1
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Grønbæk-Thygesen M, Hartmann-Petersen R. Cellular and molecular mechanisms of aspartoacylase and its role in Canavan disease. Cell Biosci 2024; 14:45. [PMID: 38582917 PMCID: PMC10998430 DOI: 10.1186/s13578-024-01224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Canavan disease is an autosomal recessive and lethal neurological disorder, characterized by the spongy degeneration of the white matter in the brain. The disease is caused by a deficiency of the cytosolic aspartoacylase (ASPA) enzyme, which catalyzes the hydrolysis of N-acetyl-aspartate (NAA), an abundant brain metabolite, into aspartate and acetate. On the physiological level, the mechanism of pathogenicity remains somewhat obscure, with multiple, not mutually exclusive, suggested hypotheses. At the molecular level, recent studies have shown that most disease linked ASPA gene variants lead to a structural destabilization and subsequent proteasomal degradation of the ASPA protein variants, and accordingly Canavan disease should in general be considered a protein misfolding disorder. Here, we comprehensively summarize the molecular and cell biology of ASPA, with a particular focus on disease-linked gene variants and the pathophysiology of Canavan disease. We highlight the importance of high-throughput technologies and computational prediction tools for making genotype-phenotype predictions as we await the results of ongoing trials with gene therapy for Canavan disease.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| |
Collapse
|
3
|
Das R. On Clustering of Juvenile Canavan disease in an Indian community due to population bottleneck and isolation: Genomic signatures of a founder event. Eur J Hum Genet 2023; 31:7-8. [PMID: 36316492 PMCID: PMC9822890 DOI: 10.1038/s41431-022-01221-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 01/08/2023] Open
Affiliation(s)
- Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
4
|
Amanat M, Nemeth CL, Fine AS, Leung DG, Fatemi A. Antisense Oligonucleotide Therapy for the Nervous System: From Bench to Bedside with Emphasis on Pediatric Neurology. Pharmaceutics 2022; 14:2389. [PMID: 36365206 PMCID: PMC9695718 DOI: 10.3390/pharmaceutics14112389] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 09/05/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are disease-modifying agents affecting protein-coding and noncoding ribonucleic acids. Depending on the chemical modification and the location of hybridization, ASOs are able to reduce the level of toxic proteins, increase the level of functional protein, or modify the structure of impaired protein to improve function. There are multiple challenges in delivering ASOs to their site of action. Chemical modifications in the phosphodiester bond, nucleotide sugar, and nucleobase can increase structural thermodynamic stability and prevent ASO degradation. Furthermore, different particles, including viral vectors, conjugated peptides, conjugated antibodies, and nanocarriers, may improve ASO delivery. To date, six ASOs have been approved by the US Food and Drug Administration (FDA) in three neurological disorders: spinal muscular atrophy, Duchenne muscular dystrophy, and polyneuropathy caused by hereditary transthyretin amyloidosis. Ongoing preclinical and clinical studies are assessing the safety and efficacy of ASOs in multiple genetic and acquired neurological conditions. The current review provides an update on underlying mechanisms, design, chemical modifications, and delivery of ASOs. The administration of FDA-approved ASOs in neurological disorders is described, and current evidence on the safety and efficacy of ASOs in other neurological conditions, including pediatric neurological disorders, is reviewed.
Collapse
Affiliation(s)
- Man Amanat
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christina L. Nemeth
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amena Smith Fine
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Doris G. Leung
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ali Fatemi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Wei H, Moffett JR, Amanat M, Fatemi A, Tsukamoto T, Namboodiri AM, Slusher BS. The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discov Today 2022; 27:2467-2483. [DOI: 10.1016/j.drudis.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
|
6
|
Barlow-Stewart K, Bardsley K, Elan E, Fleming J, Berman Y, Fleischer R, Recsei K, Goldberg D, Tucker J, Burnett L. Evaluating the model of offering expanded genetic carrier screening to high school students within the Sydney Jewish community. J Community Genet 2021; 13:121-131. [PMID: 34846685 PMCID: PMC8799788 DOI: 10.1007/s12687-021-00567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/15/2021] [Indexed: 10/31/2022] Open
Abstract
Programs offering reproductive genetic carrier screening (RGCS) to high school students within the Ashkenazi Jewish community in several countries including Canada and Australia have demonstrated high uptake and retention of educational messages over time. This study was undertaken to evaluate whether testing for an expanded number of conditions in a high school setting would impact the effectiveness of education. In this questionnaire-based study, genetic carrier testing for nine conditions was offered to 322 year 11 students from five high schools, with students attending a compulsory 1-h education session prior to voluntary testing. Comparison of pre- and post-education measures demonstrated a significant increase in knowledge, positive attitudes, and reduced concern immediately after the education session. Retention of knowledge, measures of positive attitude, and low concern over a 12-month period were significantly higher than baseline, although there was some reduction over time. In total, 77% of students exhibited informed choice regarding their intention to test. A significant increase in baseline knowledge scores and positive attitude was also demonstrated between our original 1995 evaluation (with testing for only one condition) and 2014 (testing for nine conditions) suggesting community awareness and attitudes to RGCS have increased. These findings validate the implementation of effective education programs as a key component of RGCS and are relevant as gene panels expand with the introduction of genomic technologies.
