1
|
Ribeiro V, Bastos JK, Estep AS, Meepagala KM. Larvicidal Activity of Constituents from the Main Brazilian Propolis Types: Green, Red, and Brown against Aedes aegypti. ACS OMEGA 2024; 9:35560-35566. [PMID: 39184470 PMCID: PMC11339981 DOI: 10.1021/acsomega.4c03132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
In search of environmentally benign and mammalian-friendly mosquito-mitigating compounds, we conducted an investigation into the constituents isolated from Brazilian red, brown, and green propolis. Additionally, we synthetically modified active constituents to explore the role of lipophilicity in enhancing their larvicidal activity. Honeybees collect plant resins from their habitats, mix them with saliva, and utilize them to seal their beehives. The constituents present in propolis exhibit a unique composition specific to the geographical location and the fauna of the region. As part of the plant's natural defense mechanism, propolis compounds demonstrate antibacterial, insecticidal, and phytotoxic properties. Given that several insecticides target the enzyme acetylcholinesterase, we conducted in silico studies to examine the interactions between propolis compounds and acetylcholinesterase through molecular docking. In this study, we present the mosquito larvicidal activities of propolis constituents.
Collapse
Affiliation(s)
- Victor
P. Ribeiro
- Agricultural
Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Jairo K. Bastos
- School
of Pharmaceutical Sciences of Ribeirão Preto − University
of São Paulo, Av. do Café, Ribeirão Preto 14040-930, Brazil
| | - Alden S. Estep
- USDA-ARS,
Mosquito and Fly Research Unit, 1600 S.W. 23rd Drive, Gainesville, Florida 32608, United States
| | - Kumudini M. Meepagala
- Agricultural
Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| |
Collapse
|
2
|
Oliveira LC, Pena Ribeiro V, Santos MFC, Oliveira ND, Zago MHM, Albernaz ILDX, Veneziani RCS, Bastos JK, Magalhães LG, Ambrósio SR. Leishmanial activity of Brazilian brown propolis and its diterpenes. Nat Prod Res 2023:1-5. [PMID: 37915254 DOI: 10.1080/14786419.2023.2277351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Propolis is a natural product widely used in folk medicine. Among its various applications, its antiparasitic properties stand out. Due to its great biodiversity, Brazil is a major producer of several types of propolis. This study proposes to evaluate the leishmanicidal properties of the hydroalcoholic extract of propolis collected in the southern region of Brazil (Brown propolis - HEBP) and its main isolated compounds: abietic acid (1), 13-epi-cupressic acid (2), 13-epi-torulosol (3), dehydroabietic acid (4), cis-communic acid (5) and ent-agatic acid (6). In general, the diterpenes did not show activity against the promastigotes of Leishmania (Leishmania) amazonensis at the evaluated concentrations. However, the HEBP was very active with an inhibition concentration of 50% at 8.32 µg/mL. Moreover, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) assays showed morphological and structural alterations in promastigote forms of L. (L.) amazonensis when incubated with HEBP.
