1
|
Nenadić I, Meller T, Evermann U, Pfarr JK, Federspiel A, Walther S, Grezellschak S, Abu-Akel A. Modelling the overlap and divergence of autistic and schizotypal traits on hippocampal subfield volumes and regional cerebral blood flow. Mol Psychiatry 2024; 29:74-84. [PMID: 37891246 PMCID: PMC11078729 DOI: 10.1038/s41380-023-02302-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Psychiatric disorders show high co-morbidity, including co-morbid expressions of subclinical psychopathology across multiple disease spectra. Given the limitations of classical case-control designs in elucidating this overlap, new approaches are needed to identify biological underpinnings of spectra and their interaction. We assessed autistic-like traits (using the Autism Quotient, AQ) and schizotypy - as models of subclinical expressions of disease phenotypes and examined their association with volumes and regional cerebral blood flow (rCBF) of anterior, mid- and posterior hippocampus segments from structural MRI scans in 318 and arterial spin labelling (ASL) in 346 nonclinical subjects, which overlapped with the structural imaging sample (N = 298). We demonstrate significant interactive effects of positive schizotypy and AQ social skills as well as of positive schizotypy and AQ imagination on hippocampal subfield volume variation. Moreover, we show that AQ attention switching modulated hippocampal head rCBF, while positive schizotypy by AQ attention to detail interactions modulated hippocampal tail rCBF. In addition, we show significant correlation of hippocampal volume and rCBF in both region-of-interest and voxel-wise analyses, which were robust after removal of variance related to schizotypy and autistic traits. These findings provide empirical evidence for both the modulation of hippocampal subfield structure and function through subclinical traits, and in particular how only the interaction of phenotype facets leads to significant reductions or variations in these parameters. This makes a case for considering the synergistic impact of different (subclinical) disease spectra on transdiagnostic biological parameters in psychiatry.
Collapse
Affiliation(s)
- Igor Nenadić
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany.
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.
- Marburg University Hospital - UKGM, Marburg, Germany.
| | - Tina Meller
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Ulrika Evermann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Julia-Katharina Pfarr
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sarah Grezellschak
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
- Marburg University Hospital - UKGM, Marburg, Germany
| | - Ahmad Abu-Akel
- School of Psychological Sciences, University of Haifa, Mount Carmel, Haifa, Israel
- The Haifa Brain and Behavior Hub, University of Haifa, Mount Carmel, Haifa, Israel
| |
Collapse
|
2
|
West GL, Patai ZE, Coutrot A, Hornberger M, Bohbot VD, Spiers HJ. Landmark-dependent Navigation Strategy Declines across the Human Life-Span: Evidence from Over 37,000 Participants. J Cogn Neurosci 2023; 35:452-467. [PMID: 36603038 DOI: 10.1162/jocn_a_01956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Humans show a remarkable capacity to navigate various environments using different navigation strategies, and we know that strategy changes across the life span. However, this observation has been based on studies of small sample sizes. To this end, we used a mobile app-based video game (Sea Hero Quest) to test virtual navigation strategies and memory performance within a distinct radial arm maze level in over 37,000 participants. Players were presented with six pathways (three open and three closed) and were required to navigate to the three open pathways to collect a target. Next, all six pathways were made available and the player was required to visit the pathways that were previously unavailable. Both reference memory and working memory errors were calculated. Crucially, at the end of the level, the player was asked a multiple-choice question about how they found the targets (i.e., a counting-dependent strategy vs. a landmark-dependent strategy). As predicted from previous laboratory studies, we found the use of landmarks declined linearly with age. Those using landmark-based strategies also performed better on reference memory than those using a counting-based strategy. These results extend previous observations in the laboratory showing a decreased use of landmark-dependent strategies with age.
