1
|
McCredie S, Ledger W, Venetis CA. Anti-Müllerian hormone kinetics in pregnancy and post-partum: a systematic review. Reprod Biomed Online 2017; 34:522-533. [DOI: 10.1016/j.rbmo.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 10/20/2022]
|
2
|
Alldred SK, Takwoingi Y, Guo B, Pennant M, Deeks JJ, Neilson JP, Alfirevic Z. First trimester ultrasound tests alone or in combination with first trimester serum tests for Down's syndrome screening. Cochrane Database Syst Rev 2017; 3:CD012600. [PMID: 28295158 PMCID: PMC6464518 DOI: 10.1002/14651858.cd012600] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Down's syndrome occurs when a person has three, rather than two copies of chromosome 21; or the specific area of chromosome 21 implicated in causing Down's syndrome. It is the commonest congenital cause of mental disability and also leads to numerous metabolic and structural problems. It can be life-threatening, or lead to considerable ill health, although some individuals have only mild problems and can lead relatively normal lives. Having a baby with Down's syndrome is likely to have a significant impact on family life.Non-invasive screening based on biochemical analysis of maternal serum or urine, or fetal ultrasound measurements, allows estimates of the risk of a pregnancy being affected and provides information to guide decisions about definitive testing.Before agreeing to screening tests, parents need to be fully informed about the risks, benefits and possible consequences of such a test. This includes subsequent choices for further tests they may face, and the implications of both false positive and false negative screening tests (i.e. invasive diagnostic testing, and the possibility that a miscarried fetus may be chromosomally normal). The decisions that may be faced by expectant parents inevitably engender a high level of anxiety at all stages of the screening process, and the outcomes of screening can be associated with considerable physical and psychological morbidity. No screening test can predict the severity of problems a person with Down's syndrome will have. OBJECTIVES To estimate and compare the accuracy of first trimester ultrasound markers alone, and in combination with first trimester serum tests for the detection of Down's syndrome. SEARCH METHODS We carried out extensive literature searches including MEDLINE (1980 to 25 August 2011), Embase (1980 to 25 August 2011), BIOSIS via EDINA (1985 to 25 August 2011), CINAHL via OVID (1982 to 25 August 2011), and The Database of Abstracts of Reviews of Effects (the Cochrane Library 2011, Issue 7). We checked reference lists and published review articles for additional potentially relevant studies. SELECTION CRITERIA Studies evaluating tests of first trimester ultrasound screening, alone or in combination with first trimester serum tests (up to 14 weeks' gestation) for Down's syndrome, compared with a reference standard, either chromosomal verification or macroscopic postnatal inspection. DATA COLLECTION AND ANALYSIS Data were extracted as test positive/test negative results for Down's and non-Down's pregnancies allowing estimation of detection rates (sensitivity) and false positive rates (1-specificity). We performed quality assessment according to QUADAS criteria. We used hierarchical summary ROC meta-analytical methods to analyse test performance and compare test accuracy. Analysis of studies allowing direct comparison between tests was undertaken. We investigated the impact of maternal age on test performance in subgroup analyses. MAIN RESULTS We included 126 studies (152 publications) involving 1,604,040 fetuses (including 8454 Down's syndrome cases). Studies were generally good quality, although differential verification was common with invasive testing of only high-risk pregnancies. Sixty test combinations were evaluated formed from combinations of 11 different ultrasound markers (nuchal translucency (NT), nasal bone, ductus venosus Doppler, maxillary bone length, fetal heart rate, aberrant right subclavian artery, frontomaxillary facial angle, presence of mitral gap, tricuspid regurgitation, tricuspid blood flow and iliac angle 90 degrees); 12 serum tests (inhibin A, alpha-fetoprotein (AFP), free beta human chorionic gonadotrophin (ßhCG), total hCG, pregnancy-associated plasma protein A (PAPP-A), unconjugated oestriol (uE3), disintegrin and