1
|
Rhodes N, Sato J, Safar K, Amorim K, Taylor MJ, Brookes MJ. Paediatric magnetoencephalography and its role in neurodevelopmental disorders. Br J Radiol 2024; 97:1591-1601. [PMID: 38976633 PMCID: PMC11417392 DOI: 10.1093/bjr/tqae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that assesses neurophysiology through the detection of the magnetic fields generated by neural currents. In this way, it is sensitive to brain activity, both in individual regions and brain-wide networks. Conventional MEG systems employ an array of sensors that must be cryogenically cooled to low temperature, in a rigid one-size-fits-all helmet. Systems are typically designed to fit adults and are therefore challenging to use for paediatric measurements. Despite this, MEG has been employed successfully in research to investigate neurodevelopmental disorders, and clinically for presurgical planning for paediatric epilepsy. Here, we review the applications of MEG in children, specifically focussing on autism spectrum disorder and attention-deficit hyperactivity disorder. Our review demonstrates the significance of MEG in furthering our understanding of these neurodevelopmental disorders, while also highlighting the limitations of current instrumentation. We also consider the future of paediatric MEG, with a focus on newly developed instrumentation based on optically pumped magnetometers (OPM-MEG). We provide a brief overview of the development of OPM-MEG systems, and how this new technology might enable investigation of brain function in very young children and infants.
Collapse
Affiliation(s)
- Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2QX, United Kingdom
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie Sato
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kristina Safar
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kaela Amorim
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Margot J Taylor
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Psychology, University of Toronto, Toronto, ON M5S 2E5, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2QX, United Kingdom
- Cerca Magnetics Limited, Nottingham NG7 1LD, United Kingdom
| |
Collapse
|
2
|
Shan J, Gu Y, Zhang J, Hu X, Wu H, Yuan T, Zhao D. A scoping review of physiological biomarkers in autism. Front Neurosci 2023; 17:1269880. [PMID: 37746140 PMCID: PMC10512710 DOI: 10.3389/fnins.2023.1269880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by pervasive deficits in social interaction, communication impairments, and the presence of restricted and repetitive behaviors. This complex disorder is a significant public health concern due to its escalating incidence and detrimental impact on quality of life. Currently, extensive investigations are underway to identify prospective susceptibility or predictive biomarkers, employing a physiological biomarker-based framework. However, knowledge regarding physiological biomarkers in relation to Autism is sparse. We performed a scoping review to explore putative changes in physiological activities associated with behaviors in individuals with Autism. We identified studies published between January 2000 and June 2023 from online databases, and searched keywords included electroencephalography (EEG), magnetoencephalography (MEG), electrodermal activity markers (EDA), eye-tracking markers. We specifically detected social-related symptoms such as impaired social communication in ASD patients. Our results indicated that the EEG/ERP N170 signal has undergone the most rigorous testing as a potential biomarker, showing promise in identifying subgroups within ASD and displaying potential as an indicator of treatment response. By gathering current data from various physiological biomarkers, we can obtain a comprehensive understanding of the physiological profiles of individuals with ASD, offering potential for subgrouping and targeted intervention strategies.
Collapse
Affiliation(s)
- Jiatong Shan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Arts and Sciences, New York University Shanghai, Shanghai, China
| | - Yunhao Gu
- Graduate School of Education, University of Pennsylvania, Philadelphia, PA, United States
| | - Jie Zhang
- Department of Neurology, Institute of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Haiyan Wu
- Center for Cognitive and Brain Sciences and Department of Psychology, Macau, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|