1
|
Wren GH, Davies W. Cardiac arrhythmia in individuals with steroid sulfatase deficiency (X-linked ichthyosis): candidate anatomical and biochemical pathways. Essays Biochem 2024; 68:423-429. [PMID: 38571328 PMCID: PMC11625857 DOI: 10.1042/ebc20230098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Circulating steroids, including sex hormones, can affect cardiac development and function. In mammals, steroid sulfatase (STS) is the enzyme solely responsible for cleaving sulfate groups from various steroid molecules, thereby altering their activity and water solubility. Recent studies have indicated that Xp22.31 genetic deletions encompassing STS (associated with the rare dermatological condition X-linked ichthyosis), and common variants within the STS gene, are associated with a markedly elevated risk of cardiac arrhythmias, notably atrial fibrillation/flutter. Here, we consider emerging basic science and clinical findings which implicate structural heart abnormalities (notably septal defects) as a mediator of this heightened risk, and propose candidate cellular and biochemical mechanisms. Finally, we consider how the biological link between STS activity and heart structure/function might be investigated further and the clinical implications of work in this area.
Collapse
Affiliation(s)
| | - William Davies
- School of Psychology, Cardiff University, Cardiff, U.K
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, U.K
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, U.K
| |
Collapse
|
2
|
Wren GH, Flanagan J, Underwood JFG, Thompson AR, Humby T, Davies W. Memory, mood and associated neuroanatomy in individuals with steroid sulphatase deficiency (X-linked ichthyosis). GENES, BRAIN, AND BEHAVIOR 2024; 23:e12893. [PMID: 38704684 PMCID: PMC11070068 DOI: 10.1111/gbb.12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024]
Abstract
Steroid sulphatase (STS) cleaves sulphate groups from steroid hormones, and steroid (sulphate) levels correlate with mood and age-related cognitive decline. In animals, STS inhibition or deletion of the associated gene, enhances memory/neuroprotection and alters hippocampal neurochemistry. Little is known about the consequences of constitutive STS deficiency on memory-related processes in humans. We investigated self-reported memory performance (Multifactorial Memory Questionnaire), word-picture recall and recent mood (Kessler Psychological Distress Scale, K10) in adult males with STS deficiency diagnosed with the dermatological condition X-linked ichthyosis (XLI; n = 41) and in adult female carriers of XLI-associated genetic variants (n = 79); we compared results to those obtained from matched control subjects [diagnosed with ichthyosis vulgaris (IV, n = 98) or recruited from the general population (n = 250)]. Using the UK Biobank, we compared mood/memory-related neuroanatomy in carriers of genetic deletions encompassing STS (n = 28) and non-carriers (n = 34,522). We found poorer word-picture recall and lower perceived memory abilities in males with XLI and female carriers compared with control groups. XLI-associated variant carriers and individuals with IV reported more adverse mood symptoms, reduced memory contentment and greater use of memory aids, compared with general population controls. Mood and memory findings appeared largely independent. Neuroanatomical analysis only indicated a nominally-significantly larger molecular layer in the right hippocampal body of deletion carriers relative to non-carriers. In humans, constitutive STS deficiency appears associated with mood-independent impairments in memory but not with large effects on underlying brain structure; the mediating psychobiological mechanisms might be explored further in individuals with XLI and in new mammalian models lacking STS developmentally.
Collapse
Affiliation(s)
| | - Jessica Flanagan
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
| | - Jack F. G. Underwood
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| | - Andrew R. Thompson
- School of PsychologyCardiff UniversityCardiffUK
- South Wales Clinical Psychology Doctoral ProgrammeCardiff and Vale University Health BoardCardiffUK
| | | | - William Davies
- School of PsychologyCardiff UniversityCardiffUK
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| |
Collapse
|
3
|
Wren G, Baker E, Underwood J, Humby T, Thompson A, Kirov G, Escott-Price V, Davies W. Characterising heart rhythm abnormalities associated with Xp22.31 deletion. J Med Genet 2023; 60:636-643. [PMID: 36379544 PMCID: PMC10359567 DOI: 10.1136/jmg-2022-108862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Genetic deletions at Xp22.31 are associated with the skin condition X linked ichthyosis (XLI), and with a substantially increased risk of atrial fibrillation/flutter (AF), in males. AF is associated with elevated thrombosis, heart failure, stroke and dementia risk. METHODS Through: (a) examining deletion carriers with a diagnosis of AF in UK Biobank, (b) undertaking an online survey regarding abnormal heart rhythms (AHRs) in men/boys with XLI and female carriers of XLI-associated deletions and (c) screening for association between common genetic variants within Xp22.31 and idiopathic AF-related conditions in UK Biobank, we have investigated how AHRs manifest in deletion carriers, and have identified associated risk factors/comorbidities and candidate gene(s). Finally, we examined attitudes towards heart screening in deletion carriers. RESULTS We show that AHRs may affect up to 35% of deletion carriers (compared with <20% of age-matched non-carriers), show no consistent pattern of onset but may be precipitated by stress, and typically resolve quickly and respond well to intervention. Gastrointestinal (GI) conditions and asthma/anaemia were the most strongly associated comorbidities in male and female deletion carriers with AHR, respectively. Genetic analysis indicated significant enrichment of common AF risk variants around STS (7 065 298-7 272 682 bp in GRCh37/hg19 genome build) in males, and of common GI disorder and asthma/anaemia risk variants around PNPLA4 (7 866 804-7 895 780 bp) in males and females, respectively. Deletion carriers were overwhelmingly in favour of cardiac screening implementation. CONCLUSION Our data suggest AHRs are frequently associated with Xp22.31 deletion, and highlight subgroups of deletion carriers that may be prioritised for screening. Examining cardiac function further in deletion carriers, and in model systems lacking steroid sulfatase, may clarify AF pathophysiology.
Collapse
Affiliation(s)
- Georgina Wren
- School of Psychology, Cardiff University, Cardiff, UK
| | - Emily Baker
- Dementia Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jack Underwood
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Trevor Humby
- School of Psychology, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Andrew Thompson
- School of Psychology, Cardiff University, Cardiff, UK
- Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Valentina Escott-Price
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - William Davies
- School of Psychology, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
4
|
McGeoghan F, Camera E, Maiellaro M, Menon M, Huang M, Dewan P, Ziaj S, Caley MP, Donaldson M, Enright AJ, O’Toole EA. RNA sequencing and lipidomics uncovers novel pathomechanisms in recessive X-linked ichthyosis. Front Mol Biosci 2023; 10:1176802. [PMID: 37363400 PMCID: PMC10285781 DOI: 10.3389/fmolb.2023.1176802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Recessive X-linked ichthyosis (RXLI), a genetic disorder caused by deletion or point mutations of the steroid sulfatase (STS) gene, is the second most common form of ichthyosis. It is a disorder of keratinocyte cholesterol sulfate retention and the mechanism of extracutaneous phenotypes such as corneal opacities and attention deficit hyperactivity disorder are poorly understood. To understand the pathomechanisms of RXLI, the transcriptome of differentiated primary keratinocytes with STS knockdown was sequenced. The results were validated in a stable knockdown model of STS, to confirm STS specificity, and in RXLI skin. The results show that there was significantly reduced expression of genes related to epidermal differentiation and lipid metabolism, including ceramide and sphingolipid synthesis. In addition, there was significant downregulation of aldehyde dehydrogenase family members and the oxytocin receptor which have been linked to corneal transparency and behavioural disorders respectively, both of which are extracutaneous phenotypes of RXLI. These data provide a greater understanding of the causative mechanisms of RXLI's cutaneous phenotype, and show that the keratinocyte transcriptome and lipidomics can give novel insights into the phenotype of patients with RXLI.