Collapse
Affiliation(s)
- Kristine Barlow-Stewart
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, 2065, Australia.,Community Genetics Program (NSW), Wolper Jewish Hospital, Woollahra, NSW, 2025, Australia
| | - Kayley Bardsley
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, 2065, Australia.,Department of Genetic Medicine, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Elle Elan
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, 2065, Australia.,Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jane Fleming
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, 2065, Australia
| | - Yemima Berman
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, 2065, Australia.,Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Ron Fleischer
- Community Genetics Program (NSW), Wolper Jewish Hospital, Woollahra, NSW, 2025, Australia.,Department of Medical Genomics, Royal Prince Alfred Hospital, Camperdown, NSW, 2010, Australia
| | - Krista Recsei
- Pangolin Consulting, The Entrance, NSW, 2261, Australia
| | - Daniel Goldberg
- Community Genetics Program (NSW), Wolper Jewish Hospital, Woollahra, NSW, 2025, Australia
| | - John Tucker
- Community Genetics Program (NSW), Wolper Jewish Hospital, Woollahra, NSW, 2025, Australia
| | - Leslie Burnett
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, 2065, Australia. .,Community Genetics Program (NSW), Wolper Jewish Hospital, Woollahra, NSW, 2025, Australia. .,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia. .,St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
7
|
Quaio CRDC, Chung CH, Perazzio SF, Dutra AP, Moreira CM, Filho GMN, Sacramento-Bobotis PR, Penna MG, de Souza RRF, Cintra VP, Carnavalli JEP, da Silva RA, Paixão D, Baratela WADR, Olivati C, Spolador GM, Santos MNP, Pintao MC, Fornari ARDS, Burger M, Ramalho RF, Pereira OJE, E Ferreira EN, Mitne-Neto M, Kim CA. Frequency of carriers for rare recessive Mendelian diseases in a Brazilian cohort of 320 patients. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2021; 187:364-372. [PMID: 34269512 DOI: 10.1002/ajmg.c.31932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/13/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
Several Mendelian disorders follow an autosomal recessive inheritance pattern. Epidemiological information on many inherited disorders may be useful to guide health policies for rare diseases, but it is often inadequate, particularly in developing countries. We aimed to calculate the carrier frequencies of rare autosomal recessive Mendelian diseases in a cohort of Brazilian patients using whole exome sequencing (WES). We reviewed the molecular findings of WES from 320 symptomatic patients who had carrier status for recessive diseases. Using the Hardy-Weinberg equation, we estimated recessive disease frequencies (q2 ) considering the respective carrier frequencies (2pq) observed in our study. We calculated the sensitivity of carrier screening tests based on lists of genes from five different clinical laboratories that offer them in Brazil. A total of 425 occurrences of 351 rare variants were reported in 278 different genes from 230 patients (71.9%). Almost half (48.8%) were carriers of at least one heterozygous pathogenic/likely pathogenic variant for rare metabolic disorders, while 25.9% of epilepsy, 18.1% of intellectual disabilities, 15.6% of skeletal disorders, 10.9% immune disorders, and 9.1% of hearing loss. We estimated that an average of 67% of the variants would not have been detected by carrier screening panels. The combined frequencies of autosomal recessive diseases were estimated to be 26.39/10,000 (or ~0.26%). This study shows the potential research utility of WES to determine carrier status, which may be a possible strategy to evaluate the clinical and social burden of recessive diseases at the population level and guide the optimization of carrier screening panels.
Collapse
Affiliation(s)
- Caio Robledo D'Angioli Costa Quaio
- Instituto da Crianca (Children's Hospital), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Fleury Medicina e Saúde, São Paulo, Brazil.,Laboratório Clínico, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Sandro Felix Perazzio
- Fleury Medicina e Saúde, São Paulo, Brazil.,Division of Rheumatology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | - Rafael Alves da Silva
- Fleury Medicina e Saúde, São Paulo, Brazil.,Laboratório de Hepatologia Molecular Aplicada (LHeMA), Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | | | | | - Gustavo Marquezani Spolador
- Instituto da Crianca (Children's Hospital), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Fleury Medicina e Saúde, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | - Chong Ae Kim
- Instituto da Crianca (Children's Hospital), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Abstract
Inherited bone marrow failure syndromes are a group of genetic disorders associated with bone marrow production defects resulting in single or multiple cytopenias. Many of these disorders predispose the patient to hematologic and nonhematologic malignancies, requiring life-long follow-up. A positive family history of hematologic disorders or malignancies is frequent, as these disorders commonly run in families, and selection of family members as potential bone marrow donors should be performed with caution to avoid transplanting potentially defective stem cells. This review highlights the most common genetic disorders associated with bone marrow failure.
