1
|
Do HD, Allison JJ, Nguyen HL, Phung HN, Tran CD, Le GM, Nguyen TT. Applying machine learning in screening for Down Syndrome in both trimesters for diverse healthcare scenarios. Heliyon 2024; 10:e34476. [PMID: 39144940 PMCID: PMC11320142 DOI: 10.1016/j.heliyon.2024.e34476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
Background This paper describes the development of low-cost, effective, non-invasive machine learning-based prediction models for Down Syndrome in the first two trimesters of pregnancy in Vietnam. These models are adaptable to different situations with limited screening capacities at community-based healthcare facilities. Method Ultrasound and biochemical testing alone and in combination, from both trimesters were employed to build prediction models based on k-Nearest Neighbor, Support Vector Machine, Random Forest, and Extreme Gradient Boosting algorithms. Results A total of 7,076 pregnant women from a single site in Northern Vietnam were included, and 1,035 had a fetus with Down Syndrome. Combined ultrasound and biochemical testing were required to achieve the highest accuracy in trimester 2, while models based only on biochemical testing performed as well as models based on combined testing during trimester 1. In trimester 1, Extreme Gradient Boosting produced the best model with 94% accuracy and 88% AUC, while Support Vector Machine produced the best model in trimester 2 with 89% accuracy and 84% AUC. Conclusions This study explored a range of machine learning models under different testing scenarios. Findings point to the potential feasibility of national screening, especially in settings without enough equipment and specialists, after additional model validation and fine tuning is performed.
Collapse
Affiliation(s)
- Huy D. Do
- Hanoi Medical University, Hanoi, Viet Nam
| | | | | | - Hai N. Phung
- Vietnam Academy of Military Science and Technology, Hanoi, Viet Nam
| | - Cuong D. Tran
- National Hospital of Obstetrics and Gynecology, Hanoi, Viet Nam
| | | | | |
Collapse
|
2
|
Alldred SK, Takwoingi Y, Guo B, Pennant M, Deeks JJ, Neilson JP, Alfirevic Z. First trimester ultrasound tests alone or in combination with first trimester serum tests for Down's syndrome screening. Cochrane Database Syst Rev 2017; 3:CD012600. [PMID: 28295158 PMCID: PMC6464518 DOI: 10.1002/14651858.cd012600] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Down's syndrome occurs when a person has three, rather than two copies of chromosome 21; or the specific area of chromosome 21 implicated in causing Down's syndrome. It is the commonest congenital cause of mental disability and also leads to numerous metabolic and structural problems. It can be life-threatening, or lead to considerable ill health, although some individuals have only mild problems and can lead relatively normal lives. Having a baby with Down's syndrome is likely to have a significant impact on family life.Non-invasive screening based on biochemical analysis of maternal serum or urine, or fetal ultrasound measurements, allows estimates of the risk of a pregnancy being affected and provides information to guide decisions about definitive testing.Before agreeing to screening tests, parents need to be fully informed about the risks, benefits and possible consequences of such a test. This includes subsequent choices for further tests they may face, and the implications of both false positive and false negative screening tests (i.e. invasive diagnostic testing, and the possibility that a miscarried fetus may be chromosomally normal). The decisions that may be faced by expectant parents inevitably engender a high level of anxiety at all stages of the screening process, and the outcomes of screening can be associated with considerable physical and psychological morbidity. No screening test can predict the severity of problems a person with Down's syndrome will have. OBJECTIVES To estimate and compare the accuracy of first trimester ultrasound markers alone, and in combination with first trimester serum tests for the detection of Down's syndrome. SEARCH METHODS We carried out extensive literature searches including MEDLINE (1980 to 25 August 2011), Embase (1980 to 25 August 2011), BIOSIS via EDINA (1985 to 25 August 2011), CINAHL via OVID (1982 to 25 August 2011), and The Database of Abstracts of Reviews of Effects (the Cochrane Library 2011, Issue 7). We checked reference lists and published review articles for additional potentially relevant studies. SELECTION CRITERIA Studies evaluating tests of first trimester ultrasound screening, alone or in combination with first trimester serum tests (up to 14 weeks' gestation) for Down's syndrome, compared with a reference standard, either chromosomal verification or macroscopic postnatal inspection. DATA COLLECTION AND ANALYSIS Data were extracted as test positive/test negative results for Down's and non-Down's pregnancies allowing estimation of detection rates (sensitivity) and false positive