Collapse
Affiliation(s)
- Farrell McGeoghan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Miriam Maiellaro
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Manasi Menon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mei Huang
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Priya Dewan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stela Ziaj
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Matthew P. Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Anton J. Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edel A. O’Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
5
|
Hu H, Huang Y, Hou R, Xu H, Liu Y, Liao X, Xu J, Jiang L, Wang D. Xp22.31 copy number variations in 87 fetuses: refined genotype-phenotype correlations by prenatal and postnatal follow-up. BMC Med Genomics 2023; 16:69. [PMID: 37013593 PMCID: PMC10069036 DOI: 10.1186/s12920-023-01493-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Xp22.31 deletion and duplication have been described in various studies, but different laboratories interpret pathogenicity differently. OBJECTIVES Our study aimed to refine the genotype-phenotype associations between Xp22.31 copy number variants in fetuses, with the aim of providing data support to genetic counseling. METHODS We retrospectively analyzed karyotyping and single nucleotide polymorphism array results from 87 fetuses and their family members. Phenotypic data were obtained through follow-up visits. RESULTS The percentage of fetuses carrying the Xp22.31 deletions (9 females, 12 males) was 24.1% (n = 21), while duplications (38 females, 28 males) accounted for 75.9% (n = 66). Here, we noted that the typical region (from 6.4 to 8.1 Mb, hg19) was detected in the highest ratio, either in the fetuses with deletions (76.2%, 16 of 21) or duplications (69.7%, 46 of 66). In female deletion carriers, termination of pregnancy was chosen for two fetuses, and the remaining seven were born without distinct phenotypic abnormalities. In male deletion carriers, termination of pregnancy was chosen for four fetuses, and the remaining eight of them displayed ichthyosis without neurodevelopmental anomalies. In two of these cases, the chromosomal imbalance was inherited from the maternal grandfathers, who also only had ichthyosis phenotypes. Among the 66 duplication carriers, two cases were lost at follow-up, and pregnancy was terminated for eight cases. There were no other clinical findings in the rest of the 56 fetuses, including two with Xp22.31 tetrasomy, for either male or female carriers. CONCLUSION Our observations provide support for genetic counseling in male and female carriers of Xp22.31 copy number variants. Most of them are asymptomatic in male deletion carriers, except for skin findings. Our study is consistent with the view that the Xp22.31 duplication may be a benign variant in both sexes.
Collapse
Affiliation(s)
- Huamei Hu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yulin Huang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Renke Hou
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huanhuan Xu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yalan Liu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xueqian Liao
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Juchun Xu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lupin Jiang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Dan Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
6
|
Gutiérrez-Cerrajero C, Sprecher E, Paller AS, Akiyama M, Mazereeuw-Hautier J, Hernández-Martín A, González-Sarmiento R. Ichthyosis. Nat Rev Dis Primers 2023; 9:2. [PMID: 36658199 DOI: 10.1038/s41572-022-00412-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 01/20/2023]
Abstract
The ichthyoses are a large, heterogeneous group of skin cornification disorders. They can be inherited or acquired, and result in defective keratinocyte differentiation and abnormal epidermal barrier formation. The resultant skin barrier dysfunction leads to increased transepidermal water loss and inflammation. Disordered cornification is clinically characterized by skin scaling with various degrees of thickening, desquamation (peeling) and erythema (redness). Regardless of the type of ichthyosis, many patients suffer from itching, recurrent infections, sweating impairment (hypohidrosis) with heat intolerance, and diverse ocular, hearing and nutritional complications that should be monitored periodically. The characteristic clinical features are considered to be a homeostatic attempt to repair the skin barrier, but heterogeneous clinical presentation and imperfect phenotype-genotype correlation hinder diagnosis. An accurate molecular diagnosis is, however, crucial for predicting prognosis and providing appropriate genetic counselling. Most ichthyoses severely affect patient quality of life and, in severe forms, may cause considerable disability and even death. So far, treatment provides only symptomatic relief. It is lifelong, expensive, time-consuming, and often provides disappointing results. A better understanding of the molecular mechanisms that underlie these conditions is essential for designing pathogenesis-driven and patient-tailored innovative therapeutic solutions.
Collapse
Affiliation(s)
- Carlos Gutiérrez-Cerrajero
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amy S Paller
- Departments of Dermatology and Paediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | - Rogelio González-Sarmiento
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
7
|
Wren GH, Davies W. X-linked ichthyosis: New insights into a multi-system disorder. SKIN HEALTH AND DISEASE 2022; 2:e179. [PMID: 36479267 PMCID: PMC9720199 DOI: 10.1002/ski2.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
Background X-linked ichthyosis (XLI) is a rare genetic condition almostexclusively affecting males; it is characterised by abnormal desquamation and retentionhyperkeratosis, and presents with polygonal brown scales. Most cases resultfrom genetic deletions within Xp22.31 spanning the STS (steroid sulfatase)gene, with the remaining cases resulting from STS-specific mutations. For manyyears it has been recognised that individuals with XLI are at increased risk ofcryptorchidism and corneal opacities. Methods We discuss emerging evidence that such individuals are alsomore likely to be affected by a range of neurodevelopmental and psychiatrictraits, by cardiac arrhythmias, and by rare fibrotic and bleeding-relatedconditions. We consider candidate mechanisms that may confer elevatedlikelihood of these individual conditions, and propose a novel commonbiological risk pathway. Results Understanding the prevalence, nature and co-occurrence ofcomorbidities associated with XLI is critical for ensuring early identificationof symptoms and for providing the most effective genetic counselling andmultidisciplinary care for affected individuals. Conclusion Future work in males with XLI, and in new preclinical andcellular model systems, should further clarify underlying pathophysiologicalmechanisms amenable to therapeutic intervention.
Collapse
Affiliation(s)
| | - William Davies
- School of PsychologyCardiff UniversityCardiffUK
- School of MedicineCardiff UniversityCardiffUK
- Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| |
Collapse
|
8
|
Tham KC, Lefferdink R, Duan K, Lim SS, Wong XFCC, Ibler E, Wu B, Abu-Zayed H, Rangel SM, Del Duca E, Chowdhury M, Chima M, Kim HJ, Lee B, Guttman-Yassky E, Paller AS, Common JEA. Distinct skin microbiome community structures in congenital ichthyosis. Br J Dermatol 2022; 187:557-570. [PMID: 35633118 PMCID: PMC10234690 DOI: 10.1111/bjd.21687] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 03/28/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The ichthyoses are rare genetic keratinizing disorders that share the characteristics of an impaired epidermal barrier and increased risk of microbial infections. Although ichthyotic diseases share a T helper (Th) 17 cell immune signature, including increased expression of antimicrobial peptides, the skin microbiota of ichthyoses is virtually unexplored. OBJECTIVES To analyse the metagenome profile of skin microbiome for major congenital ichthyosis subtypes. METHODS Body site-matched skin surface samples were collected from the scalp, upper arm and upper buttocks of 16 healthy control participants and 22 adult patients with congenital forms of ichthyosis for whole metagenomics sequencing analysis. RESULTS Taxonomic profiling showed significant shifts in bacteria and fungi abundance and sporadic viral increases across ichthyosis subtypes. Cutibacterium acnes and Malassezia were significantly reduced across body sites, consistent with skin barrier disruption and depletion of lipids. Microbial richness was reduced, with specific increases in Staphylococcus and Corynebacterium genera, as well as shifts in fungal species, including Malassezia. Malassezia globosa was reduced at all body sites, whereas M. sympodialis was reduced in the ichthyotic upper arm and upper buttocks. Malassezia slooffiae, by contrast, was strikingly increased at all body sites in participants with congenital ichthyosiform erythroderma (CIE) and lamellar ichthyosis (LI). A previously undescribed Trichophyton species was also detected as sporadically colonizing the skin of patients with CIE, LI and epidermolytic ichthyosis subtypes. CONCLUSIONS The ichthyosis skin microbiome is significantly altered from healthy skin with specific changes predominating among ichthyosis subtypes. Skewing towards the Th17 pathway may represent a response to the altered microbial colonization in ichthyosis. What is already known about this topic? The skin microbiome of congenital ichthyoses is largely unexplored. Microbes play an important role in pathogenesis, as infections are common. The relative abundances of staphylococci and corynebacteria is increased in the cutaneous microbiome of patients with Netherton syndrome, but extension of these abundances to all congenital ichthyoses is unexplored. What does this study add? A common skin microbiome signature was observed across congenital ichthyoses. Distinct microbiome features were associated with ichthyosis subtypes. Changes in microbiome may contribute to T helper 17 cell immune polarization. What is the translational message? These data provide the basis for comparison of the microbiome with lipidomic and transcriptomic alterations in these forms of ichthyosis and consideration of correcting the dysbiosis as a therapeutic intervention.