metalloprotease 12 (ADAM 12), placental growth factor (PlGF), placental growth hormone (PGH), invasive trophoblast antigen (ITA) (synonymous with hyperglycosylated hCG), growth hormone binding protein (GHBP) and placental protein 13 (PP13)); and maternal age. The most frequently evaluated serum markers in combination with ultrasound markers were PAPP-A and free ßhCG.Comparisons of the 10 most frequently evaluated test strategies showed that a combined NT, PAPP-A, free ßhCG and maternal age test strategy significantly outperformed ultrasound markers alone (with or without maternal age) except nasal bone, detecting about nine out of every 10 Down's syndrome pregnancies at a 5% false positive rate (FPR). In both direct and indirect comparisons, the combined NT, PAPP-A, free ßhCG and maternal age test strategy showed superior diagnostic accuracy to an NT and maternal age test strategy (P < 0.0001). Based on the indirect comparison of all available studies for the two tests, the sensitivity (95% confidence interval) estimated at a 5% FPR for the combined NT, PAPP-A, free ßhCG and maternal age test strategy (69 studies; 1,173,853 fetuses including 6010 with Down's syndrome) was 87% (86 to 89) and for the NT and maternal age test strategy (50 studies; 530,874 fetuses including 2701 Down's syndrome pregnancies) was 71% (66 to 75). Combinations of NT with other ultrasound markers, PAPP-A and free ßhCG were evaluated in one or two studies and showed sensitivities of more than 90% and specificities of more than 95%.High-risk populations (defined before screening was done, mainly due to advanced maternal age of 35 years or more, or previous pregnancies affected with Down's syndrome) showed lower detection rates compared to routine screening populations at a 5% FPR. Women who miscarried in the over 35 group were more likely to have been offered an invasive test to verify a negative screening results, whereas those under 35 were usually not offered invasive testing for a negative screening result. Pregnancy loss in women under 35 therefore leads to under-ascertainment of screening results, potentially missing a proportion of affected pregnancies and affecting test sensitivity. Conversely, for the NT, PAPP-A, free ßhCG and maternal age test strategy, detection rates and false positive rates increased with maternal age in the five studies that provided data separately for the subset of women aged 35 years or more. AUTHORS' CONCLUSIONS Test strategies that combine ultrasound markers with serum markers, especially PAPP-A and free ßhCG, and maternal age were significantly better than those involving only ultrasound markers (with or without maternal age) except nasal bone. They detect about nine out of 10 Down's affected pregnancies for a fixed 5% FPR. Although the absence of nasal bone appeared to have a high diagnostic accuracy, only five out of 10 affected Down's pregnancies were detected at a 1% FPR.
Collapse
Affiliation(s)
- S Kate Alldred
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchEdgbastonBirminghamUKB15 2TT
| | - Boliang Guo
- University of NottinghamSchool of MedicineCLAHRC, C floor, IHM, Jubilee CampusUniversity of Nottingham, Triumph RoadNottinghamEast MidlandsUKNG7 2TU
| | - Mary Pennant
- Cambridgeshire County CouncilPublic Health DirectorateCambridgeUK
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchEdgbastonBirminghamUKB15 2TT
| | | | - Zarko Alfirevic
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | | |
Collapse
|
3
|
Alldred SK, Takwoingi Y, Guo B, Pennant M, Deeks JJ, Neilson JP, Alfirevic Z. First and second trimester serum tests with and without first trimester ultrasound tests for Down's syndrome screening. Cochrane Database Syst Rev 2017; 3:CD012599. [PMID: 28295159 PMCID: PMC6464364 DOI: 10.1002/14651858.cd012599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Down's syndrome occurs when a person has three copies of chromosome 21 (or the specific area of chromosome 21 implicated in causing Down's syndrome) rather than two. It is the commonest congenital cause of mental disability. Non-invasive screening based on biochemical analysis of maternal serum or urine, or fetal ultrasound measurements, allows estimates of the risk of a pregnancy being affected and provides information to guide decisions about definitive testing. Before agreeing to screening tests, parents need to be fully informed