Collapse
Affiliation(s)
- Larissa Costa Oliveira
- Research Center in Exact Sciences and Technologies, University of Franca, Franca, São Paulo, Brazil
| | - Victor Pena Ribeiro
- Research Center in Exact Sciences and Technologies, University of Franca, Franca, São Paulo, Brazil
| | | | - Nicoli Dias Oliveira
- Research Center in Exact Sciences and Technologies, University of Franca, Franca, São Paulo, Brazil
- Animal Science Post Graduation, University of Franca, Franca, São Paulo, Brazil
| | | | | | - Rodrigo Cassio Sola Veneziani
- Research Center in Exact Sciences and Technologies, University of Franca, Franca, São Paulo, Brazil
- Animal Science Post Graduation, University of Franca, Franca, São Paulo, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lizandra Guidi Magalhães
- Research Center in Exact Sciences and Technologies, University of Franca, Franca, São Paulo, Brazil
- Animal Science Post Graduation, University of Franca, Franca, São Paulo, Brazil
| | - Sérgio Ricardo Ambrósio
- Research Center in Exact Sciences and Technologies, University of Franca, Franca, São Paulo, Brazil
- Animal Science Post Graduation, University of Franca, Franca, São Paulo, Brazil
| |
Collapse
|
3
|
Contieri LS, de Souza Mesquita LM, Sanches VL, Viganó J, Kamikawachi RC, Vilegas W, Rostagno MA. Ultra-high-performance liquid chromatography using a fused-core particle column for fast analysis of propolis phenolic compounds. J Sep Sci 2023; 46:e2200440. [PMID: 36449264 DOI: 10.1002/jssc.202200440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Propolis is a bee product with a complex chemical composition formed by several species from different geographical origins. The complex propolis composition requires an accurate and reproducible characterization of samples to standardize the quality of the material sold to consumers. This work developed an ultra-high-performance liquid chromatography with a photodiode array detector method to analyze propolis phenolic compounds based on the two key propolis biomarkers, Artepillin C and p-Coumaric acid. This choice was made due to the complexity of the sample with the presence of several compounds. The optimized method was hyphenated with mass spectrometry detection allowing the detection of 23 different compounds. A step-by-step strategy was used to optimize temperature, flow rate, mobile phase composition, and re-equilibration time. Reverse-phase separation was achieved with a C18 fused-core column packed with the commercially available smallest particles (1.3 nm). Using a fused-core column with ultra-high-performance liquid chromatography allows highly efficient, sensitive, accurate, and reproducible determination of compounds extracted from propolis with an outstanding sample throughput and resolution. Optimized conditions permitted the separation of the compounds in 5.50 min with a total analysis time (sample-to-sample) of 6.50 min.
Collapse
Affiliation(s)
- Letícia S Contieri
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Juliane Viganó
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Rod. Lauri Simões de Barros, Buri, Brazil
| | | | - Wagner Vilegas
- UNESP - São Paulo State University, Institute of Biosciences, São Vicente, Brazil
| | - Mauricio A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
4
|
Ribeiro VP, Mejia JAA, Rodrigues DM, Alves GR, de Freitas Pinheiro AM, Tanimoto MH, Bastos JK, Ambrósio SR. Brazilian Brown Propolis: an Overview About Its Chemical Composition, Botanical Sources, Quality Control, and Pharmacological Properties. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2023; 33:288-299. [PMID: 36908300 PMCID: PMC9955532 DOI: 10.1007/s43450-023-00374-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023]
Abstract
Brazil is one of the largest propolis producers in the world. Propolis is produced by bees from plant exudates and tissues, leading to many variations in the types of propolis. Generally, Brazilian propolis types are green, brown, and red. Despite not being the main research focus as the green and red propolis, brown propolis is the second most produced propolis type in Brazil and has tremendous economic and medicinal importance. Propolis has drawn attention with the rise in the search for healthier lifestyles, functional foods, biocosmetics, and natural products as therapeutic sources. This review covers the main chemical constituents identified in different types of Brazilian brown propolis, and their botanical sources, chemistry, and biological activities. The economic aspect of brown propolis is also presented. There are many gaps to be filled for brown propolis regarding the development of analytical methods, and quality control to allow its standardization, limiting its applicability in the food and pharmaceutical industries. Future perspectives regarding brown propolis research were discussed, especially biological activities, to support the medicinal uses of different types of brown propolis. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-023-00374-x.