Collapse
Affiliation(s)
- Khek-Chian Tham
- A*STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-10 Immunos, Singapore, 138648, Singapore
| | - Rachel Lefferdink
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, #03 Immunos, Singapore, 138648, Singapore
| | - Seong Soo Lim
- A*STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-10 Immunos, Singapore, 138648, Singapore
| | - X F Colin C Wong
- A*STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-10 Immunos, Singapore, 138648, Singapore
| | - Erin Ibler
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benedict Wu
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hajar Abu-Zayed
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Ester Del Duca
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Mashkura Chowdhury
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Margot Chima
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Hee Jee Kim
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, #03 Immunos, Singapore, 138648, Singapore
| | | | - Amy S Paller
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John E A Common
- A*STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-10 Immunos, Singapore, 138648, Singapore
| |
Collapse
|
9
|
Tang X, Wang Z, Yang S, Chen M, Zhang Y, Zhang F, Tan J, Yin T, Wang L. Maternal Xp22.31 copy-number variations detected in non-invasive prenatal screening effectively guide the prenatal diagnosis of X-linked ichthyosis. Front Genet 2022; 13:934952. [PMID: 36118896 PMCID: PMC9471005 DOI: 10.3389/fgene.2022.934952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background and aims: X-linked ichthyosis (XLI) is a common recessive genetic disease caused by the deletion of steroid sulfatase (STS) in Xp22.31. Maternal copy-number deletions in Xp22.31 (covering STS) can be considered an incidental benefit of genome-wide cell-free DNA profiling. Here, we explored the accuracy and clinical value of maternal deletions in Xp22.31 during non-invasive prenatal screening (NIPS). Materials and methods: We evaluated 13,156 pregnant women who completed NIPS. The maternal deletions in Xp22.31 revealed by NIPS were confirmed with maternal white blood cells by chromosome microarray analysis (CMA) or copy-number variation sequencing (CNV-seq). Suspected positive women pregnant with male fetuses were informed and provided with prenatal genetic counseling. Results: Nineteen maternal deletions in Xp22.31 covering STS were detected by NIPS, which were all confirmed, ranging in size from 0.61 to 1.77 Mb. Among them, eleven women with deletions in male fetuses accepted prenatal diagnoses, and finally nine cases of XLI were diagnosed. The nine XLI males had differing degrees of skin abnormalities, and of them, some male members of ten families had symptoms associated with XLI. Conclusion: NIPS has the potential to detect clinically significant maternal X chromosomal CNVs causing XLI, which can guide the prenatal diagnosis of X-linked ichthyosis and reflect the family history, so as to enhance pregnancy management as well as children and family members’ health management.
Collapse
|
10
|
Chouk H, Saad S, Dimassi S, Fetoui NG, Bennour A, Gammoudi R, Elmabrouk H, Saad A, Denguezli M, H'mida D. X-linked recessive ichthyosis in 8 Tunisian patients: awareness of misdiagnosis due to the technical trap of the STS pseudogene. BMC Med Genomics 2022; 15:165. [PMID: 35883075 PMCID: PMC9317125 DOI: 10.1186/s12920-022-01319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction X-linked recessive ichthyosis (XLI) is a genodermatosis, caused by a deficiency of the steroid sulphatase enzyme encoded by the STS gene (OMIM # 300,747). Adopted XLI molecular diagnosis approaches differ from one laboratory to another depending on available technical facilities. Our work aims to figure out a sound diagnostic strategy for XLI.
Patients and methods We collected 8 patients with XLI, all males, from 3 unrelated Tunisian families from central Tunisia. Genetic diagnosis was conducted through a large panel of genetic techniques including: Sanger Sequencing, haplotype analysis of STR markers, MLPA analysis, FISH and array CGH.
Results Direct Sanger sequencing of the STS gene showed the same deletion of 13 base pairs within the exon 4 in all patients resulting in a premature stop codon. However, all patients’ mothers were not carriers of this variant and no common haplotype flanking STS gene was shared between affected patients. Sequence alignment with reference human genome revealed an unprocessed pseudogene of the STS gene located on the Y chromosome, on which the 13 bp deletion was actually located. STS MLPA analysis identified a deletion of the entire STS gene on X chromosome for all affected patients. This deletion was confirmed by FISH and delineated by array CGH. Conclusion All our patients shared a deletion of the entire STS gene revealed by MLPA, confirmed by FISH and improved by array CGH. Geneticists must be aware of the presence of pseudogenes that can lead to XLI genetic misdiagnosis.
Collapse
Affiliation(s)
- Hamza Chouk
- Department of Cytogenetics, Molecular Genetic and Biology of Human Reproduction, Farhat Hached of Sousse, Sousse, Tunisia.,Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Sarra Saad
- Faculty of Medicine of Sousse, Sousse, Tunisia.,Department of Dermatology, Farhat Hached, Sousse, Tunisia
| | - Sarra Dimassi
- Department of Cytogenetics, Molecular Genetic and Biology of Human Reproduction, Farhat Hached of Sousse, Sousse, Tunisia.,Faculty of Medicine of Sousse, Sousse, Tunisia
| | - Nadia Ghariani Fetoui
- Faculty of Medicine of Sousse, Sousse, Tunisia.,Department of Dermatology, Farhat Hached, Sousse, Tunisia
| | - Ayda Bennour
- Department of Cytogenetics, Molecular Genetic and Biology of Human Reproduction, Farhat Hached of Sousse, Sousse, Tunisia.,Faculty of Medicine of Sousse, Sousse, Tunisia
| | - Rima Gammoudi
- Faculty of Medicine of Sousse, Sousse, Tunisia.,Department of Dermatology, Farhat Hached, Sousse, Tunisia
| | - Haifa Elmabrouk
- Department of Cytogenetics, Molecular Genetic and Biology of Human Reproduction, Farhat Hached of Sousse, Sousse, Tunisia.,Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Ali Saad
- Department of Cytogenetics, Molecular Genetic and Biology of Human Reproduction, Farhat Hached of Sousse, Sousse, Tunisia.,Faculty of Medicine of Sousse, Sousse, Tunisia
| | - Mohamed Denguezli
- Faculty of Medicine of Sousse, Sousse, Tunisia.,Department of Dermatology, Farhat Hached, Sousse, Tunisia
| | - Dorra H'mida
- Department of Cytogenetics, Molecular Genetic and Biology of Human Reproduction, Farhat Hached of Sousse, Sousse, Tunisia. .,Faculty of Medicine of Sousse, Sousse, Tunisia.
| |
Collapse
|
11
|
Albrecht ED, Aberdeen GW, Babischkin JS, Prior SJ, Lynch TJ, Baranyk IA, Pepe GJ. Estrogen Promotes Microvascularization in the Fetus and Thus Vascular Function and Insulin Sensitivity in Offspring. Endocrinology 2022; 163:6553898. [PMID: 35325097 PMCID: PMC9272192 DOI: 10.1210/endocr/bqac037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 11/19/2022]
Abstract
We have shown that normal weight offspring born to estrogen-deprived baboons exhibited insulin resistance, although liver and adipose function and insulin receptor and glucose transporter expression were unaltered. The blood microvessels have an important role in insulin action by delivering insulin and glucose to target cells. Although little is known about the regulation of microvessel development during fetal life, estrogen promotes capillary proliferation and vascular function in the adult. Therefore, we tested the hypothesis that estrogen promotes fetal microvessel development and thus vascular function and insulin sensitivity in offspring. Capillary/myofiber ratio was decreased 75% (P < 0.05) in skeletal muscle, a major insulin target tissue, of fetal baboons in which estradiol levels were depleted by administration of aromatase inhibitor letrozole. This was sustained after birth, resulting in a 50% reduction (P < 0.01) in microvessel expansion; 65% decrease (P < 0.01) in arterial flow-mediated dilation, indicative of vascular endothelial dysfunction; and 35% increase (P < 0.01) in blood pressure in offspring from estrogen-deprived baboons, changes prevented by letrozole and estradiol administration. Along with vascular dysfunction, peak insulin and glucose levels during a glucose tolerance test were greater (P < 0.05 to P < 0.01) and the homeostasis model of insulin resistance 2-fold higher (P < 0.01) in offspring of letrozole-treated than untreated animals, indicative of insulin resistance. This study makes the novel discovery that estrogen promotes microvascularization in the fetus and thus normal vascular development and function required for eliciting insulin sensitivity in offspring and that placental hormonal secretions, independent from improper fetal growth, are an important determinant of risk of developing insulin resistance.