rates (1-specificity). We performed quality assessment according to QUADAS criteria. We used hierarchical summary ROC meta-analytical methods to analyse test performance and compare test accuracy. Analysis of studies allowing direct comparison between tests was undertaken. We investigated the impact of maternal age on test performance in subgroup analyses. MAIN RESULTS We included 126 studies (152 publications) involving 1,604,040 fetuses (including 8454 Down's syndrome cases). Studies were generally good quality, although differential verification was common with invasive testing of only high-risk pregnancies. Sixty test combinations were evaluated formed from combinations of 11 different ultrasound markers (nuchal translucency (NT), nasal bone, ductus venosus Doppler, maxillary bone length, fetal heart rate, aberrant right subclavian artery, frontomaxillary facial angle, presence of mitral gap, tricuspid regurgitation, tricuspid blood flow and iliac angle 90 degrees); 12 serum tests (inhibin A, alpha-fetoprotein (AFP), free beta human chorionic gonadotrophin (ßhCG), total hCG, pregnancy-associated plasma protein A (PAPP-A), unconjugated oestriol (uE3), disintegrin and metalloprotease 12 (ADAM 12), placental growth factor (PlGF), placental growth hormone (PGH), invasive trophoblast antigen (ITA) (synonymous with hyperglycosylated hCG), growth hormone binding protein (GHBP) and placental protein 13 (PP13)); and maternal age. The most frequently evaluated serum markers in combination with ultrasound markers were PAPP-A and free ßhCG.Comparisons of the 10 most frequently evaluated test strategies showed that a combined NT, PAPP-A, free ßhCG and maternal age test strategy significantly outperformed ultrasound markers alone (with or without maternal age) except nasal bone, detecting about nine out of every 10 Down's syndrome pregnancies at a 5% false positive rate (FPR). In both direct and indirect comparisons, the combined NT, PAPP-A, free ßhCG and maternal age test strategy showed superior diagnostic accuracy to an NT and maternal age test strategy (P < 0.0001). Based on the indirect comparison of all available studies for the two tests, the sensitivity (95% confidence interval) estimated at a 5% FPR for the combined NT, PAPP-A, free ßhCG and maternal age test strategy (69 studies; 1,173,853 fetuses including 6010 with Down's syndrome) was 87% (86 to 89) and for the NT and maternal age test strategy (50 studies; 530,874 fetuses including 2701 Down's syndrome pregnancies) was 71% (66 to 75). Combinations of NT with other ultrasound markers, PAPP-A and free ßhCG were evaluated in one or two studies and showed sensitivities of more than 90% and specificities of more than 95%.High-risk populations (defined before screening was done, mainly due to advanced maternal age of 35 years or more, or previous pregnancies affected with Down's syndrome) showed lower detection rates compared to routine screening populations at a 5% FPR. Women who miscarried in the over 35 group were more likely to have been offered an invasive test to verify a negative screening results, whereas those under 35 were usually not offered invasive testing for a negative screening result. Pregnancy loss in women under 35 therefore leads to under-ascertainment of screening results, potentially missing a proportion of affected pregnancies and affecting test sensitivity. Conversely, for the NT, PAPP-A, free ßhCG and maternal age test strategy, detection rates and false positive rates increased with maternal age in the five studies that provided data separately for the subset of women aged 35 years or more. AUTHORS' CONCLUSIONS Test strategies that combine ultrasound markers with serum markers, especially PAPP-A and free ßhCG, and maternal age were significantly better than those involving only ultrasound markers (with or without maternal age) except nasal bone. They detect about nine out of 10 Down's affected pregnancies for a fixed 5% FPR. Although the absence of nasal bone appeared to have a high diagnostic accuracy, only five out of 10 affected Down's pregnancies were detected at a 1% FPR.
Collapse
Affiliation(s)
- S Kate Alldred
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchEdgbastonBirminghamUKB15 2TT
| | - Boliang Guo
- University of NottinghamSchool of MedicineCLAHRC, C floor, IHM, Jubilee CampusUniversity of Nottingham, Triumph RoadNottinghamEast MidlandsUKNG7 2TU
| | - Mary Pennant
- Cambridgeshire County CouncilPublic Health DirectorateCambridgeUK
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchEdgbastonBirminghamUKB15 2TT
| | | | - Zarko Alfirevic
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | | |
Collapse
|
3
|
