11) are known to increase the production of tolyporphins by orders of magnitude (rivaling that of chlorophyll a) over a period of 30-45 days. Multivariate curve resolution (MCR) was applied to an image set containing images from each condition to obtain pure component spectra of the endogenous pigments. The relative abundances of these components were then calculated for individual pixels in each image in the entire set, and 3D-volume renderings were obtained. At 30 days in media with or without nitrate, the chlorophyll a and phycobilisomes (combined phycocyanin and phycobilin components) co-localize in the filament outer cytoplasmic region. Tolyporphins localize in a distinct peripheral pattern in cells grown in BG-110 versus a diffuse pattern (mimicking the chlorophyll a localization) upon growth in BG-11. In BG-110, distinct puncta of tolyporphins were commonly found at the septa between cells and at the end of filaments. This work quantifies the relative abundance and envelope localization of tolyporphins in single cells, and illustrates the ability to identify novel tetrapyrroles in the presence of chlorophyll a in a photosynthetic microorganism within a non-axenic culture.
Collapse
Affiliation(s)
- Meghan Barnhart-Dailey
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM, 87185-0895, USA
| | - Yunlong Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Ran Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Stephen M Anthony
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM, 87185-0895, USA
| | - Jesse S Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Eric S Miller
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7615, USA
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA.
| | - Jerilyn A Timlin
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM, 87185-0895, USA.
| |
Collapse
|
12
|
Liu Y, Zhang S, Lindsey JS. Total synthesis campaigns toward chlorophylls and related natural hydroporphyrins - diverse macrocycles, unrealized opportunities. Nat Prod Rep 2019; 35:879-901. [PMID: 29845995 DOI: 10.1039/c8np00020d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: up to 2018 Chlorophylls, bacteriochlorophylls and related hydroporphyrins constitute invaluable natural products but have largely remained outside the scope of viable syntheses. The campaign toward chlorophyll a by Woodward and coworkers is a deservedly celebrated landmark in organic synthesis yet the route entailed 49 steps, relied on semisynthetic replenishment of advanced intermediates, and then pointed to (but did not implement) uncertain literature procedures for the final transformations. Indeed, the full synthesis at any scale of any (bacterio)chlorophylls - conversion of small-molecule starting materials to the product - has never been accomplished. Herein, the reported syntheses of (±)-bonellin dimethyl ester (0.93 mg) and tolyporphin A O,O-diacetate (0.38 mg), as well as the never-fully traversed route to chlorophyll a, have been evaluated in a quantitative manner. Bonellin and tolyporphin A are naturally occurring chlorin and bacteriochlorin macrocycles, respectively, that lack the characteristic fifth ring of (bacterio)chlorophylls. A practical assessment is provided by the cumulative reaction mass efficiency (cRME) of the entire synthetic process. The cRME for the route to chlorophyll a would be 4.3 × 10-9 (230 kg of all reactants and reagents in total would yield 1.0 mg of chlorophyll a), whereas that for (±)-bonellin dimethyl ester or tolyporphin A O,O-diacetate is approximately 6.4 × 10-4 or 3.6 × 10-5, respectively. Comparison of the three syntheses reveals insights for designing hydroporphyrin syntheses. Development of syntheses with cRME > 10-5 (if not 10-4), as required to obtain 10 mg quantities of hydroporphyrin for diverse physicochemical, biochemical and medicinal chemistry studies, necessitates significant further advances in tetrapyrrole chemistry.
Collapse
Affiliation(s)
- Yizhou Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8294, USA.
| | | | | |
Collapse
|
13
|
Hughes RA, Jin X, Zhang Y, Zhang R, Tran S, Williams PG, Lindsey JS, Miller ES. Genome sequence, metabolic properties and cyanobacterial attachment of Porphyrobacter sp. HT-58-2 isolated from a filamentous cyanobacterium–microbial consortium. Microbiology (Reading) 2018; 164:1229-1239. [DOI: 10.1099/mic.0.000706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rebecca-Ayme Hughes
- 1Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
- 2Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA
| | - Xiaohe Jin
- 1Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Yunlong Zhang
- 1Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Ran Zhang
- 1Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Sabrina Tran
- 1Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
- 3Enloe Magnet High School, Raleigh, North Carolina 27610, USA
| | - Philip G. Williams
- 4Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822-2275, USA
| | - Jonathan S. Lindsey
- 1Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Eric S. Miller
- 2Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA
| |
Collapse
|
14
|
Taniguchi M, Du H, Lindsey JS. PhotochemCAD 3: Diverse Modules for Photophysical Calculations with Multiple Spectral Databases. Photochem Photobiol 2018; 94:277-289. [DOI: 10.1111/php.12862] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/22/2017] [Indexed: 01/13/2023]
Affiliation(s)
| | - Hai Du
- Department of Chemistry North Carolina State University Raleigh NC
| | | |
Collapse
|