Collapse
|
9
|
Inherited Variants in BLM and the Risk and Clinical Characteristics of Breast Cancer. Cancers (Basel) 2019; 11:cancers11101548. [PMID: 31614901 PMCID: PMC6826355 DOI: 10.3390/cancers11101548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023] Open
Abstract
Bloom Syndrome is a rare recessive disease which includes a susceptibility to various cancers. It is caused by homozygous mutations of the BLM gene. To investigate whether heterozygous carriers of a BLM mutation are predisposed to breast cancer, we sequenced BLM in 617 patients from Polish families with a strong family history of breast cancer. We detected a founder mutation (c.1642C>T, p.Gln548Ter) in 3 of the 617 breast cancer patients (0.49%) who were sequenced. Then, we genotyped 14,804 unselected breast cancer cases and 4698 cancer-free women for the founder mutation. It was identified in 82 of 14,804 (0.55%) unselected cases and in 26 of 4698 (0.55%) controls (OR = 1.0; 95%CI 0.6–1.6). Clinical characteristics of breast cancers in the BLM mutation carriers and non-carriers were similar. Loss of the wild-type BLM allele was not detected in cancers from the BLM mutation carriers. No cancer type was more common in the relatives of mutation carriers compared to relatives of non-carriers. The BLM founder mutation p.Gln548Ter, which in a homozygous state is a cause of Bloom syndrome, does not appear to predispose to breast cancer in a heterozygous state. The finding casts doubt on the designation of BLM as an autosomal dominant breast cancer susceptibility gene.
Collapse
|
10
|
Runs of homozygosity, copy number variation, and risk for depression and suicidal behavior in an Arab Bedouin kindred. Psychiatr Genet 2018; 27:169-177. [PMID: 28570395 DOI: 10.1097/ypg.0000000000000177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Inbreeding increases the probability of homozygosity of deleterious alleles. Inbreeding and runs of homozygosity (ROH) are associated with an increased risk for disease phenotypes, including schizophrenia and other psychiatric disorders. The effects of inbreeding, ROH, homozygous deletions, and other copy number variations (CNVs) on risk for depression and suicide attempt (SA) were quantified in an Arab Bedouin Kindred. METHODS We carried out genetic analyses of 439 individuals from an Arab kindred with high rates of depression and suicidal behavior. We obtained complete ascertainment of SAs and first-degree relatives of individuals who have attempted or died by suicide. RESULTS We found extensive regions of ROH. On average, 5% of the genome is covered by ROH for these individuals, two-fold higher than ROH rates for individuals from populations of European ancestry. Inbreeding and total length of ROH were not associated with risk for depression or attempt. For CNVs, an increased number of duplications more than 500 kb was associated with an increased risk for attempt (odds ratio: 2.9; P=0.01; 95% confidence interval: 1.3-6.6). Although not significant after correction for multiple testing, the risk for SA appears to increase with copy number for a CNV on chromosome 9p24.1. This possibility is intriguing because the CNV covers GLDC, which encodes glycine dehydrogenase that binds to glycine, a co-agonist at N-methyl-D-aspartate glutamate receptors, and is involved in glutamatergic neurotransmission. CONCLUSION Our findings add to the growing evidence of genetic risk factors that act pleiotropically to increase the risk for several neuropsychiatric disorders, including depression and SA, irrespective of ancestry.
Collapse
|
11
|
Rubin BY, Anderson SL. IKBKAP/ELP1 gene mutations: mechanisms of familial dysautonomia and gene-targeting therapies. APPLICATION OF CLINICAL GENETICS 2017; 10:95-103. [PMID: 29290691 PMCID: PMC5735983 DOI: 10.2147/tacg.s129638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The successful completion of the Human Genome Project led to the discovery of the molecular basis of thousands of genetic disorders. The identification of the mutations that cause familial dysautonomia (FD), an autosomal recessive disorder that impacts sensory and autonomic neurons, was aided by the release of the human DNA sequence. The identification and characterization of the genetic cause of FD have changed the natural history of this disease. Genetic testing programs, which were established shortly after the disease-causing mutations were identified, have almost completely eliminated the birth of children with this disorder. Characterization of the principal disease-causing mutation has led to the development of therapeutic modalities that ameliorate its effect, while the development of mouse models that recapitulate the impact of the mutation has allowed for the in-depth characterization of its impact on neuronal development and survival. The intense research focus on this disorder, while clearly benefiting the FD patient population, also serves as a model for the positive impact focused research efforts can have on the future of other genetic diseases. Here, we present the research advances and scientific breakthroughs that have changed and will continue to change the natural history of this centuries-old genetic disease.
Collapse
Affiliation(s)
- Berish Y Rubin
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Sylvia L Anderson
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
12
|
Fu W, Ligabue A, Rogers KJ, Akey JM, Monnat RJ. Human RECQ Helicase Pathogenic Variants, Population Variation and "Missing" Diseases. Hum Mutat 2016; 38:193-203. [PMID: 27859906 DOI: 10.1002/humu.23148] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/25/2016] [Accepted: 11/12/2016] [Indexed: 12/17/2022]
Abstract
Heritable loss of function mutations in the human RECQ helicase genes BLM, WRN, and RECQL4 cause Bloom, Werner, and Rothmund-Thomson syndromes, cancer predispositions with additional developmental or progeroid features. In order to better understand RECQ pathogenic and population variation, we systematically analyzed genetic variation in all five human RECQ helicase genes. A total of 3,741 unique base pair-level variants were identified, across 17,605 potential mutation sites. Direct counting of BLM, RECQL4, and WRN pathogenic variants was used to determine aggregate and disease-specific carrier frequencies. The use of biochemical and model organism data, together with computational prediction, identified over 300 potentially pathogenic population variants in RECQL and RECQL5, the two RECQ helicases that are not yet linked to a heritable deficiency syndrome. Despite the presence of these predicted pathogenic variants in the human population, we identified no individuals homozygous for any biochemically verified or predicted pathogenic RECQL or RECQL5 variant. Nor did we find any individual heterozygous for known pathogenic variants in two or more of the disease-associated RECQ helicase genes BLM, RECQL4, or WRN. Several postulated RECQ helicase deficiency syndromes-RECQL or RECQL5 loss of function, or compound haploinsufficiency for the disease-associated RECQ helicases-may remain missing, as they likely incompatible with life.