Collapse
Affiliation(s)
- Victor Pena Ribeiro
- Núcleo de Pesquisa Em Ciências Exatas E Tecnológicas, Universidade de Franca, Franca, SP 14404-600 Brazil
| | - Jennyfer Andrea Aldana Mejia
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Do Café, Ribeirão Preto, SP 14040-930 Brazil
| | - Debora Munhoz Rodrigues
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Do Café, Ribeirão Preto, SP 14040-930 Brazil
| | - Gabriel Rocha Alves
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Do Café, Ribeirão Preto, SP 14040-930 Brazil
| | - Ana Maria de Freitas Pinheiro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Do Café, Ribeirão Preto, SP 14040-930 Brazil
| | - Matheus Hikaru Tanimoto
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Do Café, Ribeirão Preto, SP 14040-930 Brazil
| | - Jairo Kenupp Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Do Café, Ribeirão Preto, SP 14040-930 Brazil
| | - Sérgio Ricardo Ambrósio
- Núcleo de Pesquisa Em Ciências Exatas E Tecnológicas, Universidade de Franca, Franca, SP 14404-600 Brazil
| |
Collapse
|
5
|
Cuesta-Rubio O, Hernández IM, Fernández MC, Rodríguez-Delgado I, De Oca Porto RM, Piccinelli AL, Celano R, Rastrelli L. Chemical characterization and antioxidant potential of ecuadorian propolis. PHYTOCHEMISTRY 2022; 203:113415. [PMID: 36049527 DOI: 10.1016/j.phytochem.2022.113415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The chemical composition and the antioxidant potential of Ecuadorian propolis samples (n = 19) collected in different provinces were investigated. HPLC-DAD-ESI/MSn and GC-EI-MS analysis of the methanol extracts enabled us to define six types of Ecuadorian propolis based on their secondary metabolite composition. 68 compounds were identified, 59 of which are reported for the first time in Ecuadorian propolis. The detected compounds include flavonoids, diterpenes, triterpenes, organic acid derivatives, alkylresorcinol derivatives and nemorosone. Plants belonging to genera Populus, Mangifera and Clusia seemed to be vegetable sources employed by bees to produce Ecuadorian propolis. Total phenolic content and antioxidant activity of propolis extracts were determined by the Folin-Ciocalteu assay and 2,2-diphenyl-1-picrylhydrazyl and ferric reducing/antioxidant potential assays, respectively. As expected, the variable chemical composition affected the differences in terms of antioxidant potential.
Collapse
Affiliation(s)
- Osmany Cuesta-Rubio
- Universidad Técnica de Machala, Facultad de Ciencias Químicas y de La Salud, Ave. Panamericana km 5½, 070101, Machala, Ecuador.
| | - Ingrid Márquez Hernández
- Universidad Técnica de Machala, Facultad de Ciencias Químicas y de La Salud, Ave. Panamericana km 5½, 070101, Machala, Ecuador.
| | - Mercedes Campo Fernández
- Universidad Técnica de Machala, Facultad de Ciencias Químicas y de La Salud, Ave. Panamericana km 5½, 070101, Machala, Ecuador.
| | - Irán Rodríguez-Delgado
- Universidad Técnica de Machala, Facultad de Ciencias Agropecurarias, Ave. Panamericana km 5½, 070101, Machala, Ecuador.
| | - Rodny Montes De Oca Porto
- Instituto de Medicina del Deporte, Laboratorio Antidoping, Calle 100 y Aldabó, 1210800, La Habana, Cuba.
| | - Anna Lisa Piccinelli
- Universitá degli Studi di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy.
| | - Rita Celano
- Universitá degli Studi di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy.
| | - Luca Rastrelli
- Universitá degli Studi di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy.
| |
Collapse
|
6
|
Ribeiro VP, Ccana-Ccapatinta GV, Aldana-Mejía JA, Berretta AA, Moraes LA, Bastos JK. Chemical characterization of Brazilian propolis using automated direct thermal desorption-gas chromatography-mass spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4345-4354. [PMID: 35066883 DOI: 10.1002/jsfa.11788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Propolis, produced by honey bees, is used around the world, displaying several corroborated biological activities. Brazil is one of the leading producers of propolis, with a great diversity of types, each with a characteristically chemical fingerprint influenced by the flora of the local region. The secondary metabolite's composition of propolis strongly impacts its biological properties, and its chemical characterization is of great importance for its quality control. Several chromatographic techniques have been applied to characterize propolis, highlighting the extraction of its volatiles and its analysis through gas chromatography. Fourteen Brazilian propolis samples collected in four states, including brown, green and red propolis types, were chemically characterized using the automated direct thermal desorption-gas chromatography-mass spectrometry (DTD-GC-MS). RESULTS Red propolis type was characterized by acyclic saturated hydrocarbons, fatty alcohols, terpenes, and phenylpropanoids as nonacosane, α-copaene, β-amyrin acetate, anethole, and 7-O-methylvestitol. Brown propolis presented hydrocarbons, monoterpenes, and sesquiterpenes, as α-pinene and α-bisabolol. Brazilian green propolis presented polycyclic aromatic hydrocarbons and sesquiterpenes, including 1-methyl-octahydroanthracene, 2,5-dimethyl-γ-oxo-benzenebutanoic acid, nerolidol, and spathulenol. Principal component analysis (PCA) was performed, allowing for clustering brown and red propolis types, indicating a divergence with the chemical composition of the green propolis samples. The hierarchical cluster analysis (HCA) allowed the chemical fingerprint of each propolis type to be differentiated. CONCLUSION Red propolis was characterized by sesquiterpenes, pterocarpans, and isoflavans; brown propolis was characterized by hydrocarbons, aldehydes, and monoterpenes, while green propolis samples were characterized by the presence of polycyclic aromatic hydrocarbons, sesquiterpenes, and naphthalene derivatives. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Victor P Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gari V Ccana-Ccapatinta