Alldred SK, Takwoingi Y, Guo B, Pennant M, Deeks JJ, Neilson JP, Alfirevic Z. First and second trimester serum tests with and without first trimester ultrasound tests for Down's syndrome screening. Cochrane Database Syst Rev 2017; 3:CD012599. [PMID: 28295159 PMCID: PMC6464364 DOI: 10.1002/14651858.cd012599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Down's syndrome occurs when a person has three copies of chromosome 21 (or the specific area of chromosome 21 implicated in causing Down's syndrome) rather than two. It is the commonest congenital cause of mental disability. Non-invasive screening based on biochemical analysis of maternal serum or urine, or fetal ultrasound measurements, allows estimates of the risk of a pregnancy being affected and provides information to guide decisions about definitive testing. Before agreeing to screening tests, parents need to be fully informed about the risks, benefits and possible consequences of such a test. This includes subsequent choices for further tests they may face, and the implications of both false positive (i.e. invasive diagnostic testing, and the possibility that a miscarried fetus may be chromosomally normal) and false negative screening tests (i.e. a fetus with Down's syndrome will be missed). The decisions that may be faced by expectant parents inevitably engender a high level of anxiety at all stages of the screening process, and the outcomes of screening can be associated with considerable physical and psychological morbidity. No screening test can predict the severity of problems a person with Down's syndrome will have. OBJECTIVES To estimate and compare the accuracy of first and second trimester serum markers with and without first trimester ultrasound markers for the detection of Down's syndrome in the antenatal period, as combinations of markers. SEARCH METHODS We conducted a sensitive and comprehensive literature search of MEDLINE (1980 to 25 August 2011), Embase (1980 to 25 August 2011), BIOSIS via EDINA (1985 to 25 August 2011), CINAHL via OVID (1982 to 25 August 2011), the Database of Abstracts of Reviews of Effectiveness (the Cochrane Library 25 August 2011), MEDION (25 August 2011), the Database of Systematic Reviews and Meta-Analyses in Laboratory Medicine (25 August 2011), the National Research Register (Archived 2007), and Health Services Research Projects in Progress database (25 August 2011). We did not apply a diagnostic test search filter. We did forward citation searching in ISI citation indices, Google Scholar and PubMed 'related articles'. We also searched reference lists of retrieved articles SELECTION CRITERIA: Studies evaluating tests of combining first and second trimester maternal serum markers in women up to 24 weeks of gestation for Down's syndrome, with or without first trimester ultrasound markers, compared with a reference standard, either chromosomal verification or macroscopic postnatal inspection. DATA COLLECTION AND ANALYSIS Data were extracted as test positive/test negative results for Down's and non-Down's pregnancies allowing estimation of detection rates (sensitivity) and false positive rates (1-specificity). We performed quality assessment according to QUADAS criteria. We used hierarchical summary ROC meta-analytical methods to analyse test performance and compare test accuracy. Analysis of studies allowing direct comparison between tests was undertaken. We investigated the impact of maternal age on test performance in subgroup analyses. MAIN RESULTS Twenty-two studies (reported in 25 publications) involving 228,615 pregnancies (including 1067 with Down's syndrome) were included. Studies were generally high quality, although differential verification was common with invasive testing of only high risk pregnancies. Ten studies made direct comparisons between tests. Thirty-two different test combinations were evaluated formed from combinations of eight different tests and maternal age; first trimester nuchal translucency (NT) and the serum markers AFP, uE3, total hCG, free βhCG, Inhibin A, PAPP-A and ADAM 12. We looked at tests combining first and second trimester markers with or without ultrasound as complete tests, and we also examined stepwise and contingent strategies.Meta-analysis of the six most frequently evaluated test combinations showed that a test strategy involving maternal age and a combination of first trimester NT and PAPP-A, and second trimester total hCG, uE3, AFP and Inhibin A significantly outperformed other test combinations that involved only one serum marker or NT in the first trimester, detecting about nine out of every 10 Down's syndrome pregnancies at a 5% false positive rate. However, the evidence was limited in terms of the number of studies evaluating this strategy, and we therefore cannot recommend one single screening strategy. AUTHORS' CONCLUSIONS Tests involving first trimester ultrasound with first and second trimester serum markers in combination with maternal age are significantly better than those without ultrasound, or those evaluating first trimester ultrasound in combination with second trimester serum markers, without first trimester serum markers. We cannot make recommendations about a specific strategy on the basis of the small number of studies available.