about the risks, benefits and possible consequences of such a test. This includes subsequent choices for further tests they may face, and the implications of both false positive (i.e. invasive diagnostic testing, and the possibility that a miscarried fetus may be chromosomally normal) and false negative screening tests (i.e. a fetus with Down's syndrome will be missed). The decisions that may be faced by expectant parents inevitably engender a high level of anxiety at all stages of the screening process, and the outcomes of screening can be associated with considerable physical and psychological morbidity. No screening test can predict the severity of problems a person with Down's syndrome will have. OBJECTIVES To estimate and compare the accuracy of first and second trimester serum markers with and without first trimester ultrasound markers for the detection of Down's syndrome in the antenatal period, as combinations of markers. SEARCH METHODS We conducted a sensitive and comprehensive literature search of MEDLINE (1980 to 25 August 2011), Embase (1980 to 25 August 2011), BIOSIS via EDINA (1985 to 25 August 2011), CINAHL via OVID (1982 to 25 August 2011), the Database of Abstracts of Reviews of Effectiveness (the Cochrane Library 25 August 2011), MEDION (25 August 2011), the Database of Systematic Reviews and Meta-Analyses in Laboratory Medicine (25 August 2011), the National Research Register (Archived 2007), and Health Services Research Projects in Progress database (25 August 2011). We did not apply a diagnostic test search filter. We did forward citation searching in ISI citation indices, Google Scholar and PubMed 'related articles'. We also searched reference lists of retrieved articles SELECTION CRITERIA: Studies evaluating tests of combining first and second trimester maternal serum markers in women up to 24 weeks of gestation for Down's syndrome, with or without first trimester ultrasound markers, compared with a reference standard, either chromosomal verification or macroscopic postnatal inspection. DATA COLLECTION AND ANALYSIS Data were extracted as test positive/test negative results for Down's and non-Down's pregnancies allowing estimation of detection rates (sensitivity) and false positive rates (1-specificity). We performed quality assessment according to QUADAS criteria. We used hierarchical summary ROC meta-analytical methods to analyse test performance and compare test accuracy. Analysis of studies allowing direct comparison between tests was undertaken. We investigated the impact of maternal age on test performance in subgroup analyses. MAIN RESULTS Twenty-two studies (reported in 25 publications) involving 228,615 pregnancies (including 1067 with Down's syndrome) were included. Studies were generally high quality, although differential verification was common with invasive testing of only high risk pregnancies. Ten studies made direct comparisons between tests. Thirty-two different test combinations were evaluated formed from combinations of eight different tests and maternal age; first trimester nuchal translucency (NT) and the serum markers AFP, uE3, total hCG, free βhCG, Inhibin A, PAPP-A and ADAM 12. We looked at tests combining first and second trimester markers with or without ultrasound as complete tests, and we also examined stepwise and contingent strategies.Meta-analysis of the six most frequently evaluated test combinations showed that a test strategy involving maternal age and a combination of first trimester NT and PAPP-A, and second trimester total hCG, uE3, AFP and Inhibin A significantly outperformed other test combinations that involved only one serum marker or NT in the first trimester, detecting about nine out of every 10 Down's syndrome pregnancies at a 5% false positive rate. However, the evidence was limited in terms of the number of studies evaluating this strategy, and we therefore cannot recommend one single screening strategy. AUTHORS' CONCLUSIONS Tests involving first trimester ultrasound with first and second trimester serum markers in combination with maternal age are significantly better than those without ultrasound, or those evaluating first trimester ultrasound in combination with second trimester serum markers, without first trimester serum markers. We cannot make recommendations about a specific strategy on the basis of the small number of studies available.
