1
|
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia.
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia.
- Russian Medical Academy of Continuous Postgraduate Education, Moscow, Russia.
| |
Collapse
|
2
|
Iourov IY, Vorsanova SG. Yuri B. Yurov (1951-2017). Mol Cytogenet 2018; 11:36. [PMCID: PMC6001148 DOI: 10.1186/s13039-018-0383-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ivan Y. Iourov
- Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Zagorodnoe shosse 2/16, 117152 Moscow, Russia
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, 125412 Russia
| | - Svetlana G. Vorsanova
- Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Zagorodnoe shosse 2/16, 117152 Moscow, Russia
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, 125412 Russia
| |
Collapse
|
3
|
Vorsanova SG, Kolotii AD, Iourov IY, Monakhov VV, Kirillova EA, Soloviev IV, Yurov YB. Evidence for High Frequency of Chromosomal Mosaicism in Spontaneous Abortions Revealed by Interphase FISH Analysis. J Histochem Cytochem 2016; 53:375-80. [PMID: 15750024 DOI: 10.1369/jhc.4a6424.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerical chromosomal imbalances are a common feature of spontaneous abortions. However, the incidence of mosaic forms of chromosomal abnormalities has not been evaluated. We have applied interphase multicolor fluorescence in situ hybridization using original DNA probes for chromosomes 1, 9, 13, 14, 15, 16, 18, 21, 22, X, and Y to study chromosomal abnormalities in 148 specimens of spontaneous abortions. We have detected chromosomal abnormalities in 89/148 (60.1%) of specimens. Among them, aneuploidy was detected in 74 samples (83.1%). In the remaining samples, polyploidy was detected. The mosaic forms of chromosome abnormality, including autosomal and sex chromosomal aneuploidies and polyploidy (31 and 12 cases, respectively), were observed in 43/89 (48.3%) of specimens. The most frequent mosaic form of aneuploidy was related to chromosome X (19 cases). The frequency of mosaic forms of chromosomal abnormalities in samples with male chromosomal complement was 50% (16/32 chromosomally abnormal), and in samples with female chromosomal complement, it was 47.4% (27/57 chromosomally abnormal). The present study demonstrates that the postzygotic or mitotic errors leading to chromosomal mosaicism in spontaneous abortions are more frequent than previously suspected. Chromosomal mosaicsm may contribute significantly to both pregnancy complications and spontaneous fetal loss.
Collapse
Affiliation(s)
- Svetlana G Vorsanova
- National Center of Mental Health, Russian Academy of Medical Sciences, Zagorodnoe sh.2, 119152 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
4
|
Vorsanova SG, Yurov YB, Soloviev IV, Iourov IY. Molecular cytogenetic diagnosis and somatic genome variations. Curr Genomics 2011; 11:440-6. [PMID: 21358989 PMCID: PMC3018725 DOI: 10.2174/138920210793176010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/26/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022] Open
Abstract
Human molecular cytogenetics integrates the knowledge on chromosome and genome organization at the molecular and cellular levels in health and disease. Molecular cytogenetic diagnosis is an integral part of current genomic medicine and is the standard of care in medical genetics and cytogenetics, reproductive medicine, pediatrics, neuropsychiatry and oncology. Regardless numerous advances in this field made throughout the last two decades, researchers and practitioners who apply molecular cytogenetic techniques may encounter several problems that are extremely difficult to solve. One of them is undoubtedly the occurrence of somatic genome and chromosome variations, leading to genomic and chromosomal mosaicism, which are related but not limited to technological and evaluative limitations as well as multiplicity of interpretations. More dramatically, current biomedical literature almost lacks descriptions, guidelines or solutions of these problems. The present article overviews all these problems and gathers those exclusive data acquired from studies of genome and chromosome instability that is relevant to identification and interpretations of this fairly common cause of somatic genomic variations and chromosomal mosaicism. Although the way to define pathogenic value of all the intercellular variations of the human genome is far from being completely understood, it is possible to propose recommendations on molecular cytogenetic diagnosis and management of somatic genome variations in clinical population.