Collapse
Affiliation(s)
- S Kate Alldred
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchEdgbastonBirminghamUKB15 2TT
| | - Boliang Guo
- University of NottinghamSchool of MedicineCLAHRC, C floor, IHM, Jubilee CampusUniversity of Nottingham, Triumph RoadNottinghamEast MidlandsUKNG7 2TU
| | - Mary Pennant
- Cambridgeshire County CouncilPublic Health DirectorateCambridgeUK
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchEdgbastonBirminghamUKB15 2TT
| | | | - Zarko Alfirevic
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | | |
Collapse
|
4
|
Mesdaghi-nia E, Behrashi M, Saeidi A, Abedzadeh Kalahroodi M. Association between PAPP-A and placental thickness. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.6.421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
5
|
Alldred SK, Guo B, Takwoingi Y, Pennant M, Wisniewski S, Deeks JJ, Neilson JP, Alfirevic Z. Urine tests for Down's syndrome screening. Cochrane Database Syst Rev 2015; 2015:CD011984. [PMID: 26662198 PMCID: PMC7081127 DOI: 10.1002/14651858.cd011984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Down's syndrome occurs when a person has three copies of chromosome 21, or the specific area of chromosome 21 implicated in causing Down's syndrome, rather than two. It is the commonest congenital cause of mental disability and also leads to numerous metabolic and structural problems. It can be life-threatening, or lead to considerable ill health, although some individuals have only mild problems and can lead relatively normal lives. Having a baby with Down's syndrome is likely to have a significant impact on family life. The risk of a Down's syndrome affected pregnancy increases with advancing maternal age.Noninvasive screening based on biochemical analysis of maternal serum or urine, or fetal ultrasound measurements, allows estimates of the risk of a pregnancy being affected and provides information to guide decisions about definitive testing. Before agreeing to screening tests, parents need to be fully informed about the risks, benefits and possible consequences of such a test. This includes subsequent choices for further tests they may face, and the implications of both false positive and false negative screening tests (i.e. invasive diagnostic testing, and the possibility that a miscarried fetus may be chromosomally normal). The decisions that may be faced by expectant parents inevitably engender a high level of anxiety at all stages of the screening process, and the outcomes of screening can be associated with considerable physical and psychological morbidity. No screening test can predict the severity of problems a person with Down's syndrome will have. OBJECTIVES To estimate and compare the accuracy of first and second trimester urine markers for the detection of Down's syndrome. SEARCH METHODS We carried out a sensitive and comprehensive literature search of MEDLINE (1980 to 25 August 2011), EMBASE (1980 to 25 August 2011), BIOSIS via EDINA (1985 to 25 August 2011), CINAHL via OVID (1982 to 25 August 2011), The Database of Abstracts of Reviews of Effectiveness (The Cochrane Library 2011, Issue 7), MEDION (25 August 2011), The Database of Systematic Reviews and Meta-Analyses in Laboratory Medicine (25 August 2011), The National Research Register (archived 2007), Health Services Research Projects in Progress database (25 August 2011). We studied reference lists and published review articles. SELECTION CRITERIA Studies evaluating tests of maternal urine in women up to 24 weeks of gestation for Down's syndrome, compared with a reference standard, either chromosomal verification or macroscopic postnatal inspection. DATA COLLECTION AND ANALYSIS We extracted data as test positive or test negative results for Down's and non-Down's pregnancies allowing estimation of detection rates (sensitivity) and false positive rates (1-specificity). We performed quality assessment according to QUADAS (Quality Assessment of Diagnostic Accuracy Studies) criteria. We used hierarchical summary ROC (receiver operating characteristic) meta-analytical methods to analyse test performance and compare test accuracy. We performed analysis of studies allowing direct comparison between tests. We investigated the impact of maternal age on test performance in subgroup analyses. MAIN RESULTS We included 19 studies involving 18,013 pregnancies (including 527 with Down's syndrome). Studies were generally of high quality, although differential verification was common with invasive testing of only high-risk pregnancies. Twenty-four test combinations were evaluated formed from combinations of the following seven different markers with and without maternal age: AFP (alpha-fetoprotein), ITA (invasive trophoblast antigen), ß-core fragment, free ßhCG (beta human chorionic gonadotrophin), total hCG, oestriol, gonadotropin peptide and various marker ratios. The strategies evaluated included three double tests and seven single tests in combination with maternal age, and one triple test, two double tests and 11 single tests without maternal age. Twelve of the 19 studies only evaluated the performance of a single test strategy while the remaining seven evaluated at least two test strategies. Two marker combinations were evaluated in more than four studies; second trimester ß-core fragment (six studies), and second trimester ß-core fragment with maternal age (five studies).In direct test comparisons, for a 5% false positive rate (FPR), the diagnostic accuracy of the double marker second trimester ß-core fragment and oestriol with maternal age test combination was significantly better (ratio of diagnostic odds ratio (RDOR): 2.2 (95% confidence interval (CI) 1.1 to 4.5), P = 0.02) (summary sensitivity of 73% (CI 57 to 85) at a cut-point of 5% FPR) than that of the single marker test strategy of second trimester ß-core fragment and maternal age (summary sensitivity of 56% (CI 45 to 66) at a cut-point of 5% FPR), but was not significantly better (RDOR: 1.5 (0.8 to 2.8), P = 0.21) than that of the second trimester ß-core fragment to oestriol ratio and maternal age test strategy (summary sensitivity of 71% (CI 51 to 86) at a cut-point of 5% FPR). AUTHORS' CONCLUSIONS Tests involving second trimester ß-core fragment and oestriol with maternal age are significantly more sensitive than the single marker second trimester ß-core fragment and maternal age, however, there were few studies. There is a paucity of evidence available to support the use of urine testing for Down's syndrome screening in clinical practice where alternatives are available.