Collapse
Affiliation(s)
- Eugene D Albrecht
- Departments of Obstetrics, Gynecology, Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Correspondence: Eugene Albrecht, PhD, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Bressler Research Laboratories 11-045A, 655 West Baltimore St, Baltimore, MD 21201, USA.
| | - Graham W Aberdeen
- Departments of Obstetrics, Gynecology, Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffery S Babischkin
- Departments of Obstetrics, Gynecology, Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD, USA
| | - Terrie J Lynch
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Irene A Baranyk
- Departments of Obstetrics, Gynecology, Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
12
|
Wren G, Davies W. Sex-linked genetic mechanisms and atrial fibrillation risk. Eur J Med Genet 2022; 65:104459. [PMID: 35189376 DOI: 10.1016/j.ejmg.2022.104459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/11/2022] [Accepted: 02/16/2022] [Indexed: 01/14/2023]
Abstract
Atrial fibrillation (AF) is a cardiac condition characterised by an irregular heartbeat, atrial pathology and an elevated downstream risk of thrombosis and heart failure, as well as neurological sequelae including stroke and dementia. The prevalence and presentation of, risk factors for, and therapeutic responses to, AF differ by sex, and this sex bias may be partially explained in terms of genetics. Here, we consider four sex-linked genetic mechanisms that may influence sex-biased phenotypes related to AF and provide examples of each: X-linked gene dosage, X-linked genomic imprinting, sex-biased autosomal gene expression, and male-limited Y-linked gene expression. We highlight novel candidate risk genes and pathways that warrant further investigation in clinical and preclinical studies. Understanding the biological basis of sex differences in AF should allow better prediction of disease risk, identification of novel risk/protective factors, and the development of more effective sex-tailored interventions.
Collapse
Affiliation(s)
| | - William Davies
- School of Psychology, Cardiff University, UK; School of Medicine, Cardiff University, UK.
| |
Collapse
|
13
|
Schierz IAM, Giuffrè M, Cimador M, D'Alessandro MM, Serra G, Favata F, Antona V, Piro E, Corsello G. Hypertrophic pyloric stenosis masked by kidney failure in a male infant with a contiguous gene deletion syndrome at Xp22.31 involving the steroid sulfatase gene: case report. Ital J Pediatr 2022; 48:19. [PMID: 35115028 PMCID: PMC8812169 DOI: 10.1186/s13052-022-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/18/2022] [Indexed: 11/27/2022] Open
Abstract
Background Contiguous gene deletion syndrome at Xp22.3 resulting in nullisomy in males or Turner syndrome patients typically encompasses the steroid sulfatase gene (STS) and contiguously located other genes expanding the phenotype. In large deletions, that encompass also the Kallmann syndrome 1 gene (KAL1), occasionally infantile hypertrophic pyloric stenosis (IHPS) and congenital anomalies of the kidney and urinary tract (CAKUT) have been reported. Patient presentation We report on a male newborn with family history in maternal uncle of renal abnormalities and short stature still without ichthyosiform dermatosis. The baby presented CAKUT with kidney failure and progressive vomiting. Renal bicarbonate loss masked hypochloremic and hypokalemic metabolic alkalosis classically present in IHPS and delayed its diagnosis. Antropyloric ultrasound examination and cystourethrography were diagnostic. After Fredet-Ramstedt extramucosal pyloromyotomy feeding and growing was regular and he was discharged home. Comparative whole-genome hybridization detected a maternal inherited interstitial deletion of 1.56 Mb on Xp22.31(6,552,712_8,115,153) × 0 involving the STS gene, but not the KAL1 gene. Conclusions Aberrant cholesterol sulfate storage due to STS deletion as the underlying pathomechanism is not limited to oculocutaneous phenotypes but could also lead to co-occurrence of both IHPS and kidney abnormalities, as we report. Thus, although these two latter pathologies have a high incidence in the neonatal age, their simultaneous association in our patient is resembling not a chance but a real correlation expanding the clinical spectrum associated with Xp22.31 deletions.
Collapse
Affiliation(s)
- Ingrid Anne Mandy Schierz
- Neonatal Intensive Care Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Via Alfonso Giordano n. 3, 90127, Palermo, Italy.
| | - Mario Giuffrè
- Neonatal Intensive Care Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Via Alfonso Giordano n. 3, 90127, Palermo, Italy
| | - Marcello Cimador
- Pediatric Surgery Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Palermo, Italy
| | | | - Gregorio Serra
- Neonatal Intensive Care Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Via Alfonso Giordano n. 3, 90127, Palermo, Italy
| | - Federico Favata
- Neonatal Intensive Care Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Via Alfonso Giordano n. 3, 90127, Palermo, Italy
| | - Vincenzo Antona
- Neonatal Intensive Care Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Via Alfonso Giordano n. 3, 90127, Palermo, Italy
| | - Ettore Piro
- Neonatal Intensive Care Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Via Alfonso Giordano n. 3, 90127, Palermo, Italy
| | - Giovanni Corsello
- Neonatal Intensive Care Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Via Alfonso Giordano n. 3, 90127, Palermo, Italy
| |
Collapse
|
14
|
Davies W. The contribution of Xp22.31 gene dosage to Turner and Klinefelter syndromes and sex-biased phenotypes. Eur J Med Genet 2021; 64:104169. [PMID: 33610733 DOI: 10.1016/j.ejmg.2021.104169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 11/27/2022]
Abstract
Turner syndrome (TS) is a rare developmental condition in females caused by complete, or partial, loss of the second sex chromosome; it is associated with a number of phenotypes including short stature, ovarian failure and infertility, as well as neurobehavioural and cognitive manifestations. In contrast, Klinefelter syndrome (KS) arises from an excess of X chromosome material in males (typical karyotype is 47,XXY); like TS, KS is associated with infertility and hormonal imbalance, and behavioural/neurocognitive differences from gonadal sex-matched counterparts. Lower dosage of genes that escape X-inactivation may partially explain TS phenotypes, whilst overdosage of these genes may contribute towards KS-related symptoms. Here, I discuss new findings from individuals with deletions or duplications limited to Xp22.31 (a region escaping X-inactivation), and consider the extent to which altered gene dosage within this small interval (and of the steroid sulfatase (STS) gene in particular) may influence the phenotypic profiles of TS and KS. The expression of X-escapees can be higher in female than male tissues; I conclude by considering how lower Xp22.31 gene dosage in males may increase their likelihood of exhibiting particular phenotypes relative to females. Understanding the genetic contribution to specific phenotypes in rare disorders such as TS and KS, and to more common sex-biased phenotypes, will be important for developing more effective, and more personalised, therapeutic approaches.
Collapse
Affiliation(s)
- William Davies
- School of Psychology, Cardiff University, Cardiff, UK; Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
15
|
Fedota OM, Roshcheniuk LV, Sadovnychenko IO, Gontar JV, Merenkova IM, Vorontsov VM, Ryzhko PP. Genetic Study of X-Linked Recessive Ichthyosis in Eastern Ukraine. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Brcic L, Underwood JF, Kendall KM, Caseras X, Kirov G, Davies W. Medical and neurobehavioural phenotypes in carriers of X-linked ichthyosis-associated genetic deletions in the UK Biobank. J Med Genet 2020; 57:692-698. [PMID: 32139392 PMCID: PMC7525778 DOI: 10.1136/jmedgenet-2019-106676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND X-linked ichthyosis (XLI) is an uncommon dermatological condition resulting from a deficiency of the enzyme steroid sulfatase (STS), often caused by X-linked deletions spanning STS. Some medical comorbidities have been identified in XLI cases, but small samples of relatively young patients has limited this. STS is highly expressed in subcortical brain structures, and males with XLI and female deletion carriers appear at increased risk of developmental/mood disorders and associated traits; the neurocognitive basis of these findings has not been examined. METHODS Using the UK Biobank resource, comprising participants aged 40-69 years recruited from the general UK population, we compared multiple medical/neurobehavioural phenotypes in males (n=86) and females (n=312) carrying genetic deletions spanning STS (0.8-2.5 Mb) (cases) to male (n=190 577) and female (n=227 862) non-carrier controls. RESULTS We identified an elevated rate of atrial fibrillation/flutter in male deletion carriers (10.5% vs 2.7% in male controls, Benjamini-Hochberg corrected p=0.009), and increased rates of mental distress (p=0.003), irritability (p<0.001) and depressive-anxiety traits (p<0.05) in male deletion carriers relative to male controls completing the Mental Health Questionnaire. While academic attainment was unaffected, male and female deletion carriers exhibited impaired performance on the Fluid Intelligence Test (Cohen's d≤0.05, corrected p<0.1). Neuroanatomical analysis in female deletion carriers indicated reduced right putamen and left nucleus accumbens volumes (Cohen's d≤0.26, corrected p<0.1). CONCLUSION Adult males with XLI disease-causing deletions are apparently at increased risk of cardiac arrhythmias and self-reported mood problems; altered basal ganglia structure may underlie altered function and XLI-associated psychiatric/behavioural phenotypes. These results provide information for genetic counselling of deletion-carrying individuals and reinforce the need for multidisciplinary medical care.