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jennyfer A Aldana-Mejía
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Andresa A Berretta
- Research, Development and Innovation Department, Apis Flora Industrial e Comercial Ltda, Ribeirão Preto, Brazil
| | - Luiz Ab Moraes
- Chemistry Department, School of Philosophy, Sciences and Languages, University of São Paulo, Ribeirão Preto, Brazil
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Kasote D, Bankova V, Viljoen AM. Propolis: chemical diversity and challenges in quality control. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1887-1911. [PMID: 35645656 PMCID: PMC9128321 DOI: 10.1007/s11101-022-09816-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/08/2022] [Indexed: 05/09/2023]
Abstract
UNLABELLED Propolis is a resinous natural product produced by honeybees using beeswax and plant exudates. The chemical composition of propolis is highly complex, and varies with region and season. This inherent chemical variability presents several challenges to its standardisation and quality control. The present review was aimed at highlighting marker compounds for different types of propolis, produced by the species Apis mellifera, from different geographical origins and that display different biological activities, and to discuss strategies for quality control. Over 800 compounds have been reported in the different propolises such as temperate, tropical, birch, Mediterranean, and Pacific propolis; these mainly include alcohols, acids and their esters, benzofuranes, benzopyranes, chalcones, flavonoids and their esters, glycosides (flavonoid and diterpene), glycerol and its esters, lignans, phenylpropanoids, steroids, terpenes and terpenoids. Among these, flavonoids (> 140), terpenes and terpenoids (> 160) were major components. A broad range of biological activities, such as anti-oxidant, antimicrobial, anti-inflammatory, immunomodulatory, and anticancer activities, have been ascribed to propolis constituents, as well as the potential of these compounds to be biomarkers. Several analytical techniques, including non-separation and separation methods have been described in the literature for the quality control assessment of propolis. Mass spectrometry coupled with separation methods, followed by chemometric analysis of the data, was found to be a valuable tool for the profiling and classification of propolis samples, including (bio)marker identification. Due to the rampant chemotypic variability, a multiple-marker assessment strategy considering geographical and biological activity marker(s) with chemometric analysis may be a promising approach for propolis quality assessment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-022-09816-1.
Collapse
Affiliation(s)
- Deepak Kasote
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alvaro M. Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
- SAMRC Herbal Drugs Research Unit, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
| |
Collapse
|
8
|
Salatino A, Salatino MLF, Negri G. How diverse is the chemistry and plant origin of Brazilian propolis? APIDOLOGIE 2021; 52:1075-1097. [PMID: 34611369 PMCID: PMC8485119 DOI: 10.1007/s13592-021-00889-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 07/06/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Propolis is a honey bee product containing chiefly beeswax and resins originated from plant buds or exudates. Propolis resin exerts a diversity of biological activities, such as antitumoral, anti-inflammatory, antimicrobial, and defense of the hive against pathogens. Chemical standardization and identification of botanical sources is crucial for characterization of propolis. Types of Brazilian propolis are characteristic of geographical regions and respective biomes, such as savannas (Cerrado), mangroves, dry forest (Caatinga), rain forests (Amazon, Atlantic, and Interior forests), altitudinal fields ("Campos Rupestres"), Pantanal, and Araucaria forests. Despite the wide diversity of Brazilian biomes and flora, relatively few types of Brazilian propolis and corresponding resin plant sources have been reported. Factors accounting for the restricted number of known types of Brazilian propolis and plant sources are tentatively pointed out. Among them, the paper discusses constraints that honey bees must overcome to collect plant exudates, including the characteristics of the lapping-chewing mouthpart of honey bee, which limit their possibilities to cut and chew plant tissues, as well as chemical requirements that plant resins must fulfil, involving antimicrobial activity of its constituents and innocuity to the insects. Although much still needs to be done toward a more comprehensive picture of Brazilian propolis types and corresponding plant origins, the prospects indicate that the actual diversity of plant sources of honey bee propolis will remain relatively low.