Collapse
Affiliation(s)
- S Kate Alldred
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Boliang Guo
- University of NottinghamSchool of MedicineCLAHRC, C floor, IHM, Jubilee CampusUniversity of Nottingham, Triumph RoadNottinghamEast MidlandsUKNG7 2TU
| | - Yemisi Takwoingi
- University of BirminghamPublic Health, Epidemiology and BiostatisticsEdgbastonBirminghamUKB15 2TT
| | - Mary Pennant
- Cambridgeshire County CouncilPublic Health DirectorateCambridgeUK
| | - Susanna Wisniewski
- Cochrane Dementia and Cognitive Improvement Group, Oxford UniversityOxfordUK
| | - Jonathan J Deeks
- University of BirminghamPublic Health, Epidemiology and BiostatisticsEdgbastonBirminghamUKB15 2TT
| | - James P Neilson
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Zarko Alfirevic
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | | |
Collapse
|
6
|
Alldred SK, Takwoingi Y, Guo B, Pennant M, Deeks JJ, Neilson JP, Alfirevic Z. First trimester serum tests for Down's syndrome screening. Cochrane Database Syst Rev 2015; 2015:CD011975. [PMID: 26617074 PMCID: PMC6465076 DOI: 10.1002/14651858.cd011975] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Down's syndrome occurs when a person has three, rather than two copies of chromosome 21; or the specific area of chromosome 21 implicated in causing Down's syndrome. It is the commonest congenital cause of mental disability and also leads to numerous metabolic and structural problems. It can be life-threatening, or lead to considerable ill health, although some individuals have only mild problems and can lead relatively normal lives. Having a baby with Down's syndrome is likely to have a significant impact on family life.Noninvasive screening based on biochemical analysis of maternal serum or urine, or fetal ultrasound measurements, allows estimates of the risk of a pregnancy being affected and provides information to guide decisions about definitive testing. However, no test can predict the severity of problems a person with Down's syndrome will have. OBJECTIVES The aim of this review was to estimate and compare the accuracy of first trimester serum markers for the detection of Down's syndrome in the antenatal period, both as individual markers and as combinations of markers. Accuracy is described by the proportion of fetuses with Down's syndrome detected by screening before birth (sensitivity or detection rate) and the proportion of women with a low risk (normal) screening test result who subsequently had a baby unaffected by Down's syndrome (specificity). SEARCH METHODS We conducted a sensitive and comprehensive literature search of MEDLINE (1980 to 25 August 2011), Embase (1980 to 25 August 2011), BIOSIS via EDINA (1985 to 25 August 2011), CINAHL via OVID (1982 to 25 August 2011), The Database of Abstracts of Reviews of Effectiveness (The Cochrane Library 25 August 2011), MEDION (25 August 2011), The Database of Systematic Reviews and Meta-Analyses in Laboratory Medicine (25 August 2011), The National Research Register (Archived 2007), Health Services Research Projects in Progress database (25 August 2011). We did forward citation searching ISI citation indices, Google Scholar and PubMed 'related articles'. We did not apply a diagnostic test search filter. We also searched reference lists and published review articles. SELECTION CRITERIA We included studies in which all women from a given population had one or more index test(s) compared to a reference standard (either chromosomal verification or macroscopic postnatal inspection). Both consecutive series and diagnostic case-control study designs were included. Randomised trials where individuals were randomised to different screening strategies and all verified using a reference standard were also eligible for inclusion. Studies in which test strategies were compared head-to-head either in the same women, or between randomised groups were identified for inclusion in separate comparisons of test strategies. We excluded studies if they included less than five Down's syndrome cases, or more than 20% of participants were not followed up. DATA COLLECTION AND ANALYSIS We extracted data as test positive or test negative results for Down's and non-Down's pregnancies allowing estimation of detection rates (sensitivity) and false positive rates (1-specificity). We performed quality assessment according to QUADAS (Quality Assessment of Diagnostic Accuracy Studies) criteria. We used hierarchical summary ROC meta-analytical methods or random-effects logistic regression methods to analyse test performance and compare test accuracy as appropriate. Analyses of studies allowing direct and indirect comparisons between tests were undertaken. MAIN RESULTS We included 56 studies (reported in 68 publications) involving 204,759 pregnancies (including 2113 with Down's syndrome). Studies were generally of good quality, although differential verification was common with invasive testing of only high-risk pregnancies. We evaluated 78 test combinations formed from combinations of 18 different tests, with or without maternal age; ADAM12 (a disintegrin and metalloprotease), AFP (alpha-fetoprotein), inhibin, PAPP-A (pregnancy-associated plasma protein A, ITA (invasive trophoblast antigen), free βhCG (beta human chorionic gonadotrophin), PlGF (placental growth factor), SP1 (Schwangerschafts protein 1), total hCG, progesterone, uE3 (unconjugated oestriol), GHBP (growth hormone binding protein), PGH (placental growth hormone), hyperglycosylated hCG, ProMBP (proform of eosinophil major basic protein), hPL (human placental lactogen), (free αhCG, and free ßhCG to AFP ratio. Direct comparisons between two or more tests were made in 27 studies.Meta-analysis of the nine best performing or frequently evaluated test combinations showed that a test strategy involving maternal age and a double marker combination of PAPP-A and free ßhCG significantly outperformed the individual markers (with or without maternal age) detecting about seven out of every 10 Down's syndrome pregnancies at a 5% false positive rate (FPR). Limited evidence suggested that marker combinations involving PAPP-A may be more sensitive than those without PAPP-A. AUTHORS' CONCLUSIONS Tests involving two markers in combination with maternal age, specifically PAPP-A, free βhCG and maternal age are significantly better than those involving single markers with and without age. They detect seven out of 10 Down's affected pregnancies for a fixed 5% FPR. The addition of further markers (triple tests) has not been shown to be statistically superior; the studies included are small with limited power to detect a difference.The screening blood tests themselves have no adverse effects for the woman, over and above the risks of a routine blood test. However some women who have a 'high risk' screening test result, and are given amniocentesis or chorionic villus sampling (CVS) have a risk of miscarrying a baby unaffected by Down's. Parents will need to weigh up this risk when deciding whether or not to have an amniocentesis or CVS following a 'high risk' screening test result.