Collapse
Affiliation(s)
- Lucija Brcic
- School of Psychology, Cardiff University, Cardiff, UK
| | - Jack Fg Underwood
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Kimberley M Kendall
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - William Davies
- School of Psychology, Cardiff University, Cardiff, UK .,MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Zhang M, Huang H, Lin N, He S, An G, Wang Y, Chen M, Chen L, Lin Y, Xu L. X-linked ichthyosis: Molecular findings in four pedigrees with inconspicuous clinical manifestations. J Clin Lab Anal 2020; 34:e23201. [PMID: 31944387 PMCID: PMC7246362 DOI: 10.1002/jcla.23201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 11/12/2022] Open
Abstract
Background X‐linked ichthyosis (XLI) is the second most common type of ichthyosis, which is characterized by wide and symmetric distribution of adherent, dry, and polygonal scales on the skin. Steroid sulfatase (STS) gene, which is located at chromosome Xp22.31, has been identified as the pathogenic gene of XLI. Methods In this study, chromosome karyotype analysis, bacterial artificial chromosomes‐on‐Beads™ (BoBs) assay, fluorescence in situ hybridization (FISH), and single nucleotide polymorphism array (SNP‐array) were employed for the prenatal diagnoses in three pregnant women with high‐risk serological screening results and a pregnant woman with mental retardation. Results STS deletion was identified at chromosome Xp22.31 in all four fetuses. Postnatal follow‐up confirmed the diagnosis of ichthyosis in two male fetuses and revealed normal dermatological manifestations in other two female fetuses carrying ichthyosis. Conclusion The results of the present study demonstrate that a combination of karyotypying, prenatal BoBs, FISH, and SNP‐array may avoid the missed detection of common microdeletions and ensure the accuracy of the detection results, which provides a feasible tool for the reliable etiological diagnosis and better genetic counseling of XLI.
Collapse
Affiliation(s)
- Min Zhang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hailong Huang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Na Lin
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shuqiong He
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Gang An
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Meihuan Chen
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lingji Chen
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yuan Lin
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
18
|
Cavenagh A, Chatterjee S, Davies W. Behavioural and psychiatric phenotypes in female carriers of genetic mutations associated with X-linked ichthyosis. PLoS One 2019; 14:e0212330. [PMID: 30768640 PMCID: PMC6377116 DOI: 10.1371/journal.pone.0212330] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
X-linked ichthyosis (XLI) is a rare X-linked dermatological condition arising from deficiency for the enzyme steroid sulfatase (STS). STS is normally expressed in the brain, and males with XLI exhibit personality differences from males in the general population, and are at increased risk of developmental and mood disorders. As the STS gene escapes X-inactivation, female carriers of XLI-associated genetic mutations have reduced STS expression/activity relative to non-carrier females, and could manifest similar behavioural phenotypes to males with XLI. Additionally, as STS activity normally increases in female tissues towards late pregnancy and into the puerperium, carrier females could theoretically present with increased rates of postpartum psychopathology. Using a worldwide online survey comprising custom-designed demographic questionnaires and multiple validated psychological questionnaires, we collected detailed self-reported information on non-postpartum and postpartum behaviour in confirmed adult (>16yrs) female carriers of genetic mutations associated with XLI (n = 94) for statistical comparison to demographically-matched previously-published normative data from female controls (seven independent studies, 98≤n≤2562), adult males with XLI (n = 58), and to newly-obtained online survey data from a general population sample of mothers from the United Kingdom and United States of America (n = 263). The pattern of results in carrier females relative to controls was remarkably similar to that previously observed in males with XLI, with evidence for increased rates of developmental and mood disorders, and elevated levels of inattention, impulsivity, autism-related traits and general psychological distress. Carrier females exhibited a significantly elevated rate of postpartum mental health conditions (notably mild depression) relative to controls which could not be accounted for by social factors. Our data confirm the psychological profile associated with XLI-associated mutations, and suggest that female carriers may be at increased risk of psychopathology, including in the postpartum period. These findings are relevant to families affected by XLI, to clinicians involved in the care of these families, and to genetic counsellors.
Collapse
Affiliation(s)
- Alice Cavenagh
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sohini Chatterjee
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - William Davies
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Rodrigo-Nicolás B, Bueno-Martínez E, Martín-Santiago A, Cañueto J, Vicente A, Torrelo A, Noguera-Morel L, Duat-Rodríguez A, Jorge-Finnigan C, Palacios-Álvarez I, García-Hernández J, Sebaratnam D, González-Sarmiento R, Hernández-Martín A. Evidence of the high prevalence of neurological disorders in nonsyndromic X-linked recessive ichthyosis: a retrospective case series. Br J Dermatol 2018; 179:933-939. [DOI: 10.1111/bjd.16826] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
Affiliation(s)
| | - E. Bueno-Martínez
- Molecular Medicine Unit-Department of Medicine; IBSAL and IBMCC and University Hospital of Salamanca; CSIC, University of Salamanca; Spain
| | - A. Martín-Santiago
- Department of Dermatology; Hospital Son Espases; Palma de Mallorca Spain
| | - J. Cañueto
- Department of Dermatology; Hospital Universitario de Salamanca; Salamanca Spain
| | - A. Vicente
- Department of Dermatology; Hospital Sant Joan de Deu; Barcelona Spain
| | - A. Torrelo
- Department of Dermatology; Hospital Infantil Niño Jesús; Madrid Spain
| | - L. Noguera-Morel
- Department of Dermatology; Hospital Infantil Niño Jesús; Madrid Spain
| | | | - C. Jorge-Finnigan
- Department of Dermatology; Hospital Infantil Niño Jesús; Madrid Spain
| | | | - J.L. García-Hernández
- Molecular Medicine Unit-Department of Medicine; IBSAL and IBMCC and University Hospital of Salamanca; CSIC, University of Salamanca; Spain
| | - D.F. Sebaratnam
- Department of Dermatology; Hospital Infantil Niño Jesús; Madrid Spain
| | - R. González-Sarmiento
- Molecular Medicine Unit-Department of Medicine; IBSAL and IBMCC and University Hospital of Salamanca; CSIC, University of Salamanca; Spain
| | | |
Collapse
|
20
|
Davies W. SULFATION PATHWAYS: The steroid sulfate axis and its relationship to maternal behaviour and mental health. J Mol Endocrinol 2018; 61:T199-T210. [PMID: 29440314 DOI: 10.1530/jme-17-0219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022]
Abstract
Steroid hormones can exist in functionally dissociable sulfated and non-sulfated (free) forms and can exert profound effects on numerous aspects of mammalian physiology; the ratio of free-to-sulfated steroids is governed by the antagonistic actions of steroid sulfatase (STS) and sulfotransferase (SULT) enzymes. Here, I examine evidence from human and animal model studies, which suggests that STS and its major substrate (dehydroepiandrosterone sulfate, DHEAS) and product (DHEA) can influence brain function, behaviour and mental health, before summarising how the activity of this axis varies throughout mammalian pregnancy and the postpartum period. I then consider how the steroid sulfate axis might impact upon normal maternal behaviour and how its dysfunction might contribute towards risk of postpartum psychiatric illness. Understanding the biological substrates underlying normal and abnormal maternal behaviour will be important for maximising the wellbeing of new mothers and their offspring.
Collapse
Affiliation(s)
- William Davies
- School of PsychologyCardiff University, Cardiff, UK
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical NeurosciencesSchool of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research InstituteCardiff University, Cardiff, UK
| |
Collapse
|
21
|
Diociaiuti A, Angioni A, Pisaneschi E, Alesi V, Zambruno G, Novelli A, El Hachem M. X-linked ichthyosis: Clinical and molecular findings in 35 Italian patients. Exp Dermatol 2018; 28:1156-1163. [PMID: 29672931 DOI: 10.1111/exd.13667] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2018] [Indexed: 11/29/2022]
Abstract
Recessive X-linked ichthyosis (XLI), the second most common ichthyosis, is caused by mutations in the STS gene encoding the steroid sulfatase enzyme. A complete deletion of the STS gene is found in 85%-90% of cases. Rarely, larger deletions involving contiguous genes are detected in syndromic patients. We report the clinical and molecular genetic findings in a series of 35 consecutive Italian male patients. All patients underwent molecular testing by MLPA or aCGH, followed, in case of negative results, by next-generation sequencing analysis. Neuropsychiatric, ophthalmological and paediatric evaluations were also performed. Our survey showed a frequent presence of disease manifestations at birth (42.8%). Fold and palmoplantar surfaces were involved in 18 (51%) and 7 (20%) patients, respectively. Fourteen patients (42%) presented neuropsychiatric symptoms, including attention-deficit hyperactivity disorder and motor disabilities. In addition, two patients with mental retardation were shown to be affected by a contiguous gene syndrome. Twenty-seven patients had a complete STS deletion, one a partial deletion and 7 carried missense mutations, two of which previously unreported. In addition, a de novo STS deletion was identified in a sporadic case. The frequent presence of palmoplantar and fold involvement in XLI should be taken into account when considering the differential diagnosis with ichthyosis vulgaris. Our findings also underline the relevance of involving the neuropsychiatrist in the multidisciplinary management of XLI. Finally, we report for the first time a de novo mutation which shows that STS deletion can also occur in oogenesis.