Collapse
Affiliation(s)
- Antonio Salatino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP 05508-090 Brazil
| | - Maria Luiza Faria Salatino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP 05508-090 Brazil
| | - Giuseppina Negri
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP 05508-090 Brazil
| |
Collapse
|
9
|
Baky MH, Shawky EM, Elgindi MR, Ibrahim HA. Comparative Volatile Profiling of Ludwigia stolonifera Aerial Parts and Roots Using VSE-GC-MS/MS and Screening of Antioxidant and Metal Chelation Activities. ACS OMEGA 2021; 6:24788-24794. [PMID: 34604660 PMCID: PMC8482508 DOI: 10.1021/acsomega.1c03627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Ludwigia stolonifera (Guill. & Perr.) P.H.Raven belonging to the family Onagraceae is an important aquatic herbal plant of economic importance in water bioremediation. We explored the compositional heterogeneity in the aroma profile of L. stolonifera aerial parts and roots. Volatile profiling was employed for the first time using volatile solvent extraction (VSE-GC-MS/MS) of both aerial parts and roots. A total of 85 volatiles were identified belonging to eight classes, viz., aliphatic, aromatic, and oxygenated hydrocarbons, monoterpenes, diterpenes, alcohols, acids/esters, and sterols. Aliphatic and aromatic hydrocarbons were found to be the most abundant metabolite groups in both aerial parts and roots. Furthermore, antioxidant and metal chelation activities of aerial parts and roots were investigated, revealing a potent activity as an antioxidant and high metal chelation capacity for heavy metals.
Collapse
Affiliation(s)
- Mostafa H. Baky
- Department
of Pharmacognosy, Faculty of Pharmacy, Egyptian
Russian University, Badr City 11829, Cairo, Egypt
| | - Enas M. Shawky
- Department
of Pharmacognosy, Faculty of Pharmacy, Egyptian
Russian University, Badr City 11829, Cairo, Egypt
| | - Mohamed R. Elgindi
- Department
of Pharmacognosy, Faculty of Pharmacy, Helwan
University, Cairo 11795, Egypt
| | - Haitham A. Ibrahim
- Department
of Pharmacognosy, Faculty of Pharmacy, Helwan
University, Cairo 11795, Egypt
| |
Collapse
|
10
|
Ribeiro VP, Arruda C, Aldana-Mejia JA, Bastos JK, Tripathi SK, Khan SI, Khan IA, Ali Z. Phytochemical, Antiplasmodial, Cytotoxic and Antimicrobial Evaluation of a Southeast Brazilian Brown Propolis Produced by Apis mellifera Bees. Chem Biodivers 2021; 18:e2100288. [PMID: 34227213 DOI: 10.1002/cbdv.202100288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Seven phenolic compounds (ferulic acid, caffeic acid, 4-methoxycinnamic acid, 3,4-dimethoxycinnamic acid, 3-hydroxy-4-methoxybenzaldehyde, 3-methoxy-4-hydroxypropiophenone and 1-O,2-O-digalloyl-6-O-trans-p-coumaroyl-β-D-glucopyranoside), a flavanonol (7-O-methylaromadendrin), two lignans (pinoresinol and matairesinol) and six diterpenic acids/alcohol (19-acetoxy-13-hydroxyabda-8(17),14-diene, totarol, 7-oxodehydroabietic acid, dehydroabietic acid, communic acid and isopimaric acid) were isolated from the hydroalcoholic extract of a Brazilian Brown Propolis and characterized by NMR spectral data analysis. The volatile fraction of brown propolis was characterized by CG-MS, composed mainly of monoterpenes and sesquiterpenes, being the major α-pinene (18.4 %) and β-pinene (10.3 %). This propolis chemical profile indicates that Pinus spp., Eucalyptus spp. and Araucaria angustifolia might be its primary plants source. The brown propolis displayed significant activity against Plasmodium falciparum D6 and W2 strains with IC50 of 5.3 and 9.7 μg/mL, respectively. The volatile fraction was also active with IC50 of 22.5 and 41.8 μg/mL, respectively. Among the compounds, 1-O,2-O-digalloyl-6-O-trans-p-coumaroyl-β-D-glucopyranoside showed IC50 of 3.1 and 1.0 μg/mL against D6 and W2 strains, respectively, while communic acid showed an IC50 of 4.0 μg/mL against W2 strain. Cytotoxicity was determined on four tumor cell lines (SK-MEL, KB, BT-549, and SK-OV-3) and two normal renal cell lines (LLC-PK1 and VERO). Matairesinol, 