Collapse
Affiliation(s)
- S G Vorsanova
- Institute of Pediatrics and Children Surgery, Rosmedtechnologii
| | | | | | | |
Collapse
|
5
|
Iourov IY, Vorsanova SG, Yurov YB. Molecular cytogenetics and cytogenomics of brain diseases. Curr Genomics 2011; 9:452-65. [PMID: 19506734 PMCID: PMC2691674 DOI: 10.2174/138920208786241216] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/06/2008] [Accepted: 07/09/2008] [Indexed: 01/08/2023] Open
Abstract
Molecular cytogenetics is a promising field of biomedical research that has recently revolutionized our thinking on genome structure and behavior. This is in part due to discoveries of human genomic variations and their contribution to biodiversity and disease. Since these studies were primarily targeted at variation of the genome structure, it appears apposite to cover them by molecular cytogenomics. Human brain diseases, which encompass pathogenic conditions from severe neurodegenerative diseases and major psychiatric disorders to brain tumors, are a heavy burden for the patients and their relatives. It has been suggested that most of them, if not all, are of genetic nature and several recent studies have supported the hypothesis assuming them to be associated with genomic instabilities (i.e. single-gene mutations, gross and subtle chromosome imbalances, aneuploidy). The present review is focused on the intriguing relationship between genomic instability and human brain diseases. Looking through the data, we were able to conclude that both interindividual and intercellular genomic variations could be pathogenic representing, therefore, a possible mechanism for human brain malfunctioning. Nevertheless, there are still numerous gaps in our knowledge concerning the link between genomic variations and brain diseases, which, hopefully, will be filled by forthcoming studies. In this light, the present review considers perspectives of this dynamically developing field of neurogenetics and genomics.
Collapse
Affiliation(s)
- I Y Iourov
- National Research Center of Mental Health, Russian Academy of Medical Sciences
| | | | | |
Collapse
|
6
|
Yurov YB, Vorsanova SG, Iourov IY. Ontogenetic variation of the human genome. Curr Genomics 2011; 11:420-5. [PMID: 21358986 PMCID: PMC3018722 DOI: 10.2174/138920210793175958] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/22/2022] Open
Abstract
The human genome demonstrates variable levels of instability during ontogeny. Achieving the highest rate during early prenatal development, it decreases significantly throughout following ontogenetic stages. A failure to decrease or a spontaneous increase of genomic instability can promote infertility, pregnancy losses, chromosomal and genomic diseases, cancer, immunodeficiency, or brain diseases depending on developmental stage at which it occurs. Paradoxically, late ontogeny is associated with increase of genomic instability that is considered a probable mechanism for human aging. The latter is even more appreciable in human diseases associated with pathological or accelerated aging (i.e. Alzheimer's disease and ataxia-telangiectasia). These observations resulted in a hypothesis suggesting that somatic genomic variations throughout ontogeny are determinants of cellular vitality in health and disease including intrauterine development, postnatal life and aging. The most devastative effect of somatic genome variations is observed when it manifests as chromosome instability or aneuploidy, which has been repeatedly noted to produce pathologic conditions and to mediate developmental regulatory and aging processes. However, no commonly accepted concepts on the role of chromosome/genome instability in determination of human health span and life span are available. Here, a review of these ontogenetic variations is given to propose a new "dynamic genome" model for pathological and natural genomic changes throughout life that mimic those of phylogenetic diversity.
Collapse
Affiliation(s)
- Y B Yurov
- Institute of Pediatrics and Children Surgery, Rosmedtechnologii
| | | | | |
Collapse
|
7
|
Iourov IY, Vorsanova SG, Saprina EA, Yurov YB. Identification of candidate genes of autism on the basis of molecular cytogenetic and in silico studies of the genome organization of chromosomal regions involved in unbalanced rearrangements. RUSS J GENET+ 2010. [DOI: 10.1134/s102279541010011x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Vorsanova SG, Yurov YB, Iourov IY. Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet 2010; 3:1. [PMID: 20180947 PMCID: PMC2830939 DOI: 10.1186/1755-8166-3-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 01/11/2010] [Indexed: 01/05/2023] Open
Abstract
Human karyotype is usually studied by classical cytogenetic (banding) techniques. To perform it, one has to obtain metaphase chromosomes of mitotic cells. This leads to the impossibility of analyzing all the cell types, to moderate cell scoring, and to the extrapolation of cytogenetic data retrieved from a couple of tens of mitotic cells to the whole organism, suggesting that all the remaining cells possess these genomes. However, this is far from being the case inasmuch as chromosome abnormalities can occur in any cell along ontogeny. Since somatic cells of eukaryotes are more likely to be in interphase, the solution of the problem concerning studying postmitotic cells and larger cell populations is interphase cytogenetics, which has become more or less applicable for specific biomedical tasks due to achievements in molecular cytogenetics (i.e. developments of fluorescence in situ hybridization -- FISH, and multicolor banding -- MCB). Numerous interphase molecular cytogenetic approaches are restricted to studying specific genomic loci (regions) being, however, useful for identification of chromosome abnormalities (aneuploidy, polyploidy, deletions, inversions, duplications, translocations). Moreover, these techniques are the unique possibility to establish biological role and patterns of nuclear genome organization at suprachromosomal level in a given cell. Here, it is to note that this issue is incompletely worked out due to technical limitations. Nonetheless, a number of state-of-the-art molecular cytogenetic techniques (i.e multicolor interphase FISH or interpahase chromosome-specific MCB) allow visualization of interphase chromosomes in their integrity at molecular resolutions. Thus, regardless numerous difficulties encountered during studying human interphase chromosomes, molecular cytogenetics does provide for high-resolution single-cell analysis of genome organization, structure and behavior at all stages of cell cycle.