Collapse
Affiliation(s)
| | - Zita Eva Patai
- University College London, United Kingdom.,King's College London, United Kingdom
| | | | | | | | | |
Collapse
|
3
|
West GL, Konishi K, MacDonald K, Ni A, Joober R, Bohbot VD. The BDNF val66met polymorphism is associated with decreased use of landmarks and decreased fMRI activity in the hippocampus during virtual navigation. Eur J Neurosci 2021; 54:6406-6421. [PMID: 34467592 DOI: 10.1111/ejn.15431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022]
Abstract
People can navigate in a new environment using multiple strategies dependent on different memory systems. A series of studies have dissociated between hippocampus-dependent 'spatial' navigation and habit-based 'response' learning mediated by the caudate nucleus. The val66met polymorphism of the brain-derived neurotrophic factor (BDNF) gene leads to decreased secretion of BDNF in the brain, including the hippocampus. Here, we aim to investigate the role of the BDNF val66met polymorphism on virtual navigation behaviour and brain activity in healthy older adults. A total of 139 healthy older adult participants (mean age = 65.8 ± 4.4 years) were tested in this study. Blood samples were collected, and BDNF val66met genotyping was performed. Participants were divided into two genotype groups: val homozygotes and met carriers. Participants were tested on virtual dual-solution navigation tasks in which they could use either a hippocampus-dependent spatial strategy or a caudate nucleus-dependent response strategy to solve the task. A subset of the participants (n = 66) were then scanned in a 3T functional magnetic resonance imaging (fMRI) scanner while engaging in another dual-solution navigation task. BDNF val/val individuals and met carriers did not differ in learning performance. However, the two BDNF groups differed in learning strategy. BDNF val/val individuals relied more on landmarks to remember target locations (i.e., increased use of flexible spatial learning), while met carriers relied more on sequences and patterns to remember target locations (i.e., increased use of inflexible response learning). Additionally, BDNF val/val individuals had more fMRI activity in the hippocampus compared with BDNF met carriers during performance on the navigation task. This is the first study to show in older adults that BDNF met carriers use alternate learning strategies from val/val individuals and to identify differential brain activation of this behavioural difference between the two groups.
Collapse
Affiliation(s)
- Greg L West
- Department of Psychology, University of Montreal, Montréal, Quebec, Canada
| | - Kyoko Konishi
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | - Kathleen MacDonald
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | - Anjie Ni
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | - Ridha Joober
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | - Veronique D Bohbot
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| |
Collapse
|
4
|
Konečná B, Radošinská J, Keményová P, Repiská G. Detection of disease-associated microRNAs - application for autism spectrum disorders. Rev Neurosci 2020; 31:757-769. [PMID: 32813679 DOI: 10.1515/revneuro-2020-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorders (ASD) diagnostic procedure still lacks a uniform biological marker. This review gathers the information on microRNAs (miRNAs) specifically as a possible source of biomarkers of ASD. Extracellular vesicles, and their subset of exosomes, are believed to be a tool of cell-to-cell communication, and they are increasingly considered to be carriers of such a marker. The interest in studying miRNAs in extracellular vesicles grows in all fields of study and therefore should not be omitted in the field of neurodevelopmental disorders. The summary of miRNAs associated with brain cells and ASD either studied directly in the tissue or biofluids are gathered in this review. The heterogeneity in findings from different studies points out the fact that unified methods should be established, beginning with the determination of the accurate patient and control groups, through to sample collection, processing, and storage conditions. This review, based on the available literature, proposes the standardized approach to obtain the results that would not be affected by technical factors. Nowadays, the method of high-throughput sequencing seems to be the most optimal to analyze miRNAs. This should be followed by the uniformed bioinformatics procedure to avoid misvalidation. At the end, the proper validation of the obtained results is needed. With such an approach as is described in this review, it would be possible to obtain a reliable biomarker that would characterize the presence of ASD.
Collapse
Affiliation(s)
- Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Jana Radošinská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Petra Keményová
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| | - Gabriela Repiská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| |
Collapse
|