Collapse
Affiliation(s)
- Andrea Diociaiuti
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Adriano Angioni
- Molecular Genetics Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Pisaneschi
- Molecular Genetics Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viola Alesi
- Molecular Genetics Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Antonio Novelli
- Molecular Genetics Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - May El Hachem
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
22
|
Chatterjee S, Humby T, Davies W. Behavioural and Psychiatric Phenotypes in Men and Boys with X-Linked Ichthyosis: Evidence from a Worldwide Online Survey. PLoS One 2016; 11:e0164417. [PMID: 27711218 PMCID: PMC5053497 DOI: 10.1371/journal.pone.0164417] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/23/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND X-linked ichthyosis (XLI) is a rare dermatological condition arising from deficiency for the enzyme steroid sulfatase (STS). Preliminary evidence in boys with XLI, and animal model studies, suggests that individuals lacking STS are at increased risk of developmental disorders and associated traits. However, the behavioural profile of children with XLI is poorly-characterised, and the behavioural profile of adults with XLI has not yet been documented at all. MATERIALS AND METHODS Using an online survey, advertised worldwide, we collected detailed self- or parent-reported information on behaviour in adult (n = 58) and younger (≤18yrs, n = 24) males with XLI for comparison to data from their non-affected brothers, and age/gender-matched previously-published normative data. The survey comprised demographic and background information (including any prior clinical diagnoses) and validated questionnaires assaying phenotypes of particular interest (Adult ADHD Self-Report Scale v1.1, Barrett Impulsiveness Scale-11, adult and adolescent Autism Quotient, Kessler Psychological Distress Scales, and Disruptive Behaviour Disorder Rating Scale). RESULTS Individuals with XLI generally exhibited normal sensory function. Boys with XLI were at increased risk of developmental disorder, whilst adults with the condition were at increased risk of both developmental and mood disorders. Both adult and younger XLI groups scored significantly more highly than male general population norms on measures of inattention, impulsivity, autism-related traits, psychological distress and disruptive behavioural traits. CONCLUSIONS These findings indicate that both adult and younger males with XLI exhibit personality profiles that are distinct from those of males within the general population, and suggest that individuals with XLI may be at heightened risk of psychopathology. The data are consistent with the notion that STS is important in neurodevelopment and ongoing brain function, and with previous work suggesting high rates of developmental disorders in boys with XLI. Our results suggest that individuals with XLI may require medical care from multidisciplinary teams, and should help to inform genetic counselling for the condition.
Collapse
Affiliation(s)
- Sohini Chatterjee
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Trevor Humby
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - William Davies
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Paller AS, Renert-Yuval Y, Suprun M, Esaki H, Oliva M, Huynh TN, Ungar B, Kunjravia N, Friedland R, Peng X, Zheng X, Estrada YD, Krueger JG, Choate KA, Suárez-Fariñas M, Guttman-Yassky E. An IL-17-dominant immune profile is shared across the major orphan forms of ichthyosis. J Allergy Clin Immunol 2016; 139:152-165. [PMID: 27554821 DOI: 10.1016/j.jaci.2016.07.019] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/18/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The ichthyoses are rare genetic disorders associated with generalized scaling, erythema, and epidermal barrier impairment. Pathogenesis-based therapy is largely lacking because the underlying molecular basis is poorly understood. OBJECTIVE We sought to characterize molecularly cutaneous inflammation and its correlation with clinical and barrier characteristics. METHODS We analyzed biopsy specimens from 21 genotyped patients with ichthyosis (congenital ichthyosiform erythroderma, n = 6; lamellar ichthyosis, n = 7; epidermolytic ichthyosis, n = 5; and Netherton syndrome, n = 3) using immunohistochemistry and RT-PCR and compared them with specimens from healthy control subjects, patients with atopic dermatitis (AD), and patients with psoriasis. Clinical measures included the Ichthyosis Area Severity Index (IASI), which integrates erythema (IASI-E) and scaling (IASI-S); transepidermal water loss; and pruritus. RESULTS Ichthyosis samples showed increased epidermal hyperplasia (increased thickness and keratin 16 expression) and T-cell and dendritic cell infiltrates. Increases of general inflammatory (IL-2), innate (IL-1β), and some TH1/interferon (IFN-γ) markers in patients with ichthyosis were comparable with those in patients with psoriasis or AD. TNF-α levels in patients with ichthyosis were increased only in those with Netherton syndrome but were much lower than in patients with psoriasis and those with AD. Expression of TH2 cytokines (IL-13 and IL-31) was similar to that seen in control subjects. The striking induction of IL-17-related genes or markers synergistically induced by IL-17 and TNF-α (IL-17A/C, IL-19, CXCL1, PI3, CCL20, and IL36G; P < .05) in patients with ichthyosis was similar to that seen in patients with psoriasis. IASI and IASI-E scores strongly correlated with IL-17A (r = 0.74, P < .001) and IL-17/TNF-synergistic/additive gene expression. These markers also significantly correlated with transepidermal water loss, suggesting a link between the barrier defect and inflammation in patients with ichthyosis. CONCLUSION Our data associate a shared TH17/IL-23 immune fingerprint with the major orphan forms of ichthyosis and raise the possibility of IL-17-targeting strategies.
Collapse
Affiliation(s)
- Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Yael Renert-Yuval
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Suprun
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hitokazu Esaki
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Margeaux Oliva
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Thy Nhat Huynh
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Benjamin Ungar
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Norma Kunjravia
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Rivka Friedland
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Xiangyu Peng
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xiuzhong Zheng
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Yeriel D Estrada
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - James G Krueger
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Keith A Choate
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn
| | - Mayte Suárez-Fariñas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| |
Collapse
|
24
|
Idkowiak J, Taylor AE, Subtil S, O'Neil DM, Vijzelaar R, Dias RP, Amin R, Barrett TG, Shackleton CHL, Kirk JMW, Moss C, Arlt W. Steroid Sulfatase Deficiency and Androgen Activation Before and After Puberty. J Clin Endocrinol Metab 2016; 101:2545-53. [PMID: 27003302 PMCID: PMC4891801 DOI: 10.1210/jc.2015-4101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Steroid sulfatase (STS) cleaves the sulfate moiety off steroid sulfates, including dehydroepiandrosterone (DHEA) sulfate (DHEAS), the inactive sulfate ester of the adrenal androgen precursor DHEA. Deficient DHEA sulfation, the opposite enzymatic reaction to that catalyzed by STS, results in androgen excess by increased conversion of DHEA to active androgens. STS deficiency (STSD) due to deletions or inactivating mutations in the X-linked STS gene manifests with ichthyosis, but androgen synthesis and metabolism in STSD have not been studied in detail yet. PATIENTS AND METHODS We carried out a cross-sectional study in 30 males with STSD (age 6-27 y; 13 prepubertal, 5 peripubertal, and 12 postpubertal) and 38 age-, sex-, and Tanner stage-matched healthy controls. Serum and 24-hour urine steroid metabolome analysis was performed by mass spectrometry and genetic analysis of the STS gene by multiplex ligation-dependent probe amplification and Sanger sequencing. RESULTS Genetic analysis showed STS mutations in all patients, comprising 27 complete gene deletions, 1 intragenic deletion and 2 missense mutations. STSD patients had apparently normal pubertal development. Serum and 24-hour urinary DHEAS were increased in STSD, whereas serum DHEA and testosterone were decreased. However, total 24-hour urinary androgen excretion was similar to controls, with evidence of increased 5α-reductase activity in STSD. Prepubertal healthy controls showed a marked increase in the serum DHEA to DHEAS ratio that was absent in postpubertal controls and in STSD patients of any pubertal stage. CONCLUSIONS In STSD patients, an increased 5α-reductase activity appears to compensate for a reduced rate of androgen generation by enhancing peripheral androgen activation in affected patients. In healthy controls, we discovered a prepubertal surge in the serum DHEA to DHEAS ratio that was absent in STSD, indicative of physiologically up-regulated STS activity before puberty. This may represent a fine tuning mechanism for tissue-specific androgen activation preparing for the major changes in androgen production during puberty.