Collapse
Affiliation(s)
- Svetlana G Vorsanova
- Institute of Pediatrics and Children Surgery, Rosmedtechnologii, Moscow, 127412, Russia
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow 119152, Russia
| | - Yuri B Yurov
- Institute of Pediatrics and Children Surgery, Rosmedtechnologii, Moscow, 127412, Russia
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow 119152, Russia
| | - Ivan Y Iourov
- Institute of Pediatrics and Children Surgery, Rosmedtechnologii, Moscow, 127412, Russia
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow 119152, Russia
| |
Collapse
|
9
|
Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Yurov YB. Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet 2009; 18:2656-69. [PMID: 19414482 DOI: 10.1093/hmg/ddp207] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ataxia telangiectasia (AT) is a chromosome instability (CIN) neurological syndrome arising from DNA damage response defects due to ATM gene mutations. The hallmark of AT is progressive cerebellar degeneration. However, the intrinsic cause of the neurodegeneration remains poorly understood. To highlight the relationship between CIN and neurodegeneration in AT, we monitored aneuploidy and interphase chromosome breaks (chromosomal biomarkers of genomic instability) in the normal and diseased brain. We observed a 2-3-fold increase of stochastic aneuploidy affecting different chromosomes in the cerebellum and the cerebrum of the AT brain. The global aneuploidization of the brain is, therefore, a new genetic phenomenon featuring AT. Degenerating cerebellum in AT was remarkably featured by a dramatic 5-20-fold increase of non-random DNA double-strand breaks and aneuploidy affecting chromosomes 14 and, to a lesser extend, chromosomes 7 and X. Novel recurrent chromosome hot spots associated with cerebellar degeneration were mapped within 14q12. In silico analysis has revealed that this genomic region contains two candidate genes (FOXG1B and NOVA1). The existence of non-random breaks disrupting specific chromosomal loci in neural cells with DNA repair deficiency supports the hypothesis that neuronal genome may undergo programmed somatic rearrangements. Investigating chromosome integrity in neural cells, we provide the first evidence that increased CIN can result into neurodegeneration, whereas it is generally assumed to be associated with cancer. Our data suggest that mosaic instability of somatic genome in cells of the central nervous system is more significant genetic factor predisposing to the brain pathology than previously recognized.
Collapse
Affiliation(s)
- Ivan Y Iourov
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Zagorodnoe sh. 2, Moscow 119152, Russia
| | | | | | | | | |
Collapse
|
10
|
Iourov IY, Vorsanova SG, Liehr T, Yurov YB. Aneuploidy in the normal, Alzheimer's disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 2009; 34:212-20. [PMID: 19344645 DOI: 10.1016/j.nbd.2009.01.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 10/21/2022] Open
Abstract
Recently it has been suggested that the human brain contains aneuploid cells; however the nature and magnitude of neural aneuploidy in health and disease remain obscure. Here, we have monitored aneuploidy in the cerebral cortex of the normal, Alzheimer's disease (AD) and ataxia telangiectasia (AT) brain by molecular cytogenetic approaches scoring more than 480,000 neural cells. Using arbitrarily selected set of DNA probes for chromosomes 1, 7, 11, 13, 14, 17, 18, 21, X and Y we have determined the mean rate of stochastic aneuploidy per chromosome as 0.5% in the normal human brain (95%CI 0.2-0.7%; SD 0.2%). The overall proportion of aneuploid cells in the normal brain has been estimated at approximately 10%. In the AT brain, we observed a 2-to-5 fold increase of stochastic aneuploidy randomly affecting different chromosomes (mean 2.1%; 95%CI - 1.5-2.6%; SD 0.8%). The overall proportion of aneuploid cells in the brain of AT individuals was estimated at approximately 20-50%. Compared with sex- and age-matched controls, the level of stochastic aneuploidy in the AD brain was not significantly increased. However, a dramatic 10-fold increase of chromosome 21-specific aneuploidy (both hypoploidy and hyperploidy) was detected in the AD cerebral cortex (6-15% versus 0.8-1.8% in control). We conclude that somatic mosaic aneuploidy differentially contributes to intercellular genomic variation in the normal, AD and AT brain. Neural aneuploidy leading to altered cellular physiology may significantly contribute to the pathogenesis of neurodegenerative diseases. These data indicate neural aneuploidy to be a newly identified feature of neurodegenerative diseases, similar to other devastative disorders hallmarked by aneuploidy such as chromosome syndromes and cancer.