Collapse
Affiliation(s)
- Wenqing Fu
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Alessio Ligabue
- Department of Pathology, University of Washington, Seattle, Washington
| | - Kai J Rogers
- Department of Microbiology, University of Washington, Seattle, Washington.,University of Iowa College of Medicine, Iowa City, Iowa
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Raymond J Monnat
- Department of Genome Sciences, University of Washington, Seattle, Washington.,Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
13
|
Donyo M, Hollander D, Abramovitch Z, Naftelberg S, Ast G. Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway. Hum Mol Genet 2016; 25:1307-17. [PMID: 26769675 DOI: 10.1093/hmg/ddw011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/11/2016] [Indexed: 01/04/2023] Open
Abstract
Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD.
Collapse
Affiliation(s)
- Maya Donyo
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Ziv Abramovitch
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shiran Naftelberg
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
14
|
Abstract
Genetic skin diseases, or genodermatoses, often have extracutaneous manifestations. Ocular manifestations in particular can have significant clinical implications, like blindness. Other manifestations, such as the corneal opacities that occur in X-linked ichthyosis, are asymptomatic but characteristic of a particular genodermatosis. Ophthalmologic examination can aid in diagnosis when characteristic findings are seen. The genodermatoses with ocular manifestations will be reviewed, but neurocutaneous, syndromes, genetic pigmentary disorders, and genetic metabolic diseases are not included because they are covered elsewhere in this issue.
Collapse
Affiliation(s)
- Melinda Jen
- Section of Pediatric Dermatology, Children's Hospital of Philadelphia; Departments of Pediatrics and Dermatology, Perelman School of Medicine at the University of Pennsylvania, 3550 Market St, Second floor, Philadelphia, PA, 19104.
| | - Sudha Nallasamy
- The Vision Center, Children's Hospital Los Angeles; Department of Ophthalmology, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd, MS #88, Los Angeles, CA, 90027
| |
Collapse
|
15
|
Melhem NM, Lu C, Dresbold C, Middleton FA, Klei L, Wood S, Faraone SV, Vinogradov S, Tiobech J, Yano V, Roeder K, Byerley W, Myles-Worsley M, Devlin B. Characterizing runs of homozygosity and their impact on risk for psychosis in a population isolate. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:521-30. [PMID: 24980794 PMCID: PMC5058445 DOI: 10.1002/ajmg.b.32255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/04/2014] [Indexed: 11/12/2022]
Abstract
An increased abundance of runs of homozygosity (ROH) has been associated with risk for various diseases, including schizophrenia. Here we investigate the characteristics of ROH in Palau, an Oceanic population, evaluating whether these characteristics are related to risk for psychotic disorders and the nature of this association. To accomplish these aims we evaluate a sample of 203 cases with schizophrenia and related psychotic disorders-representing almost complete ascertainment of affected individuals in the population-and contrast their ROH to that of 125 subjects chosen to function as controls. While Palauan diagnosed with psychotic disorders tend to have slightly more ROH regions than controls, the distinguishing features are that they have longer ROH regions, greater total length of ROH, and their ROH tends to co-occur more often at the same locus. The nature of the sample allows us to investigate whether rare, highly penetrant recessive variants generate such case-control differences in ROH. Neither rare, highly penetrant recessive variants nor individual common variants of large effect account for a substantial proportion of risk for psychosis in Palau. These results suggest a more nuanced model for risk is required to explain patterns of ROH for this population.