Collapse
Affiliation(s)
- S Kate Alldred
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Yemisi Takwoingi
- University of BirminghamPublic Health, Epidemiology and BiostatisticsEdgbastonBirminghamUKB15 2TT
| | - Boliang Guo
- University of NottinghamSchool of MedicineCLAHRC, C floor, IHM, Jubilee CampusUniversity of Nottingham, Triumph RoadNottinghamEast MidlandsUKNG7 2TU
| | - Mary Pennant
- Cambridgeshire County CouncilPublic Health DirectorateCambridgeUK
| | - Jonathan J Deeks
- University of BirminghamPublic Health, Epidemiology and BiostatisticsEdgbastonBirminghamUKB15 2TT
| | - James P Neilson
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Zarko Alfirevic
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | | |
Collapse
|
7
|
Tørring N, Petersen OB, Uldbjerg N. Ten Years of Experience with First-Trimester Screening for Fetal Aneuploidy Employing Biochemistry from Gestational Weeks 6+0 to 13+6. Fetal Diagn Ther 2014; 37:51-7. [DOI: 10.1159/000362665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/30/2014] [Indexed: 11/19/2022]
Abstract
Objectives: To validate the performance of first-trimester screening for fetal aneuploidy employing blood samples drawn in gestational weeks 6-13. Methods: Prospective combined first-trimester screening for fetal aneuploidy in Denmark was validated in two large datasets: (1) a dataset from the Central Denmark Region including 147,768 pregnancies from October 2003 to October 2013, and (2) a national dataset including 220,739 pregnancies from January 2008 to August 2011. Results: For trisomy 21, the weekly median multiple of the median (MoM) increased from 0.37 in week 6 to 0.70 in week 13 (pregnancy-associated plasma protein-A), and from 0.99 in week 6 to 2.68 in week 13 (free βhCG). The overall detection rate (DR) for fetal trisomy 21 was 91.2%. Employing blood samples from gestational week 9, the DR was 97% (p = 0.05). For fetal trisomy 18, trisomy 13 and triploidy, the overall DRs after first-trimester screening were 79.5, 86 and 85%. In the national dataset, the overall DR for trisomy 21 was 86.3% ranging from 89 (weeks 9 and 10) to 80% (weeks 12 and 13). Conclusion: The results from both datasets show that blood sampling in gestational weeks 9-10 is a robust and high-performance strategy, which can be applied for routine first-trimester screening in clinical practice.