Collapse
Affiliation(s)
- Ivan Y Iourov
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
11
|
Vorsanova SG, Iourov IY, Voinova-Ulas VY, Weise A, Monakhov VV, Kolotii AD, Soloviev IV, Novikov PV, Yurov YB, Liehr T. Partial monosomy 7q34-qter and 21pter-q22.13 due to cryptic unbalanced translocation t(7;21) but not monosomy of the whole chromosome 21: a case report plus review of the literature. Mol Cytogenet 2008; 1:13. [PMID: 18564437 PMCID: PMC2442098 DOI: 10.1186/1755-8166-1-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 06/19/2008] [Indexed: 11/10/2022] Open
Abstract
Background Autosomal monosomies in human are generally suggested to be incompatible with life; however, there is quite a number of cytogenetic reports describing full monosomy of one chromosome 21 in live born children. Here, we report a cytogenetically similar case associated with congenital malformation including mental retardation, motor development delay, craniofacial dysmorphism and skeletal abnormalities. Results Initially, a full monosomy of chromosome 21 was suspected as only 45 chromosomes were present. However, molecular cytogenetics revealed a de novo unbalanced translocation with a der(7)t(7;21). It turned out that the translocated part of chromosome 21 produced GTG-banding patterns similar to original ones of chromosome 7. The final karyotype was described as 45,XX,der(7)t(7;21)(q34;q22.13),-21. As a meta analysis revealed that clusters of the olfactory receptor gene family (ORF) are located in these breakpoint regions, an involvement of OFR in the rearrangement formation is discussed here. Conclusion The described clinical phenotype is comparable to previously described cases with ring chromosome 21, and a number of cases with del(7)(q34). Thus, at least a certain percentage, if not all full monosomy of chromosome 21 in live-borns are cases of unbalanced translocations involving chromosome 21.
Collapse
Affiliation(s)
- Svetlana G Vorsanova
- Institute of Human Genetics and Anthropology, Friedrich Schiller University, Jena, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Iourov IY, Vorsanova SG, Yurov YB. Chromosomal variation in mammalian neuronal cells: known facts and attractive hypotheses. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 249:143-91. [PMID: 16697283 DOI: 10.1016/s0074-7696(06)49003-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromosomal mosaicism is still a genetic enigma. Although the mechanisms and consequences of this phenomenon have been studied for over 50 years, there are a number of gaps in our knowledge concerning causes, genetic mechanisms, and phenotypic manifestations of chromosomal mosaicism. Neuronal cell-specific chromosomal mosaicism is not an exception. Originally, neuronal cells of the mammalian brain were assumed to possess identical genomes. However, recent studies have shown chromosomal variations, manifested as chromosome abnormalities in cells of the developing and adult mammalian nervous system. Here, we review data obtained on the variation in chromosome complement in mammalian neuronal cells and hypothesize about the possible relevance of large-scale genomic (i.e., chromosomal) variations to brain development and functions as well as neurodevelopmental and neurodegenerative disorders. We propose to cover the term "molecular neurocytogenetics to cover all studies the aim of which is to reveal chromosome variations and organization in the mammalian brain.