7-O-methylaromadendrin, and isopimaric acid showed an IC50 range of 1.8-0.78 μg/mL, 7.3-100 μg/mL, and 17-18 μg/mL, respectively, against the tumor cell lines but they were not cytotoxic against normal cell lines. The crude extract of brown propolis displayed antimicrobial activity against C. neoformans, methicillin-resistant Staphylococcus aureus, and P. aeruginosa at 29.9 μg/mL, 178.9 μg/mL, and 160.7 μg/mL, respectively. The volatile fraction inhibited the growth of C. neoformans at 53.0 μg/mL. The compounds 3-hydroxy-4-methoxybenzaldehyde, 3-methoxy-4-hydroxypropiophenone and 7-oxodehydroabietic acid were active against C. neoformans, and caffeic and communic acids were active against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, Ribeirão Preto, 14040-930, Brazil
| | - Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, Ribeirão Preto, 14040-930, Brazil
| | - Jennyfer Andrea Aldana-Mejia
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, Ribeirão Preto, 14040-930, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, Ribeirão Preto, 14040-930, Brazil
| | - Siddharth K Tripathi
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Mississippi, 38677, USA
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Mississippi, 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Mississippi, 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Mississippi, 38677, USA
| |
Collapse
|
11
|
Santos MFC, Oliveira LC, Ribeiro VP, Soares MG, Morae GDOI, Sartori AGDO, Rosalen PL, Bastos JK, de Alencar SM, Veneziani RCS, Ambrósio SR. Isolation of diterpenes from Araucaria sp Brazilian brown propolis and development of a validated high-performance liquid chromatography method for its analysis. J Sep Sci 2021; 44:3089-3097. [PMID: 34169651 DOI: 10.1002/jssc.202100374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023]
Abstract
Propolis comprises a complex resinous product composed of plant's parts or exudates, pollen, bee wax, and enzymes. Brazilian brown propolis from Araucaria sp displays several biological activities. Considering the lack of validated analytical methods for its analysis, we are reporting the development of a validated high-performance liquid chromatography with photodiode array detector method to analyze Araucaria brown propolis. The crude propolis were extracted and chromatographed, furnishing six main diterpenes. The isolated standards were used to draw the analytical curves, allowing the studies of selectivity, precision, accuracy, recovery, robustness, the determination of limits of detection and limits of quantification. The mobile phase consisted of 0.1% acetic acid in water and acetonitrile, using an octadecylsilane column, 1 mL/min flow rate and detection at 200 or 241 nm. Relative standard deviation values obtained for intra-day and inter-day precision were lower than 4% for all diterpenes. From the five parameters for robustness, wavelength detection and flow rate were the critical ones. Limits of detection and quantification ranged from 0.808 to 10.359 μg/mL and from 2.448 to 31.392 μg/mL, respectively. The recoveries were between 105.03 and 108.13%, with relative standard deviation values around 5.0%. The developed method is precise, sensitive, and reliable for analyzing Araucaria brown propolis.
Collapse
Affiliation(s)
| | - Larissa Costa Oliveira
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marisi Gomes Soares
- Chemistry Institute, Federal University of Alfenas - UNIFAL-MG, Alfenas-MG, Brazil
| | | | - Alan Giovanini de Oliveira Sartori
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | | | - Sérgio Ricardo Ambrósio
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| |
Collapse
|
12
|
Ribeiro VP, Símaro GV, Mejia JAA, Arruda C, Bastos JK. Anti-inflammatory and Antinociceptive Activities of the Hydroalcoholic Extract and the Volatile Fraction of Southeastern Brazilian Brown Propolis. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s43450-020-00122-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|