Collapse
Affiliation(s)
- Nadine M. Melhem
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Cong Lu
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA
| | - Cara Dresbold
- Department of Human Genetics, University of Pittsburgh
| | | | | | - Shawn Wood
- University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Stephen V Faraone
- Department of Psychiatry, SUNY Upstate Medical University; Syracuse NY
| | | | | | - Victor Yano
- Palauan Ministry of Health, Republic of Palau
| | - Kathryn Roeder
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA
| | - William Byerley
- Department of Psychiatry, University of California San Francisco
| | | | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
16
|
A common nonsense mutation of the BLM gene and prostate cancer risk and survival. Gene 2013; 532:173-6. [PMID: 24096176 DOI: 10.1016/j.gene.2013.09.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Germline mutations of BRCA2 and NBS1 genes cause inherited recessive chromosomal instability syndromes and predispose to prostate cancer of poor prognosis. Mutations of the BLM gene cause another chromosomal instability clinical syndrome, called Bloom syndrome. Recently, a recurrent truncating mutation of BLM (Q548X) has been associated with a 6-fold increased risk of breast cancer in Russia, Belarus and Ukraine, but its role in prostate cancer etiology and survival has not been investigated yet. METHODS To establish whether the Q548X allele of the BLM gene is present in Poland, and whether this allele predisposes to poor prognosis prostate cancer, we genotyped 3337 men with prostate cancer and 2604 controls. RESULTS Q548X was detected in 13 of 3337 (0.4%) men with prostate cancer compared to 15 of 2604 (0.6%) controls (OR=0.7; 95% CI 0.3-1.4). A positive family history of any cancer in a first- or second-degree relative was seen only in 4 of the 13 (30%) mutation positive families, compared to 49% (1485/3001) of the non-carrier families (p=0.3). The mean follow-up was 49months. Survival was similar among carriers of Q548X and non-carriers (HR=1.1; p=0.9). The 5-year survival for men with a BLM mutation was 83%, compared to 72% for mutation-negative cases. CONCLUSIONS BLM Q548X is a common founder mutation in Poland. We found no evidence that this mutation predisposes one to prostate cancer or affect prostate cancer survival. However, based on the observed 0.6% population frequency of the Q548X allele, we estimate that one in 100,000 children should be affected by Bloom syndrome in Poland.
Collapse
|
17
|
Glicksman S, Borgen C, Blackstein M, Gordon A, Hanon I, Kusin D, Leibowitz B, Halle J. A thematic review of scientific and family interests in Canavan Disease: where are the developmentalists? JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2013; 57:815-825. [PMID: 22676184 DOI: 10.1111/j.1365-2788.2012.01576.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND Canavan Disease is a degenerative neurological condition resulting in a spongy deterioration of the brain. Much research has been conducted by the medical community regarding this condition, but little research can be found in the psychological literature. METHOD A review of the scientific literature related to Canavan Disease using the Psychinfo and PubMed databases was conducted covering a 5-year span from 2006 through 2011. Concurrently, a review of parent initiated topics found on the most popular Canavan Disease Internet discussion board was conducted for comparison purposes. RESULTS When comparing the topics discussed and information sought among parents with the themes noted in the extant scientific literature, researchers found an exceedingly small overlap between the two communities of interest. In the scientific literature, published research on Canavan Disease focused on three areas: the biochemistry of Canavan Disease, diagnosis and genetic counselling, and clinical therapeutic approaches in Canavan Disease. Of the 42 unique topics raised on a popular Internet discussion board, however, only three (7%) fell into the category of diagnosis and genetic counselling, none (0%) fell into the category of the biochemistry of Canavan Disease, and four fell into the category of clinical therapeutic approaches in Canavan Disease (10%). Of the four posts addressing clinical therapeutic approaches to Canavan Disease, only one post truly overlapped with the topics addressed by the scientific community. Worded differently, while these three categories comprise 100% of the extant scientific literature regarding Canavan Disease, they comprise only 17% of the parent-raised topics. The remaining 83% of parent-raised topics addressed concerns not currently being focusing upon by the scientific community, namely, non-medical practical issues, information regarding specific characteristics of Canavan Disease, non-medical developmental and quality of life issues, and day-to-day developmental and medical concerns. CONCLUSION By comparing the extant literature on Canavan Disease with the topics of interest raised by parents and caregivers, it seems clear that there is a significant 'underlap' of topics raised by these two communities of interest, one that may reflect a lack of sensitivity on the part of the scientific community to meet the needs of this population of knowledge seekers. It is the suggestion of these authors that developmental psychology may be the appropriate scientific field within which to address this need and fill this gap in the current literature.
Collapse
|
18
|
Maaloul I, Fourati H, Wali M, Chabchoub I, Kamoun T, Mnif Z, Kaabachi N, Hachicha M. [Megalencephaly with dystonia revealing Canavan disease]. Arch Pediatr 2013; 20:783-6. [PMID: 23727372 DOI: 10.1016/j.arcped.2013.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/22/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
Abstract
Canavan disease, or N-acetyl aspartic aciduria, is an autosomal recessive leukodystrophy characterized by spongy degeneration of the brain. The disease results from the accumulation of N-acetyl aspartic acid in the brain, due to aspartoacylase deficiency. We report the case of a 6-month-old girl who presented with megalencephaly, peripheral hypertonia, and a developmental delay noticeable after 4 months of age. Magnetic resonance imaging of the brain with spectroscopy was suggestive of Canavan disease, which was confirmed by chromatography of urinary organic acids.