Collapse
Affiliation(s)
- Ivan Y Iourov
- National Research Center of Mental Health, Russian Academy of Sciences, Moscow, Russia 119152
| | | | | |
Collapse
|
13
|
Iourov IY, Soloviev IV, Vorsanova SG, Monakhov VV, Yurov YB. An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics. J Histochem Cytochem 2005; 53:401-8. [PMID: 15750029 DOI: 10.1369/jhc.4a6419.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A number of applied molecular cytogenetic studies require the quantitative assessment of fluorescence in situ hybridization (FISH) signals (for example, interphase FISH analysis of aneuploidy by chromosome enumeration DNA probes; analysis of somatic pairing of homologous chromosomes in interphase nuclei; identification of chromosomal heteromorphism after FISH with satellite DNA probes for differentiation of parental origin of homologous chromosome, etc.). We have performed a pilot study to develop a simple technique for quantitative assessment of FISH signals by means of the digital capturing of microscopic images and the intensity measuring of hybridization signals using Scion Image software, commonly used for quantification of electrophoresis gels. We have tested this approach by quantitative analysis of FISH signals after application of chromosome-specific DNA probes for aneuploidy scoring in interphase nuclei in cells of different human tissues. This approach allowed us to exclude or confirm a low-level mosaic form of aneuploidy by quantification of FISH signals (for example, discrimination of pseudo-monosomy and artifact signals due to over-position of hybridization signals). Quantification of FISH signals was also used for analysis of somatic pairing of homologous chromosomes in nuclei of postmortem brain tissues after FISH with "classical" satellite DNA probes for chromosomes 1, 9, and 16. This approach has shown a relatively high efficiency for the quantitative registration of chromosomal heteromorphism due to variations of centromeric alphoid DNA in homologous parental chromosomes. We propose this approach to be efficient and to be considered as a useful tool in addition to visual FISH signal analysis for applied molecular cytogenetic studies.
Collapse
Affiliation(s)
- Ivan Y Iourov
- National Center of Mental Health, Russian Academy of Medical Sciences, Zagorodnoe sh.2, 119152 Moscow, Russia
| | | | | | | | | |
Collapse
|
14
|
Yurov YB, Iourov IY, Monakhov VV, Soloviev IV, Vostrikov VM, Vorsanova SG. The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. J Histochem Cytochem 2005; 53:385-90. [PMID: 15750026 DOI: 10.1369/jhc.4a6430.2005] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite the lack of direct cytogenetic studies, the neuronal cells of the normal human brain have been postulated to contain normal (diploid) chromosomal complement. Direct proof of a chromosomal mutation presence leading to large-scale genomic alterations in neuronal cells has been missing in the human brain. Large-scale genomic variations due to chromosomal complement instability in developing neuronal cells may lead to the variable level of chromosomal mosaicism probably having a substantial effect on brain development. The aim of the present study was the pilot assessment of chromosome complement variations in neuronal cells of developing and adult human brain tissues using interphase multicolor fluorescence in situ hybridization (mFISH). Chromosome-enumerating DNA probes from the original collection (chromosomes 1, 13 and 21, 18, X, and Y) were used for the present pilot FISH study. As a source of fetal brain tissue, the medulla oblongata was used. FISH studies were performed using uncultured fetal brain samples as well as organotypic cultures of medulla oblongata tissue. Cortex tissues of postmortem adult brain samples (Brodmann area 10) were also studied. In cultured in vitro embryonic neuronal brain cells, an increased level of aneuploidy was found (mean rate in the range of 1.3-7.0% per individual chromosome, in contrast to 0.6-3.0% and 0.1-0.8% in uncultured fetal and postmortem adult brain cells, respectively). The data obtained support the hypothesis regarding aneuploidy occurrence in normal developing and adult human brain.
Collapse
Affiliation(s)
- Yuri B Yurov
- National Center of Mental Health, Russian Academy of Medical Sciences, Zagorodnoe sh.2, 119152 Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
15
|
Vorsanova SG, Yurov YB, Kolotii AD, Soloviev IV. FISH analysis of replication and transcription of chromosome X loci: new approach for genetic analysis of Rett syndrome. Brain Dev 2001; 23 Suppl 1:S191-5. [PMID: 11738871 DOI: 10.1016/s0387-7604(01)00364-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Differential replication staining using the 5-bromo-2'-deoxyuridine+Hoechst 33258 technique has been carried out on a series of 28 girls with Rett syndrome (RTT). The results indicated that regions Xq23 and Xq28 of inactive chromosome X could contain early replicating and, therefore, transcriptionally active loci in RTT. Interphase fluorescence in situ hybridization studies of replication timing, using chromosome X-specific genomic DNA probes, was applied to determine the loci with altered replication and transcription in RTT. Randomly selected P1 artificial chromosome (PAC) clones for Xp, Xcen and Xq were used. Two PAC clones from Xq28 (anonymous clone 24.23.0 and 671D9, containing MeCP2 locus) probably escape inactivation in late replicating chromosome X in some RTT patients. Therefore, region Xq28 could contain the genes escaping X inactivation and with expression from the human active and inactive X chromosomes. These results support the hypothesis proposing the disturbances in dosage compensation effect due to aberrant activation of genes in inactive chromosome X in RTT (bi-allelic expression instead of mono-allelic). Our results indicate that the normal allele of the MeCP2 gene could escape X inactivation and reduce the pathogenic effect of mutated allele in RTT.