Collapse
Affiliation(s)
- S Kate Alldred
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchEdgbastonBirminghamUKB15 2TT
| | - Boliang Guo
- University of NottinghamSchool of MedicineCLAHRC, C floor, IHM, Jubilee CampusUniversity of Nottingham, Triumph RoadNottinghamEast MidlandsUKNG7 2TU
| | - Mary Pennant
- Cambridgeshire County CouncilPublic Health DirectorateCambridgeUK
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchEdgbastonBirminghamUKB15 2TT
| | | | - Zarko Alfirevic
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | | |
Collapse
|
4
|
Alldred SK, Takwoingi Y, Guo B, Pennant M, Deeks JJ, Neilson JP, Alfirevic Z. First trimester serum tests for Down's syndrome screening. Cochrane Database Syst Rev 2015; 2015:CD011975. [PMID: 26617074 PMCID: PMC6465076 DOI: 10.1002/14651858.cd011975] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Down's syndrome occurs when a person has three, rather than two copies of chromosome 21; or the specific area of chromosome 21 implicated in causing Down's syndrome. It is the commonest congenital cause of mental disability and also leads to numerous metabolic and structural problems. It can be life-threatening, or lead to considerable ill health, although some individuals have only mild problems and can lead relatively normal lives. Having a baby with Down's syndrome is likely to have a significant impact on family life.Noninvasive screening based on biochemical analysis of maternal serum or urine, or fetal ultrasound measurements, allows estimates of the risk of a pregnancy being affected and provides information to guide decisions about definitive testing. However, no test can predict the severity of problems a person with Down's syndrome will have. OBJECTIVES The aim of this review was to estimate and compare the accuracy of first trimester serum markers for the detection of Down's syndrome in the antenatal period, both as individual markers and as combinations of markers. Accuracy is described by the proportion of fetuses with Down's syndrome detected by screening before birth (sensitivity or detection rate) and the proportion of women with a low risk (normal) screening test result who subsequently had a baby unaffected by Down's syndrome (specificity). SEARCH METHODS We conducted a sensitive and comprehensive literature search of MEDLINE (1980 to 25 August 2011), Embase (1980 to 25 August 2011), BIOSIS via EDINA (1985 to 25 August 2011), CINAHL via OVID (1982 to 25 August 2011), The Database of Abstracts of Reviews of Effectiveness (The Cochrane Library 25 August 2011), MEDION (25 August 2011), The Database of Systematic Reviews and Meta-Analyses in Laboratory Medicine (25 August 2011), The National Research Register (Archived 2007), Health Services Research Projects in Progress database (25 August 2011). We did forward citation searching ISI citation indices, Google Scholar and PubMed 'related articles'. We did not apply a diagnostic test search filter. We also searched reference lists and published review articles. SELECTION CRITERIA We included studies in which all women from a given population had one or more index test(s) compared to a reference standard (either chromosomal verification or macroscopic postnatal inspection). Both consecutive series and diagnostic case-control study designs were included. Randomised trials where individuals were randomised to different screening strategies and all verified using a reference standard were also eligible for inclusion. Studies in which test strategies were compared head-to-head either in the same women, or between randomised groups were identified for inclusion in separate comparisons of test strategies. We excluded studies if they included less than five Down's syndrome cases, or more than 20% of participants were not followed up. DATA COLLECTION AND ANALYSIS We extracted data as test positive or test negative results for Down's and non-Down's pregnancies allowing estimation of detection rates (sensitivity) and false positive rates (1-specificity). We performed quality assessment according to QUADAS (Quality Assessment of Diagnostic Accuracy Studies) criteria. We used hierarchical summary ROC meta-analytical methods or random-effects logistic regression methods to analyse test performance and compare test accuracy as appropriate. Analyses of studies allowing direct and indirect comparisons between tests were undertaken. MAIN RESULTS We included 56 studies (reported in 68 publications) involving 