Collapse
Affiliation(s)
- I Maaloul
- Service de pédiatrie générale, hôpital Hédi-Chaker, avenue Majida-Boulila, 3029 Sfax, Tunisie.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fedick A, Su J, Jalas C, Northrop L, Devkota B, Ekstein J, Treff NR. High-throughput carrier screening using TaqMan allelic discrimination. PLoS One 2013; 8:e59722. [PMID: 23555759 PMCID: PMC3608587 DOI: 10.1371/journal.pone.0059722] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/17/2013] [Indexed: 12/29/2022] Open
Abstract
Members of the Ashkenazi Jewish community are at an increased risk for inheritance of numerous genetic diseases such that carrier screening is medically recommended. This paper describes the development and evaluation of 30 TaqMan allelic discrimination qPCR assays for 29 mutations on 2 different high-throughput platforms. Four of these mutations are in the GBA gene and are successfully examined using short amplicons due to the qualitative nature of TaqMan allelic discrimination. Two systems were tested for their reliability (call rate) and consistency with previous diagnoses (diagnostic accuracy) indicating a call rate of 99.04% and a diagnostic accuracy of 100% (+/−0.00%) from one platform, and a call rate of 94.66% and a diagnostic accuracy of 93.35% (+/−0.29%) from a second for 9,216 genotypes. Results for mutations tested at the expected carrier frequency indicated a call rate of 97.87% and a diagnostic accuracy of 99.96% (+/−0.05%). This study demonstrated the ability of a high throughput qPCR methodology to accurately and reliably genotype 29 mutations in parallel. The universally applicable nature of this technology provides an opportunity to increase the number of mutations that can be screened simultaneously, and reduce the cost and turnaround time for accommodating newly identified and clinically relevant mutations.
Collapse
Affiliation(s)
- Anastasia Fedick
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America.
| | | | | | | | | | | | | |
Collapse
|
20
|
Goldin E, Zheng W, Motabar O, Southall N, Choi JH, Marugan J, Austin CP, Sidransky E. High throughput screening for small molecule therapy for Gaucher disease using patient tissue as the source of mutant glucocerebrosidase. PLoS One 2012; 7:e29861. [PMID: 22272254 PMCID: PMC3260169 DOI: 10.1371/journal.pone.0029861] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/05/2011] [Indexed: 01/11/2023] Open
Abstract
Gaucher disease (GD), the most common lysosomal storage disorder, results from the inherited deficiency of the lysosomal enzyme glucocerebrosidase (GCase). Previously, wildtype GCase was used for high throughput screening (HTS) of large collections of compounds to identify small molecule chaperones that could be developed as new therapies for GD. However, the compounds identified from HTS usually showed reduced potency later in confirmatory cell-based assays. An alternate strategy is to perform HTS on mutant enzyme to identify different lead compounds, including those enhancing mutant enzyme activities. We developed a new screening assay using enzyme extract prepared from the spleen of a patient with Gaucher disease with genotype N370S/N370S. In tissue extracts, GCase is in a more native physiological environment, and is present with the native activator saposin C and other potential cofactors. Using this assay, we screened a library of 250,000 compounds and identified novel modulators of mutant GCase including 14 new lead inhibitors and 30 lead activators. The activities of some of the primary hits were confirmed in subsequent cell-based assays using patient-derived fibroblasts. These results suggest that primary screening assays using enzyme extracted from tissues is an alternative approach to identify high quality, physiologically relevant lead compounds for drug development.
Collapse
Affiliation(s)
- Ehud Goldin
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Estimation of carrier frequencies of six autosomal-recessive Mendelian disorders in the Korean population. J Hum Genet 2011; 57:139-44. [PMID: 22170460 DOI: 10.1038/jhg.2011.144] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although many studies have been performed to identify mutations in Korean patients with various autosomal-recessive Mendelian disorders (AR-MDs), little is known about the carrier frequencies of AR-MDs in the Korean population. Twenty common mutations from six AR-MDs, including Wilson disease (WD), non-syndromic hearing loss (NSHL), glycogen storage disease type Ia (GSD Ia), phenylketonuria (PKU), congenital hypothyroidism (CH), and congenital lipoid adrenal hyperplasia (CLAH) were selected to screen for based on previous studies. A total of 3057 Koreans were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry followed by confirmation using the Sanger sequencing. We found 201 and 8 carriers with either one or two mutations in different genes, respectively, yielding a total carrier frequency of 1 in 15 (6.7%). Of the six AR-MDs, NSHL has the highest carrier frequency followed by WD, CH, CLAH, GSD Ia, and PKU. As carrier screening tests are becoming prevalent and the number of mutations known and tested is rising, a priori data on the carrier frequencies in different ethnic groups is mandatory to plan a population screening program and to estimate its efficiency. In light of this, the present results can be used as a basis to establish a screening policy for common AR-MRs in the Korean population.