Collapse
Affiliation(s)
- S G Vorsanova
- Institute of Pediatrics and Children Surgery, Russian Ministry of Health, 127412, Taldomskaya str. 2, Moscow, Russia
| | | | | | | |
Collapse
|
16
|
Ko TM, Hwa HL, Tseng LH, Lin YW, Cheung YP. Fluorescence microsatellite analysis to study the parental origin of the supernumerary chromosome in Down's syndrome. Int J Gynaecol Obstet 1998; 61:149-53. [PMID: 9639219 DOI: 10.1016/s0020-7292(98)00051-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Down's syndrome (DS) is an important cause of mental retardation. This study investigated the parental origin of the extra chromosome 21 in DS patients. METHODS Fourteen families each with a DS patient were recruited for analysis of nine microsatellite markers on chromosome 21. We collected DNA from both parents and the patient and used polymerase chain reaction to amplify nine segments on chromosome 21: D21S1435, D21S1436, D21S1437, D21S1446, D21S156, D21S258, D21S263, D21S265 and D21S270. One of each pair of DNA primers was labeled with a fluorescence dye. The amplified products were subjected to electrophoresis in a semi-automated DNA sequencer and then analyzed with Genescan software to determine the origin of the extra chromosome 21. RESULTS The extra chromosome 21 originated from the mother in 13 (93%) patients and from the father in one (7%) patient. CONCLUSIONS Our findings were compatible with those from Caucasian patients. A great majority of Down's syndrome cases resulted from meiotic errors in the eggs.
Collapse
Affiliation(s)
- T M Ko
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei.
| | | | | | | | | |
Collapse
|
17
|
Yurov YB, Soloviev IV, Vorsanova SG, Marcais B, Roizes G, Lewis R. High resolution multicolor fluorescence in situ hybridization using cyanine and fluorescein dyes: rapid chromosome identification by directly fluorescently labeled alphoid DNA probes. Hum Genet 1996; 97:390-8. [PMID: 8786090 DOI: 10.1007/bf02185780] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We tested DNA probes directly labeled by fluorescently labeled nucleotides (Cy3-dCTP, Cy5-dCTP, FluorX-dCTP) for high resolution uni- and multicolor detection of human chromosomes and analysis of centromeric DNA organization by in situ hybridization. Alpha-satellite DNA probes specific to chromosomes 1, 2, 3, 4 + 9, 5 + 19, 6, 7, 8, 10, 11, 13 + 21, 14 + 22, 15, 16, 17, 18, 20, 22, X and Y were suitable for the accurate identification of human chromosomes in metaphase and interphase cells. Cy3-labeled probes had several advantages: (1) a high level of fluorescence (5-10 times more compared with fluorescein-labeled probes); (2) a low level of fluorescence in solution, allowing the detection of target chromosomes in situ during hybridization without the washing of slides; and (3) high resistance to photobleaching during prolonged (1-2 h) exposure to strong light, thus allowing the use of a high energy mercury lamp or a long integration time during image acquisition in digital imaging microscopy for the determination of weak signals. For di- and multicolor fluorescence in situ hybridization (FISH), we successfully used different combinations of directly fluorophorated probes with preservation of images by conventional microscopy or by digital imaging microscopy. FluorX and Cy3 dyes allowed the use of cosmid probes for mapping in a one-step hybridization experiment. Cyanine-labeled fluorophorated DNA probes offer additional possibilities for rapid chromosome detection during a simple 15-min FISH procedure, and can be recommended for basic research and clinical studies, utilizing FISH.
Collapse
Affiliation(s)
- Y B Yurov
- National Research Centre of Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | |
Collapse
|