Collapse
|
8
|
Alldred SK, Deeks JJ, Guo B, Neilson JP, Alfirevic Z. Second trimester serum tests for Down's Syndrome screening. Cochrane Database Syst Rev 2012; 2012:CD009925. [PMID: 22696388 PMCID: PMC7086392 DOI: 10.1002/14651858.cd009925] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Down's syndrome occurs when a person has three copies of chromosome 21 - or the specific area of chromosome 21 implicated in causing Down's syndrome - rather than two. It is the commonest congenital cause of mental retardation. Noninvasive screening based on biochemical analysis of maternal serum or urine, or fetal ultrasound measurements, allows estimates of the risk of a pregnancy being affected and provides information to guide decisions about definitive testing. OBJECTIVES To estimate and compare the accuracy of second trimester serum markers for the detection of Down's syndrome. SEARCH METHODS We carried out a sensitive and comprehensive literature search of MEDLINE (1980 to May 2007), EMBASE (1980 to 18 May 2007), BIOSIS via EDINA (1985 to 18 May 2007), CINAHL via OVID (1982 to 18 May 2007), The Database of Abstracts of Reviews of Effectiveness (The Cochrane Library 2007, Issue 1), MEDION (May 2007), The Database of Systematic Reviews and Meta-Analyses in Laboratory Medicine (May 2007), The National Research Register (May 2007), Health Services Research Projects in Progress database (May 2007). We studied reference lists and published review articles. SELECTION CRITERIA Studies evaluating tests of maternal serum in women at 14-24 weeks of gestation for Down's syndrome, compared with a reference standard, either chromosomal verification or macroscopic postnatal inspection. DATA COLLECTION AND ANALYSIS Data were extracted as test positive/test negative results for Down's and non-Down's pregnancies allowing estimation of detection rates (sensitivity) and false positive rates (1-specificity). We performed quality assessment according to QUADAS criteria. We used hierarchical summary ROC meta-analytical methods to analyse test performance and compare test accuracy. Analysis of studies allowing direct comparison between tests was undertaken. We investigated the impact of maternal age on test performance in subgroup analyses. MAIN RESULTS Fifty-nine studies involving 341,261 pregnancies (including 1,994 with Down's syndrome) were included. Studies were generally high quality, although differential verification was common with invasive testing of only high-risk pregnancies. Seventeen studies made direct comparisons between tests. Fifty-four test combinations were evaluated formed from combinations of 12 different tests and maternal age; alpha-fetoprotein (AFP), unconjugated oestriol (uE3), total human chorionic gonadotrophin (hCG), free beta human chorionic gonadotrophin (βhCG), free alpha human chorionic gonadotrophin (αhCG), Inhibin A, SP2, CA125, troponin, pregnancy-associated plasma protein A (PAPP-A), placental growth factor (PGF) and proform of eosinophil major basic protein (ProMBP).Meta-analysis of 12 best performing or frequently evaluated test combinations showed double and triple tests (involving AFP, uE3, total hCG, free βhCG) significantly outperform individual markers, detecting six to seven out of every 10 Down's syndrome pregnancies at a 5% false positive rate. Tests additionally involving inhibin performed best (eight out of every 10 Down's syndrome pregnancies) but were not shown to be significantly better than standard triple tests in direct comparisons. Significantly lower sensitivity occurred in women over the age of 35 years. Women who miscarried in the over 35 group were more likely to have been offered an invasive test to verify a negative screening results, whereas those under 35 were usually not offered invasive testing for a negative screening result. Pregnancy loss in women under 35 therefore leads to under ascertainment of screening results, potentially missing a proportion of affected pregnancies and affecting the accuracy of the sensitivity. AUTHORS' CONCLUSIONS Tests involving two or more markers in combination with maternal age are significantly more sensitive than those involving one marker. The value of combining four or more tests or including inhibin have not been proven to show statistically significant improvement. Further study is required to investigate reduced test performance in women aged over 35 and the impact of differential pregnancy loss on study findings.
Collapse
Affiliation(s)
- S Kate Alldred
- Department of Women’s and Children’s Health, The University of Liverpool, Liverpool, UK.
| | | | | | | | | |
Collapse
|
9
|
Proctor LK, Toal M, Keating S, Chitayat D, Okun N, Windrim RC, Smith GCS, Kingdom JCP. Placental size and the prediction of severe early-onset intrauterine growth restriction in women with low pregnancy-associated plasma protein-A. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2009; 34:274-282. [PMID: 19672838 DOI: 10.1002/uog.7308] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVES Screening studies for trisomy 21 demonstrate that low maternal serum pregnancy-associated plasma protein-A (PAPP-A) at 11-13 weeks' gestation is associated with stillbirth, intrauterine growth restriction (IUGR) and pre-eclampsia in chromosomally normal fetuses. However, the strength of these associations is too weak to justify screening for these placental insufficiency syndromes. Our objective was to evaluate placental size and uterine artery (UtA) Doppler imaging as second-stage screening tests for women with low PAPP-A. METHODS We prospectively studied 90 normal singleton pregnancies with first-trimester PAPP-A </= 0.30 multiples of the median. Maternal serum alpha-fetoprotein (AFP) at 15-18 weeks' gestation, and second-trimester placental size and UtA Doppler indices were assessed as predictors of pregnancy outcome. RESULTS The risks of IUGR, preterm delivery before 32 weeks' gestation and stillbirth were significantly associated with small placental size (relative risk (RR), 3.96; 95% CI, 2.21-5.98; RR, 3.96; 95% CI, 2.21-5.98; and RR, 6.44, 95% CI, 2.74-14.54, respectively) and elevated AFP (RR, 3.67; 95% CI, 1.78-7.71; RR, 2.48; 95% CI, 1.23-4.94; and RR, 5.14; 95% CI, 1.66-16.85, respectively), but not with abnormal UtA Doppler indices. The combination of elevated AFP and small placental size further increased the risk of IUGR (RR, 4.88; 95% CI, 2.88-5.31), delivery before 32 weeks' gestation (RR, 4.25; 95% CI, 2.38-4.98) and stillbirth (RR, 7.44; 95% CI, 3.04-3.75). CONCLUSIONS Small placental size and elevated AFP, but not UtA Doppler indices, identify women with low PAPP-A at high risk of IUGR, extreme preterm delivery and stillbirth. These additional screening tests may directly improve perinatal outcomes in women with low PAPP-A.