Collapse
|
22
|
Sokolenko AP, Iyevleva AG, Preobrazhenskaya EV, Mitiushkina NV, Abysheva SN, Suspitsin EN, Kuligina ES, Gorodnova TV, Pfeifer W, Togo AV, Turkevich EA, Ivantsov AO, Voskresenskiy DV, Dolmatov GD, Bit-Sava EM, Matsko DE, Semiglazov VF, Fichtner I, Larionov AA, Kuznetsov SG, Antoniou AC, Imyanitov EN. High prevalence and breast cancer predisposing role of the BLM c.1642 C>T (Q548X) mutation in Russia. Int J Cancer 2011; 130:2867-73. [PMID: 21815139 DOI: 10.1002/ijc.26342] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 07/21/2011] [Indexed: 11/11/2022]
Abstract
The BLM gene belongs to the RecQ helicase family and has been implicated in the maintenance of genomic stability. Its homozygous germline inactivation causes Bloom syndrome, a severe genetic disorder characterized by growth retardation, impaired fertility and highly elevated cancer risk. We hypothesized that BLM is a candidate gene for breast cancer (BC) predisposition. Sequencing of its entire coding region in 95 genetically enriched Russian BC patients identified two heterozygous carriers of the c.1642 C>T (Q548X) mutation. The extended study revealed this allele in 17/1,498 (1.1%) BC cases vs. 2/1,093 (0.2%) healthy women (p = 0.004). There was a suggestion that BLM mutations were more common in patients reporting first-degree family history of BC (6/251 (2.4%) vs. 11/1,247 (0.9%), p = 0.05), early-onset cases (12/762 (1.6%) vs. 5/736 (0.7%), p = 0.14) and women with bilateral appearance of the disease (2/122 (1.6%) vs. 15/1376 (1.1%), p = 0.64). None of the BLM-associated BC exhibited somatic loss of heterozygosity at the BLM gene locus. This study demonstrates that BLM Q548X allele is recurrent in Slavic subjects and may be associated with BC risk.
Collapse
Affiliation(s)
- Anna P Sokolenko
- N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rosenberg PS, Tamary H, Alter BP. How high are carrier frequencies of rare recessive syndromes? Contemporary estimates for Fanconi Anemia in the United States and Israel. Am J Med Genet A 2011; 155A:1877-83. [PMID: 21739583 PMCID: PMC3140593 DOI: 10.1002/ajmg.a.34087] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/07/2011] [Indexed: 11/07/2022]
Abstract
For many recessive genetic syndromes, carrier frequencies have been assessed through screening studies in founder populations but remain unclear in heterogeneous populations. One such syndrome is Fanconi Anemia (FA). FA is a model disease in cancer research, yet there are no contemporary data on carrier frequency or prevalence in the general United States (US) population or elsewhere. We inferred carrier frequency from birth incidence using the Hardy-Weinberg law. We estimated prevalence using birth incidence and survival data. We defined "plausible ranges" to incorporate uncertainty about completeness of case ascertainment. We made estimates for the US and Israel using demographic data from the Fanconi Anemia Research Fund and Israeli Fanconi Anemia Registry. In the US, a plausible range for the carrier frequency is 1:156-1:209 [midpoint 1:181]; we estimate that 550-975 persons were living with FA in 2010. For Israel, a plausible range for the carrier frequency is 1:66-1:128 [midpoint 1:93] in line with founder screening studies; we estimate that 40-135 Israelis were living with FA in 2008. The estimated US FA carrier frequency of 1:181 is significantly higher than the historical estimate of 1:300; hence, the gap may be narrower than previously recognized between the US carrier frequency and higher carrier frequencies of around 1:100 in several founder groups including Ashkenazi Jews. Assessment of cancer risks in heterozygous carriers merits further study. Clinical trials in FA will require co-ordination and innovative design because the number of living US patients is probably less than 1,000.
Collapse
Affiliation(s)
- Philip S Rosenberg
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland, USA.
| | | | | |
Collapse
|
24
|
Phosphatidylserine increases IKBKAP levels in familial dysautonomia cells. PLoS One 2010; 5:e15884. [PMID: 21209961 PMCID: PMC3012102 DOI: 10.1371/journal.pone.0015884] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022] Open
Abstract
Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results from abnormal development and progressive degeneration of the sensory and autonomic nervous system. The mutation observed in almost all FD patients is a point mutation at position 6 of intron 20 of the IKBKAP gene; this gene encodes the IκB kinase complex-associated protein (IKAP). The mutation results in a tissue-specific splicing defect: Exon 20 is skipped, leading to reduced IKAP protein expression. Here we show that phosphatidylserine (PS), an FDA-approved food supplement, increased IKAP mRNA levels in cells derived from FD patients. Long-term treatment with PS led to a significant increase in IKAP protein levels in these cells. A conjugate of PS and an omega-3 fatty acid also increased IKAP mRNA levels. Furthermore, PS treatment released FD cells from cell cycle arrest and up-regulated a significant number of genes involved in cell cycle regulation. Our results suggest that PS has potential for use as a therapeutic agent for FD. Understanding its mechanism of action may reveal the mechanism underlying the FD disease.
Collapse
|
25
|
Scott SA, Edelmann L, Liu L, Luo M, Desnick RJ, Kornreich R. Experience with carrier screening and prenatal diagnosis for 16 Ashkenazi Jewish genetic diseases. Hum Mutat 2010; 31:1240-50. [PMID: 20672374 DOI: 10.1002/humu.21327] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The success of prenatal carrier screening as a disease prevention strategy in the Ashkenazi Jewish (AJ) population has driven the expansion of screening panels as disease-causing founder mutations have been identified. However, the carrier frequencies of many of these mutations have not been reported in large AJ cohorts. We determined the carrier frequencies of over 100 mutations for 16 recessive disorders in the New York metropolitan area AJ population. Among the 100% AJ-descended individuals, screening for 16 disorders resulted in ∼1 in 3.3 being a carrier for one disease and ∼1 in 24 for two diseases. The carrier frequencies ranged from 0.066 (1 in 15.2; Gaucher disease) to 0.006 (1 in 168; nemaline myopathy), which averaged ∼15% higher than those for all screenees. Importantly, over 95% of screenees chose to be screened for all possible AJ diseases, including disorders with lower carrier frequencies and/or detectability. Carrier screening also identified rare individuals homozygous for disease-causing mutations who had previously unrecognized clinical manifestations. Additionally, prenatal testing results and experience for all 16 disorders (n = 574) are reported. Together, these data indicate the general acceptance, carrier frequencies, and prenatal testing results for an expanded panel of 16 diseases in the AJ population.