204,759 pregnancies (including 2113 with Down's syndrome). Studies were generally of good quality, although differential verification was common with invasive testing of only high-risk pregnancies. We evaluated 78 test combinations formed from combinations of 18 different tests, with or without maternal age; ADAM12 (a disintegrin and metalloprotease), AFP (alpha-fetoprotein), inhibin, PAPP-A (pregnancy-associated plasma protein A, ITA (invasive trophoblast antigen), free βhCG (beta human chorionic gonadotrophin), PlGF (placental growth factor), SP1 (Schwangerschafts protein 1), total hCG, progesterone, uE3 (unconjugated oestriol), GHBP (growth hormone binding protein), PGH (placental growth hormone), hyperglycosylated hCG, ProMBP (proform of eosinophil major basic protein), hPL (human placental lactogen), (free αhCG, and free ßhCG to AFP ratio. Direct comparisons between two or more tests were made in 27 studies.Meta-analysis of the nine best performing or frequently evaluated test combinations showed that a test strategy involving maternal age and a double marker combination of PAPP-A and free ßhCG significantly outperformed the individual markers (with or without maternal age) detecting about seven out of every 10 Down's syndrome pregnancies at a 5% false positive rate (FPR). Limited evidence suggested that marker combinations involving PAPP-A may be more sensitive than those without PAPP-A. AUTHORS' CONCLUSIONS Tests involving two markers in combination with maternal age, specifically PAPP-A, free βhCG and maternal age are significantly better than those involving single markers with and without age. They detect seven out of 10 Down's affected pregnancies for a fixed 5% FPR. The addition of further markers (triple tests) has not been shown to be statistically superior; the studies included are small with limited power to detect a difference.The screening blood tests themselves have no adverse effects for the woman, over and above the risks of a routine blood test. However some women who have a 'high risk' screening test result, and are given amniocentesis or chorionic villus sampling (CVS) have a risk of miscarrying a baby unaffected by Down's. Parents will need to weigh up this risk when deciding whether or not to have an amniocentesis or CVS following a 'high risk' screening test result.
Collapse
Affiliation(s)
- S Kate Alldred
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Yemisi Takwoingi
- University of BirminghamPublic Health, Epidemiology and BiostatisticsEdgbastonBirminghamUKB15 2TT
| | - Boliang Guo
- University of NottinghamSchool of MedicineCLAHRC, C floor, IHM, Jubilee CampusUniversity of Nottingham, Triumph RoadNottinghamEast MidlandsUKNG7 2TU
| | - Mary Pennant
- Cambridgeshire County CouncilPublic Health DirectorateCambridgeUK
| | - Jonathan J Deeks
- University of BirminghamPublic Health, Epidemiology and BiostatisticsEdgbastonBirminghamUKB15 2TT
| | - James P Neilson
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Zarko Alfirevic
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | | |
Collapse
|
5
|
Somigliana E, Lattuada D, Colciaghi B, Filippi F, La Vecchia I, Tirelli A, Baffero GM, Paffoni A, Persico N, Bolis G, Fedele L. Serum anti-Müllerian hormone in subfertile women. Acta Obstet Gynecol Scand 2015; 94:1307-12. [DOI: 10.1111/aogs.12761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/17/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Edgardo Somigliana
- Department of Obstetrics and Gynecology; “Fondazione IRCCS Ca' Granda” Hospital; Milan Italy
| | - Debora Lattuada
- Department of Obstetrics and Gynecology; “Fondazione IRCCS Ca' Granda” Hospital; Milan Italy
| | - Barbara Colciaghi
- Department of Obstetrics and Gynecology; “Fondazione IRCCS Ca' Granda” Hospital; Milan Italy
| | - Francesca Filippi
- Department of Obstetrics and Gynecology; “Fondazione IRCCS Ca' Granda” Hospital; Milan Italy
| | - Irene La Vecchia
- Department of Obstetrics and Gynecology; “Fondazione IRCCS Ca' Granda” Hospital; Milan Italy
| | - Amedea Tirelli
- Department of Obstetrics and Gynecology; “Fondazione IRCCS Ca' Granda” Hospital; Milan Italy
| | - Giulia M. Baffero
- Department of Obstetrics and Gynecology; “Fondazione IRCCS Ca' Granda” Hospital; Milan Italy
- University of Milan; Milan Italy
| | - Alessio Paffoni
- Department of Obstetrics and Gynecology; “Fondazione IRCCS Ca' Granda” Hospital; Milan Italy
| | - Nicola Persico