Collapse
Affiliation(s)
- Jan Idkowiak
- Institutes of Metabolism and Systems Research (J.I., A.E.T., S.S., D.M.O., C.H.L.S., W.A.) and Cancer and Genomic Sciences (T.G.B.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Centres for Endocrinology, Diabetes and Metabolism (J.I., A.E.T., R.P.D., T.G.B., C.H.L.S., J.M.W.K., W.A.) and Rare Diseases and Personalised Medicine (T.G.B.), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom; Departments of Paediatric Endocrinology and Diabetes (J.I., R.P.D., T.G.B., J.M.W.K.) and Paediatric Dermatology (C.M.), Birmingham Children's Hospital National Health Service Foundation Trust, Birmingham B4 6NH, United Kingdom; MRC-Holland bv (R.V.), 1057-DN Amsterdam, The Netherlands; Department of Paediatric Endocrinology (R.A.), Great Ormond St Hospital for Children, London WC1N 3JH, United Kingdom; and Benioff Children's Hospital (C.H.L.S.), University of California San Francisco, Oakland, California 94609
| | - Angela E Taylor
- Institutes of Metabolism and Systems Research (J.I., A.E.T., S.S., D.M.O., C.H.L.S., W.A.) and Cancer and Genomic Sciences (T.G.B.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Centres for Endocrinology, Diabetes and Metabolism (J.I., A.E.T., R.P.D., T.G.B., C.H.L.S., J.M.W.K., W.A.) and Rare Diseases and Personalised Medicine (T.G.B.), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom; Departments of Paediatric Endocrinology and Diabetes (J.I., R.P.D., T.G.B., J.M.W.K.) and Paediatric Dermatology (C.M.), Birmingham Children's Hospital National Health Service Foundation Trust, Birmingham B4 6NH, United Kingdom; MRC-Holland bv (R.V.), 1057-DN Amsterdam, The Netherlands; Department of Paediatric Endocrinology (R.A.), Great Ormond St Hospital for Children, London WC1N 3JH, United Kingdom; and Benioff Children's Hospital (C.H.L.S.), University of California San Francisco, Oakland, California 94609
| | - Sandra Subtil
- Institutes of Metabolism and Systems Research (J.I., A.E.T., S.S., D.M.O., C.H.L.S., W.A.) and Cancer and Genomic Sciences (T.G.B.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Centres for Endocrinology, Diabetes and Metabolism (J.I., A.E.T., R.P.D., T.G.B., C.H.L.S., J.M.W.K., W.A.) and Rare Diseases and Personalised Medicine (T.G.B.), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom; Departments of Paediatric Endocrinology and Diabetes (J.I., R.P.D., T.G.B., J.M.W.K.) and Paediatric Dermatology (C.M.), Birmingham Children's Hospital National Health Service Foundation Trust, Birmingham B4 6NH, United Kingdom; MRC-Holland bv (R.V.), 1057-DN Amsterdam, The Netherlands; Department of Paediatric Endocrinology (R.A.), Great Ormond St Hospital for Children, London WC1N 3JH, United Kingdom; and Benioff Children's Hospital (C.H.L.S.), University of California San Francisco, Oakland, California 94609
| | - Donna M O'Neil
- Institutes of Metabolism and Systems Research (J.I., A.E.T., S.S., D.M.O., C.H.L.S., W.A.) and Cancer and Genomic Sciences (T.G.B.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Centres for Endocrinology, Diabetes and Metabolism (J.I., A.E.T., R.P.D., T.G.B., C.H.L.S., J.M.W.K., W.A.) and Rare Diseases and Personalised Medicine (T.G.B.), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom; Departments of Paediatric Endocrinology and Diabetes (J.I., R.P.D., T.G.B., J.M.W.K.) and Paediatric Dermatology (C.M.), Birmingham Children's Hospital National Health Service Foundation Trust, Birmingham B4 6NH, United Kingdom; MRC-Holland bv (R.V.), 1057-DN Amsterdam, The Netherlands; Department of Paediatric Endocrinology (R.A.), Great Ormond St Hospital for Children, London WC1N 3JH, United Kingdom; and Benioff Children's Hospital (C.H.L.S.), University of California San Francisco, Oakland, California 94609
| | - Raymon Vijzelaar
- Institutes of Metabolism and Systems Research (J.I., A.E.T., S.S., D.M.O., C.H.L.S., W.A.) and Cancer and Genomic Sciences (T.G.B.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Centres for Endocrinology, Diabetes and Metabolism (J.I., A.E.T., R.P.D., T.G.B., C.H.L.S., J.M.W.K., W.A.) and Rare Diseases and Personalised Medicine (T.G.B.), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom; Departments of Paediatric Endocrinology and Diabetes (J.I., R.P.D., T.G.B., J.M.W.K.) and Paediatric Dermatology (C.M.), Birmingham Children's Hospital National Health Service Foundation Trust, Birmingham B4 6NH, United Kingdom; MRC-Holland bv (R.V.), 1057-DN Amsterdam, The Netherlands; Department of Paediatric Endocrinology (R.A.), Great Ormond St Hospital for Children, London WC1N 3JH, United Kingdom; and Benioff Children's Hospital (C.H.L.S.), University of California San Francisco, Oakland, California 94609
| | - Renuka P Dias
- Institutes of Metabolism and Systems Research (J.I., A.E.T., S.S., D.M.O., C.H.L.S., W.A.) and Cancer and Genomic Sciences (T.G.B.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Centres for Endocrinology, Diabetes and Metabolism (J.I., A.E.T., R.P.D., T.G.B., C.H.L.S., J.M.W.K., W.A.) and Rare Diseases and Personalised Medicine (T.G.B.), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom; Departments of Paediatric Endocrinology and Diabetes (J.I., R.P.D., T.G.B., J.M.W.K.) and Paediatric Dermatology (C.M.), Birmingham Children's Hospital National Health Service Foundation Trust, Birmingham B4 6NH, United Kingdom; MRC-Holland bv (R.V.), 1057-DN Amsterdam, The Netherlands; Department of Paediatric Endocrinology (R.A.), Great Ormond St Hospital for Children, London WC1N 3JH, United Kingdom; and Benioff Children's Hospital (C.H.L.S.), University of California San Francisco, Oakland, California 94609
| | - Rakesh Amin
- Institutes of Metabolism and Systems Research (J.I., A.E.T., S.S., D.M.O., C.H.L.S., W.A.) and Cancer and Genomic Sciences (T.G.B.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Centres for Endocrinology, Diabetes and Metabolism (J.I., A.E.T., R.P.D., T.G.B., C.H.L.S., J.M.W.K., W.A.) and Rare Diseases and Personalised Medicine (T.G.B.), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom; Departments of Paediatric Endocrinology and Diabetes (J.I., R.P.D., T.G.B., J.M.W.K.) and Paediatric Dermatology (C.M.), Birmingham Children's Hospital National Health Service Foundation Trust, Birmingham B4 6NH, United Kingdom; MRC-Holland bv (R.V.), 1057-DN Amsterdam, The Netherlands; Department of Paediatric Endocrinology (R.A.), Great Ormond St Hospital for Children, London WC1N 3JH, United Kingdom; and Benioff Children's Hospital (C.H.L.S.), University of California San Francisco, Oakland, California 94609
| | - Timothy G Barrett
- Institutes of Metabolism and Systems Research (J.I., A.E.T., S.S., D.M.O., C.H.L.S., W.A.) and Cancer and Genomic Sciences (T.G.B.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Centres for Endocrinology, Diabetes and Metabolism (J.I., A.E.T., R.P.D., T.G.B., C.H.L.S., J.M.W.K., W.A.) and Rare Diseases and Personalised Medicine (T.G.B.), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom; Departments of Paediatric Endocrinology and Diabetes (J.I., R.P.D., T.G.B., J.M.W.K.) and Paediatric Dermatology (C.M.), Birmingham Children's Hospital National Health Service Foundation Trust, Birmingham B4 6NH, United Kingdom; MRC-Holland bv (R.V.), 1057-DN Amsterdam, The Netherlands; Department of Paediatric Endocrinology (R.A.), Great Ormond St Hospital for Children, London WC1N 3JH, United Kingdom; and Benioff Children's Hospital (C.H.L.S.), University of California San Francisco, Oakland, California 94609
| | - Cedric H L Shackleton
- Institutes of Metabolism and Systems Research (J.I., A.E.T., S.S., D.M.O., C.H.L.S., W.A.) and Cancer and Genomic Sciences (T.G.B.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Centres for Endocrinology, Diabetes and Metabolism (J.I., A.E.T., R.P.D., T.G.B., C.H.L.S., J.M.W.K., W.A.) and Rare Diseases and Personalised Medicine (T.G.B.), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom; Departments of Paediatric Endocrinology and Diabetes (J.I., R.P.D., T.G.B., J.M.W.K.) and Paediatric Dermatology (C.M.), Birmingham Children's Hospital National Health Service Foundation Trust, Birmingham B4 6NH, United Kingdom; MRC-Holland bv (R.V.), 1057-DN Amsterdam, The Netherlands; Department of Paediatric Endocrinology (R.A.), Great Ormond St Hospital for Children, London WC1N 3JH, United Kingdom; and Benioff Children's Hospital (C.H.L.S.), University of California San Francisco, Oakland, California 94609