Collapse
Affiliation(s)
- Stuart A Scott
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
26
|
Balwani M, Fuerstman L, Kornreich R, Edelmann L, Desnick RJ. Type 1 Gaucher disease: significant disease manifestations in "asymptomatic" homozygotes. ACTA ACUST UNITED AC 2010; 170:1463-9. [PMID: 20837833 DOI: 10.1001/archinternmed.2010.302] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Type 1 Gaucher disease (GD), an autosomal recessive lysosomal storage disease, is most prevalent in the Ashkenazi Jewish (AJ) population. Experts have suggested that up to two-thirds of AJ homozygotes for the common mutation (N370S) are asymptomatic throughout life and never come to medical attention. However, there are no systematic studies of N370S homozygotes to support this presumption. METHODS Prenatal carrier screening of 8069 AJ adults for 6 common GD mutations was performed. Gaucher disease manifestations in 37 previously unrecognized homozygotes were assessed by clinical, laboratory, and imaging studies. RESULTS Among the 8069 AJ screenees, 524 GD carriers (1:15) and 9 previously unrecognized GD homozygotes (1:897) were identified, consistent with the rate expected (1:949; P > .99). Six of these homozygotes and 31 AJ GD homozygotes identified by other prenatal carrier screening programs in the New York City metropolitan area were evaluated (age range of the homozygotes, 17-40 years). Of these, 84% were N370S homozygotes, others being heteroallelic for N370S and V394L, L444P, or R496H mutations. Notably, 65% reported no GD medical complaints. However, 49% had anemia and/or thrombocytopenia. Among the 29 who had imaging studies, 97% had mild to moderate splenomegaly and 55% had hepatomegaly; skeletal imaging revealed marrow infiltration (100%), Erlenmeyer flask deformities (43%), lucencies (22%), and bone infarcts (14%). Dual energy X-ray absorptiometry studies of 25 homozygotes found 60% with osteopenia or osteoporosis. CONCLUSION Contrary to previous discussions, almost all asymptomatic GD homozygotes serendipitously diagnosed by prenatal carrier screening had disease manifestations and should be followed for disease progression and institution of appropriate medical treatment.
Collapse
Affiliation(s)
- Manisha Balwani
- Comprehensive Gaucher Disease Treatment Center, Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|
27
|
Best practices: antenatal screening for common genetic conditions other than aneuploidy. Curr Opin Obstet Gynecol 2010; 22:139-45. [DOI: 10.1097/gco.0b013e3283372379] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Kalman L, Wilson JA, Buller A, Dixon J, Edelmann L, Geller L, Highsmith WE, Holtegaard L, Kornreich R, Rohlfs EM, Payeur TL, Sellers T, Toji L, Muralidharan K. Development of genomic DNA reference materials for genetic testing of disorders common in people of ashkenazi jewish descent. J Mol Diagn 2009; 11:530-6. [PMID: 19815695 DOI: 10.2353/jmoldx.2009.090050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many recessive genetic disorders are found at a higher incidence in people of Ashkenazi Jewish (AJ) descent than in the general population. The American College of Medical Genetics and the American College of Obstetricians and Gynecologists have recommended that individuals of AJ descent undergo carrier screening for Tay Sachs disease, Canavan disease, familial dysautonomia, mucolipidosis IV, Niemann-Pick disease type A, Fanconi anemia type C, Bloom syndrome, and Gaucher disease. Although these recommendations have led to increased test volumes and number of laboratories offering AJ screening, well-characterized genomic reference materials are not publicly available. The Centers for Disease Control and Prevention-based Genetic Testing Reference Materials Coordination Program, in collaboration with members of the genetic testing community and Coriell Cell Repositories, have developed a panel of characterized genomic reference materials for AJ genetic testing. DNA from 31 cell lines, representing many of the common alleles for Tay Sachs disease, Canavan disease, familial dysautonomia, mucolipidosis IV, Niemann-Pick disease type A, Fanconi anemia type C, Bloom syndrome, Gaucher disease, and glycogen storage disease, was prepared by the Repository and tested in six clinical laboratories using three different PCR-based assay platforms. A total of 33 disease alleles was assayed and 25 different alleles were identified. These characterized materials are publicly available from Coriell and may be used for quality control, proficiency testing, test development, and research.
Collapse
Affiliation(s)
- Lisa Kalman
- Laboratory Practice Evaluation and Genomics Branch, National Center for Preparedness, Detection and Control of Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop G23, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|