- Department of Obstetrics and Gynecology; “Fondazione IRCCS Ca' Granda” Hospital; Milan Italy
| | - Giorgio Bolis
- Department of Obstetrics and Gynecology; “Fondazione IRCCS Ca' Granda” Hospital; Milan Italy
- University of Milan; Milan Italy
| | - Luigi Fedele
- Department of Obstetrics and Gynecology; “Fondazione IRCCS Ca' Granda” Hospital; Milan Italy
- University of Milan; Milan Italy
| |
Collapse
|
6
|
Stegmann BJ, Santillan M, Leader B, Smith E, Santillan D. Changes in antimüllerian hormone levels in early pregnancy are associated with preterm birth. Fertil Steril 2015; 104:347-55.e3. [PMID: 26074093 DOI: 10.1016/j.fertnstert.2015.04.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/02/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To determine the association of preterm birth with antimüllerian hormone (AMH) levels both in isolation and in combination with other markers of fetoplacental health commonly measured during integrated prenatal screening (IPS) for aneuploidy. DESIGN Retrospective case-control study. SETTING Not applicable. PATIENT(S) Pregnant women in Iowa who elected to undergo IPS and who subsequently delivered in Iowa, including women giving birth at <37 weeks' gestation and controls who delivered at ≥37 weeks' gestation. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Probability of a preterm birth. RESULT(S) Second trimester AMH levels were not associated with preterm birth, either independently or after controlling for other markers of fetoplacental health. The AMH difference was not associated with preterm birth when modeled alone, but a statistically significant association was found after adjusting for maternal serum α-fetoprotein (MSAFP) and maternal weight change between the first and second trimesters. After stratifying the model by MSAFP level, most of the risk for preterm birth was identified in women with an MSAFP >1 multiple of the median and who had a stable or rising AMH level in early pregnancy. CONCLUSION(S) A lack of decline in the AMH level in early pregnancy can be used to identify women with a high probability for preterm birth, especially when MSAFP levels are >1 multiple of the median. Monitoring changes in the AMH level between the first and second trimesters of pregnancy may help identify women who would benefit from interventional therapies such as supplemental progesterone.
Collapse
Affiliation(s)
| | - Mark Santillan
- Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, Iowa
| | | | - Elaine Smith
- Department of Epidemiology, College of Public Health, Iowa City, Iowa
| | - Donna Santillan
- Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, Iowa
| |
Collapse
|
7
|
Novembri R, Funghi L, Voltolini C, Belmonte G, Vannuccini S, Torricelli M, Petraglia F. Placenta expresses anti-Müllerian hormone and its receptor: Sex-related difference in fetal membranes. Placenta 2015; 36:731-7. [PMID: 25972076 DOI: 10.1016/j.placenta.2015.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Anti-Müllerian hormone (AMH) is a member of the transforming growth factor-β superfamily, playing a role in sexual differentiation and recruitment. Since a correlation exists between AMH serum levels in cord blood and fetal sex, the present study aimed to identify mRNA and protein expression of AMH and AMHRII in placenta and fetal membranes according to fetal sex. METHODS Placenta and fetal membranes samples (n = 40) were collected from women with singleton uncomplicated pregnancies at term. Identification of AMH protein in placenta and fetal membranes was carried out by immunohistochemistry and AMH and AMHRII protein localization by immunofluorescence, while mRNA expression was assessed by quantitative real-time PCR. RESULT AMH and AMHRII mRNAs were expressed by placenta and fetal membranes at term, without any significant difference between males and females. Placental immunostaining showed a syncytial localization of AMH without sex-related differences; while fetal membranes immunostaining was significantly more intense in male than in female fetuses (p < 0,01). Immunofluorescence showed an intense co-localization of AMH and AMHRII in placenta and fetal membranes. DISCUSSION The present study for the first time demonstrated that human placenta and fetal membranes expresses and co-localizes AMH and AMHRII. Although no sex-related difference was found for the mRNA expression both in placenta and fetal membranes, a most intense staining for AMH in male fetal membranes supports AMH as a gender specific hormone.