Collapse
Affiliation(s)
- L K Proctor
- Placenta Clinic, Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cirigliano V, Voglino G, Ordoñez E, Marongiu A, Paz Cañadas M, Ejarque M, Rueda L, Lloveras E, Fuster C, Adinolfi M. Rapid prenatal diagnosis of common chromosome aneuploidies by QF-PCR, results of 9 years of clinical experience. Prenat Diagn 2009; 29:40-9. [PMID: 19173345 DOI: 10.1002/pd.2192] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite being deliberately targeted to common chromosome aneuploidies, the rapid quantitative fluorescent polymerase chain reaction (QF-PCR) tests can detect the majority of chromosome abnormalities in prenatal diagnosis. The main advantages of this assay are low cost, speed and automation allowing large-scale application. METHODS We developed a QF-PCR test that was applied on 43 000 clinical samples reporting results in 24 h. Most common indications were biochemical risk (32%) and advanced maternal age (30%). Samples were also tested by cytogenetic analysis and the results compared. RESULTS Aneuploidies involving chromosomes 21, 18, 13, X and Y were detected with 100% specificity. Several cases of partial trisomies and mosaicism were also identified. Overall 95% of clinically relevant abnormalities were readily detected and termination of affected pregnancies could be performed without waiting for the cytogenetic results. CONCLUSIONS Our study supports the possibility of reducing the load of prenatal cytogenetic tests if the pregnancies are carefully monitored by non-invasive screening. In case of abnormal QF-PCR results, medical action can be taken within few hours from sampling. In cases of negative QF-PCR results, cytogenetic analyses might only be performed for fetuses with ultrasound abnormalities. In countries where large-scale cytogenetic tests are not available, QF-PCR may be used as the only prenatal diagnostic procedure.
Collapse
|
11
|
Kirkegaard I, Petersen OB, Uldbjerg N, Tørring N. Performance of first-trimester combined screening for trisomy 13 and 18 with the double test taken at a gestational age of 8 + 0 to 13 + 6. Prenat Diagn 2009; 29:582-7. [DOI: 10.1002/pd.2254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Spencer K, Cowans NJ, Uldbjerg N, Vereecken A, Tørring N. First trimester intact hCG as an early marker of trisomy 21: a promise unrecognised? Prenat Diagn 2008; 28:1156-9. [DOI: 10.1002/pd.2148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Speevak MD, Dolling J, Terespolsky D, Blumenthal A, Farrell SA. An algorithm for the prenatal detection of chromosome anomalies by QF-PCR and G-banded analysis. Prenat Diagn 2008; 28:1221-6. [DOI: 10.1002/pd.2159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Kirkegaard I, Petersen OB, Uldbjerg N, Tørring N. Improved performance of first-trimester combined screening for trisomy 21 with the double test taken before a gestational age of 10 weeks. Prenat Diagn 2008; 28:839-44. [DOI: 10.1002/pd.2057] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Spencer K, Cowans NJ, Uldbjerg N, Tørring N. First-trimester ADAM12s as early markers of trisomy 21: a promise still unfulfilled? Prenat Diagn 2008; 28:338-42. [PMID: 18382998 DOI: 10.1002/pd.1978] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Here we study the levels of ADAM12s prior to and after 10 weeks of gestation to establish further the effectiveness or otherwise of ADAM12s as an early screening marker. MATERIALS AND METHODS Samples collected as part of routine first-trimester screening were retrieved from storage at - 80 degrees C. In total, 55 samples from pregnancies with trisomy 21 were identified, 31 collected between the 6th and 9th weeks of gestation and 24 collected after the 10th week. A series of 567 gestational age-matched samples collected during the same period formed the control group. RESULTS The median, multiples of the median (MoM) ADAM12s, at a median gestation of 10.0 weeks was 0.66, which was significantly lower than in the controls (p = < 0.001) when compared by Mann-Whitney test. The median MoM in those cases (n = 31) collected prior to 10 weeks was 0.618 MoM at a median gestation of 9.1 weeks. In those collected prior to 9 weeks (n = 14) the median was 0.596 at a median gestation of 8.6 weeks. CONCLUSIONS The data from this study does not support data from a previous study showing ultra-low levels of ADAM12s in pregnancies affected by trisomy 21 prior to 10 weeks of gestation.
Collapse
Affiliation(s)
- Kevin Spencer
- Prenatal Screening Unit, Department of Clinical Biochemistry, King George Hospital, Barley Lane, Goodmayes, Essex IG3 8YB, UK.
| | | | | | | |
Collapse
|