| | - Jeremy M W Kirk
- Institutes of Metabolism and Systems Research (J.I., A.E.T., S.S., D.M.O., C.H.L.S., W.A.) and Cancer and Genomic Sciences (T.G.B.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Centres for Endocrinology, Diabetes and Metabolism (J.I., A.E.T., R.P.D., T.G.B., C.H.L.S., J.M.W.K., W.A.) and Rare Diseases and Personalised Medicine (T.G.B.), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom; Departments of Paediatric Endocrinology and Diabetes (J.I., R.P.D., T.G.B., J.M.W.K.) and Paediatric Dermatology (C.M.), Birmingham Children's Hospital National Health Service Foundation Trust, Birmingham B4 6NH, United Kingdom; MRC-Holland bv (R.V.), 1057-DN Amsterdam, The Netherlands; Department of Paediatric Endocrinology (R.A.), Great Ormond St Hospital for Children, London WC1N 3JH, United Kingdom; and Benioff Children's Hospital (C.H.L.S.), University of California San Francisco, Oakland, California 94609
| | - Celia Moss
- Institutes of Metabolism and Systems Research (J.I., A.E.T., S.S., D.M.O., C.H.L.S., W.A.) and Cancer and Genomic Sciences (T.G.B.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Centres for Endocrinology, Diabetes and Metabolism (J.I., A.E.T., R.P.D., T.G.B., C.H.L.S., J.M.W.K., W.A.) and Rare Diseases and Personalised Medicine (T.G.B.), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom; Departments of Paediatric Endocrinology and Diabetes (J.I., R.P.D., T.G.B., J.M.W.K.) and Paediatric Dermatology (C.M.), Birmingham Children's Hospital National Health Service Foundation Trust, Birmingham B4 6NH, United Kingdom; MRC-Holland bv (R.V.), 1057-DN Amsterdam, The Netherlands; Department of Paediatric Endocrinology (R.A.), Great Ormond St Hospital for Children, London WC1N 3JH, United Kingdom; and Benioff Children's Hospital (C.H.L.S.), University of California San Francisco, Oakland, California 94609
| | - Wiebke Arlt
- Institutes of Metabolism and Systems Research (J.I., A.E.T., S.S., D.M.O., C.H.L.S., W.A.) and Cancer and Genomic Sciences (T.G.B.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Centres for Endocrinology, Diabetes and Metabolism (J.I., A.E.T., R.P.D., T.G.B., C.H.L.S., J.M.W.K., W.A.) and Rare Diseases and Personalised Medicine (T.G.B.), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom; Departments of Paediatric Endocrinology and Diabetes (J.I., R.P.D., T.G.B., J.M.W.K.) and Paediatric Dermatology (C.M.), Birmingham Children's Hospital National Health Service Foundation Trust, Birmingham B4 6NH, United Kingdom; MRC-Holland bv (R.V.), 1057-DN Amsterdam, The Netherlands; Department of Paediatric Endocrinology (R.A.), Great Ormond St Hospital for Children, London WC1N 3JH, United Kingdom; and Benioff Children's Hospital (C.H.L.S.), University of California San Francisco, Oakland, California 94609
| |
Collapse
|
25
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
26
|
Hand JL, Runke CK, Hodge JC. The phenotype spectrum of X-linked ichthyosis identified by chromosomal microarray. J Am Acad Dermatol 2015; 72:617-27. [DOI: 10.1016/j.jaad.2014.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/29/2022]
|
27
|
Pre-Descemet corneal dystrophy and X-linked ichthyosis associated with deletion of Xp22.31 containing the STS gene. Cornea 2014; 32:1283-7. [PMID: 23807007 DOI: 10.1097/ico.0b013e318298e176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To report the association of X-linked ichthyosis and pre-Descemet corneal dystrophy with a deletion of the steroid sulfatase gene (STS) detected with microarray-based comparative genomic hybridization (aCGH). METHODS A slit-lamp biomicroscopic examination and cutaneous examination were performed, after which a saliva sample was collected as a source of genomic DNA. Polymerase chain reaction amplification of each of the 10 exons of STS was performed, as was aCGH on genomic DNA to detect copy number variation. RESULTS The slit-lamp examination revealed punctate opacities in the posterior corneal stroma of each eye. The cutaneous examination demonstrated scaling and flaking skin of the arms and legs. Polymerase chain reaction amplification using primers designed to amplify each of the 10 exons of STS failed to produce any amplicons. Subsequently, aCGH performed on genomic DNA revealed a microdeletion in the Xp22.31 cytoband of approximately 1.7 megabases, containing STS. CONCLUSIONS The identification of a microdeletion within Xp22.3 containing STS with aCGH in an individual with suspected pre-Descemet corneal dystrophy and X-linked ichthyosis demonstrates the clinical utility of copy number variation analysis in confirming a presumptive clinical diagnosis.
Collapse
|
28
|
Interprétation des valeurs atypiques des marqueurs sériques. ACTA ACUST UNITED AC 2014; 43:5-11. [DOI: 10.1016/j.jgyn.2013.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/31/2013] [Accepted: 08/13/2013] [Indexed: 11/17/2022]
|
29
|
Trent S, Davies W. Cognitive, behavioural and psychiatric phenotypes associated with steroid sulfatase deficiency. World J Transl Med 2013; 2:1-12. [DOI: 10.5528/wjtm.v2.i1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/24/2013] [Accepted: 02/08/2013] [Indexed: 02/05/2023] Open
Abstract
The enzyme steroid sulfatase (STS) desulfates a variety of steroid compounds thereby altering their activity. STS is expressed in the skin, and its deficiency in this tissue has been linked to the dermatological condition X-linked ichthyosis. STS is also highly expressed in the developing and adult human brain, and in a variety of steroidogenic organs (including the placenta and gonads); therefore it has the potential to influence brain development and function directly and/or indirectly (through influencing the hormonal milieu). In this review, we first discuss evidence from human and animal model studies suggesting that STS deficiency might predispose to neurobehavioural abnormalities and certain psychiatric disorders. We subsequently discuss potential mechanisms that may underlie these vulnerabilities. The data described herein have potential implications for understanding the complete spectrum of clinical phenotypes associated with X-linked ichthyosis, and may indicate novel pathogenic mechanisms underlying psychological dysfunction in developmental disorders such as attention deficit hyperactivity disorder and Turner syndrome.
Collapse
|
30
|
Abstract
Pregnancy is marked by alterations in a number of endocrine systems, including activation of the renin-angiotensin-aldosterone system and the hypothalamic-pituitary-adrenal axis. The placenta, the fetal adrenal glands and the liver constitute an interactive endocrine entity, known as the fetoplacental unit. In the fetoplacental unit, the fetal adrenal glands are the primary source of dehydroepiandrosterone sulphate, which is further metabolized by the fetal liver and placenta to produce a variety of oestrogens. Several disorders can affect both the fetal and maternal adrenal glands during pregnancy. The most common fetal adrenal disorder, steroid 21-hydroxylase deficiency, leads to abnormalities in sexual development and can be life threatening for the neonate. Although rare, maternal adrenal disorders are associated with considerable maternal mortality and morbidity if not promptly recognized and treated. However, diagnosis is often difficult to establish because of the endocrine changes occurring during normal pregnancies and the lack of reference values for the majority of the adrenal steroids. This Review provides an overview of adrenal steroid metabolism during pregnancy and focuses on diagnosis and treatment of the most common fetal and maternal adrenal disorders.
Collapse
Affiliation(s)
- Silvia Monticone
- Department of Physiology, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA
| | | | | |
Collapse
|
31
|
Craig WY, Palomaki G, Roberson M, Haddow JE. Further insights into implications of undetectable or very low unconjugated estriol in maternal serum during the second trimester. Prenat Diagn 2011; 31:616-8. [PMID: 21472738 DOI: 10.1002/pd.2754] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 12/13/2022]
|