Collapse
Affiliation(s)
- R Novembri
- Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - L Funghi
- Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - C Voltolini
- Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - G Belmonte
- Department of Biomedical Sciences, Applied Biology, University of Siena, Siena, Italy
| | - S Vannuccini
- Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - M Torricelli
- Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - F Petraglia
- Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
8
|
Kuijper E, Ket J, Caanen M, Lambalk C. Reproductive hormone concentrations in pregnancy and neonates: a systematic review. Reprod Biomed Online 2013; 27:33-63. [DOI: 10.1016/j.rbmo.2013.03.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 11/24/2022]
|
9
|
La Marca A, Grisendi V, Griesinger G. How Much Does AMH Really Vary in Normal Women? Int J Endocrinol 2013; 2013:959487. [PMID: 24348558 PMCID: PMC3852815 DOI: 10.1155/2013/959487] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/13/2013] [Indexed: 11/17/2022] Open
Abstract
Anti-Mullerian Hormone (AMH) is an ovarian hormone expressed in growing follicles that have undergone recruitment from the primordial follicle pool but have not yet been selected for dominance. It is considered an accurate marker of ovarian reserve, able to reflect the size of the ovarian follicular pool of a woman of reproductive age. In comparison to other hormonal biomarkers such as serum FSH, low intra- and intermenstrual cycle variability have been proposed for AMH. This review summarizes the knowledge regarding within-subject variability, with particular attention on AMH intracycle variability. Moreover the impact of ethnicity, body mass index, and smoking behaviour on AMH interindividual variability will be reviewed. Finally changes in AMH serum levels in two conditions of ovarian quiescence, namely contraceptives use and pregnancy, will be discussed. The present review aims at guiding researchers and clinicians in interpreting AMH values and fluctuations in various research and clinical scenarios.
Collapse
Affiliation(s)
- Antonio La Marca
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Policlinico di Modena, Largo del Pozzo, 41100 Modena, Italy
- *Antonio La Marca:
| | - Valentina Grisendi
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Policlinico di Modena, Largo del Pozzo, 41100 Modena, Italy
| | - Georg Griesinger
- Department of Reproductive Medicine and Gynecological Endocrinology, University Clinic of Schleswig-Holstein, 23538 Luebeck, Germany
| |
Collapse
|
10
|
Kline JK, Kinney AM, Levin B, Kelly AC, Ferin M, Warburton D. Trisomic pregnancy and elevated FSH: implications for the oocyte pool hypothesis. Hum Reprod 2011; 26:1537-50. [PMID: 21467203 DOI: 10.1093/humrep/der091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Some studies, but not all, support the hypothesis that trisomy frequency is related to the size of the oocyte pool, with the risk increased for women with fewer oocytes (older ovarian age). We tested this hypothesis by comparing hormonal indicators of ovarian age among women who had trisomic pregnancy losses with indicators among women with non-trisomic losses or chromosomally normal births. The three primary indicators of advanced ovarian age were low level of anti-Müllerian hormone (AMH), high level of follicle-stimulating hormone (FSH) and low level of inhibin B. METHODS The analysis drew on data from two hospital-based case-control studies. Data were analyzed separately and the evidence from the two sites was combined. We compared 159 women with trisomic pregnancy losses to three comparison groups: 60 women with other chromosomally abnormal losses, 79 women with chromosomally normal losses and 344 women with live births (LBs) age-matched to women with losses. We analyzed the hormone measures as continuous and as categorical variables. All analyses adjust for age in single years, day of blood draw, interval in storage and site. RESULTS AMH and inhibin B did not differ between women with trisomic losses and any of the three comparison groups. Mean ln(FSH) was 0.137 units (95% confidence interval (CI): 0.055, 0.219) higher for trisomy cases compared with LB controls; it was also higher, though not significantly so, for trisomy cases compared with women with other chromosomally abnormal losses or chromosomally normal losses. The adjusted odds ratio in relation to high FSH (≥ 10 mIU/ml) was significantly increased for trisomy cases versus LB controls (adjusted odds ratio (OR): 3.8, 95% CI: 1.6, 8.9). CONCLUSIONS The association of trisomy with elevated FSH is compatible with the oocyte pool hypothesis, whereas the absence of an association with AMH is not. Alternative interpretations are considered, including the possibility that elevated FSH may disrupt meiotic processes or allow recruitment of abnormal follicles.
Collapse
Affiliation(s)
- J K Kline
- Imprints Center, New York State Psychiatric Institute, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|